Сравнение IGBT с MOSFET
Структуры обоих транзисторов очень похожи друг на друга. Что касается протекания тока, важным отличием является добавление слоя подложки P-типа под слой подложки N-типа в структуре модуля IGBT. В этом дополнительном слое дырки вводятся в слой с высоким сопротивлением N-типа, создавая избыток носителей. Это увеличение проводимости в N-слое помогает уменьшить общее напряжение во включенном состоянии в IGBT-модуле. К сожалению, это также блокирует поток электроэнергии в обратном направлении. Поэтому в схему добавлен специальный диод, который расположен параллельно с IGBT чтобы проводить ток в противоположном направлении.
Полевики с обособленным затвором
Эти устройства часто используются как полупроводниковые управляющиеся ключи. Как правило, они функционируют в режиме ключа. Есть 2 положения — включить и выключить 3 названия:
- МДП, что означает присутствие в устройстве диэлектрического материала, полупроводника и металла.
- МОП. В него входит окислительный элемент, полупроводник и металл.
- МОФСЕТ:metal-oxide-semiconductor.
Все перечисленное — только варианты одного и того же наименования. Окислительный, или диэлектрический элемент — это, по сути, изолятор затвора. Он находится между самим затвором и n-участком. Это пространство белого цвета, с точечками, состоящее из кремниевого диоксида.
Диэлектрик не допускает электрического контакта подложки и затворного электрода. Он функционирует не так, как p-n переход, по принципу расширения канального перекрытия и перехода. Устройство действует за счёт смены концентрации полупроводниковых переносчиков заряда под влиянием внешнего электрополя.
Есть 2 вида распространённых транзисторов МОП: с индукционным и встроенным каналами.
Со встроенным
Принцип действия такого прибора аналогичен полевому транзистору с управлением от p-n перехода при нулевом напряжении затвора. Ток при этом течёт через ключ.
Транзисторы с внутренним каналом
Возле истока и стока есть 2 области с большим количеством заряженных примесей, имеющих повышенную проводимость. Здесь подложкой является p-основание.
Кристалл соединяется с истоком, поэтому на большей части условных графиков он так и изображен. Когда напряжение на затворе повышается, в канале появляется поперечное электрополе, отталкивающее Электроны. Происходит закрытие канала, когда достигается порог Uзи.
Когда подается отрицательное напряжение затвора — истока, стоковая сила тока уменьшается. Транзистор закрывается. Это называется режимом обеднения. Если же подаётся напряжение со знаком «+», на затворе и истоке осуществляется обратное: за счет притягивания электронов возрастает сила тока. Это явление именуют режимом обогащения.
Все описанное подходит к транзисторам типа n, с внутренним каналом. В случае с p происходит замена электронов так называемыми дырками, и происходит изменение полярности напряжения на другой знак.
С индуктивным каналом
В таких транзисторах не протекает ток, если нет напряжения затвора. Если сказать точнее, ток очень небольшой, поскольку он является обратным от подложки — к высоко легированным элементам стока и истока.
Если напряжение есть, мы имеем дело с вариантом канала индукции, где под влиянием поля заряды со знаком «-» попадают на территорию затвора. Это означает появление электронного коридора между истоком и стоком. При появлении канала происходит открытие транзистора и протекание через него электричества.
Приведем пример практического применения высокого сопротивления выхода. Устройства с такими свойствами довольно популярны. Это согласующие приборы, которыми проводится подключение электроакустики — гитар с пьезозвукоснимающими приборами и электрических гитар с электромагнитными снимателями звука, к входам с маленькими сопротивлениями
От невысокого сопротивления может произойти просадка сигнала выхода. Его форма может меняться в разных пределах, согласно частоте сигнала. Это можно предотвратить введением каскада невысокого сопротивления входа. Таким способом удобно подключаются электрогитары к линейным входам компьютерных видеокарт. Это делает звук более ярким, а тембр — насыщенным.
“Универсальное” электромагнитное реле
Электромагнитное реле является по сути управляемым механическим выключателем: подали на него ток – оно замкнуло контакты, сняли ток – разомкнуло. Контакты являются именно контактами: металлическими “пятаками”, которые прижимаются друг к другу. Именно поэтому такое реле может управлять как нагрузкой постоянного, так и переменного тока.
Сама катушка реле является неслабой индуктивной нагрузкой, что приводит к дополнительным проблемам (читай ниже), поэтому для управления “голым” реле нам понадобится дополнительная силовая и защитная цепь.
После изучения данного урока вы сами сможете её составить (транзистор и диод), а сейчас мы поговорим о модулях реле: готовая плата, на которой стоит само реле, а также цепи коммутации, защиты и даже оптическая развязка. Такие модули бывают “семейными” – с несколькими реле на борту. Спасибо китайцам за это! Смотрите варианты у меня в каталоге ссылок на Али.
Такое реле сделано специально для удобного управления с микроконтроллера: пины питания VCC (Vin, 5V) и GND подключаются к питанию, а далее реле управляется логическим сигналом, поданным на пин IN. С другой стороны стоит клеммник для подключения проводов, обычно контакты подписаны как NO, NC и COM. Это общепринятые названия пинов кнопок, переключателей и реле:
- COM – Common, общий. Реле является переключающим, и пин COM является общим.
- NO – Normal Open, нормально открытый. При неактивном реле данный контакт не соединён с COM. При активации реле он замыкается с COM.
- NC – Normal Closed, нормально закрытый. При неактивном реле данный контакт соединён с COM. При активации реле он размыкается с COM.
Подключение нагрузки через реле думаю для всех является очевидным:
Важный момент: катушка реле в активном режиме потребляет около 60 мА, то есть подключать больше одного модуля реле при питании платы от USB не рекомендуется – уже появятся просадки по напряжению и помехи:
Такие модули реле бывают двух типов: низкого и высокого уровня. Реле низкого уровня переключается при наличии низкого сигнала (GND) на управляющем пине digitalWrite(pin, LOW) . Реле высокого уровня соответственно срабатывает от высокого уровня digitalWrite(pin, HIGH) . Какого типа вам досталось реле можно определить экспериментально, а можно прочитать на странице товара или на самой плате. Также существуют модули с выбором уровня:
На плате, справа от надписи High/Low trigger есть перемычка, при помощи которой происходит переключение уровня. Электромагнитное реле имеет ряд недостатков перед остальными рассмотренными ниже способами, вы должны их знать и учитывать:
- Ограниченное количество переключений: механический контакт изнашивается, особенно при большой и/или индуктивной нагрузке.
- Противно щёлкает!
- При большой нагрузке реле может “залипнуть”, поэтому для больших токов нужно использовать более мощные реле, которые придётся включать при помощи… маленьких реле. Или транзисторов.
- Необходимы дополнительные цепи для управления реле, так как катушка является индуктивной нагрузкой, и нагрузкой самой по себе слишком большой для пина МК (решается использованием китайского модуля реле).
- Очень большие наводки на всю линию питания при коммутации индуктивной нагрузки.
- Относительно долгое переключение (невозможно поставить детектор нуля, читай ниже), при управлении индуктивными цепями переменного тока можно попасть на большой индуктивный выброс, необходимо ставить искрогасящие цепи.
Важный момент связан с коммутацией светодиодных светильников и ламп, особенно дешёвых: у них прямо на входе стоит конденсатор, который при резком подключении в цепь становится очень мощным потребителем и приводит к скачку тока. Скачок может быть настолько большим, что 15-20 Ваттная светодиодная лампа буквально сваривает контакты реле и оно “залипает”! Данный эффект сильнее выражен на дешёвых лампах, будьте с ними аккуратнее (за инфу спасибо DAK). При помощи реле можно плавно управлять сильно инерционной нагрузкой, такой как большой обогреватель. Для этого нужно использовать сверхнизкочастотный ШИМ сигнал, у меня есть готовая библиотека. Не забываем, что реле противно щёлкает и изнашивается, поэтому для таких целей лучше подходит твердотельное реле, о котором мы поговорим ниже.
Возможно, вам также будет интересно
Все статьи цикла. В настоящее время появляются новые приложения, для которых требуется применение ключей, способных работать при высоких коммутируемых напряжениях. Их использование приведет к снижению себестоимости и общей совокупности компонентов, необходимых, например, для преобразования выходной мощности модуля фотоэлектрических элементов в полезную электрическую энергию и повышения эффективности (здесь мы в большей степени имеем в виду КПД)
Введение Операционные усилители (ОУ) являются одними из наиболее распространенных электронных компонентов, широко используемых в современных схемах формирования и преобразования информационных сигналов различного назначения — как в аналоговой, так и в цифровой технике. На фоне этого изобилия разработчику сложно сделать оптимальный выбор микросхемы для конкретного приложения. Операционные усилители характеризуются большим числом параметров, значения которых варьируются в
На портале «Время электроники» опубликована база российских производителей электронных компонентов, модулей и конечных изделий с актуальной и проверенной информацией.
Как известно, в производстве электроники выделяют три технологических передела: производство электронных компонентов, производство электронных модулей и производство электронной аппаратуры.
Электронные компоненты — дискретные элементы электрической схемы или микросхемы.
Электронные модули — функционально законченные блоки, состоящие из отдельных электронных компонентов и/или их интегральных сборок и пригодные для последующей …
Как проверить полевой транзистор мультиметром и специальным тестером
Автор С Косенко из Воронежа в журнале Радио №1 за 2005 год показал свою разработку прибора проверки полевых транзисторов. Его имя: ППТ-01. Он объяснил принципы его работы, сборки, наладки, эксплуатации доступным языком.
Новичкам это все должно быть интересно, советую читать такие журналы и больше экспериментировать. Вам нужен практический опыт.
Сейчас подобные приборы выпускаются промышленным способом. Они позволяют проверять транзисторы, тиристоры, симисторы и другие электронные компоненты, точно узнать каждый параметр.
Доступная цена и широкие возможности этих тестеров обеспечивают их популярность. Ведь вся проверка сводится к установке выводов полупроводника в контактные гнезда и нажатию кнопки: результат автоматически отображается на дисплее.
Однако все эти операции вполне можно выполнить обычным цифровым мультиметром или аналоговым стрелочным тестером. Для этого нам потребуется посмотреть заводскую маркировку и найти по ней технические характеристики, определиться с конструкцией (JFET или MOSFET) и проводимостью канала.
Затем нужно вспомнить устройство своего мультиметра или тестера, перевести его в режим прозвонки либо измерения сопротивлений (для аналоговых приборов).
На моем карманном MESTEK MT-102 плюс присутствует на красном щупе, а минус — на черном. У вас скорее всего аналогично, но проверьте. Знак дисплея 0L (или 1 на других моделях) означает величину сопротивления (∞), которая превышает предназначенный диапазон измерения.
Проверку выполняем двумя этапами, последовательно соблюдая очередь:
- оцениваем исправность цепи сток-исток или, более точно, встроенного диода;
- анализируем открытие и закрытие выходной цепи при подаче управляющего сигнала.
Режим проверки №1
Перед началом работы кратковременно зашунтируйте все выводы полевика. Этим действием убирается возможный потенциал на его электродах, который может помешать замеру.
Результаты измерений на табло показываю для исправного мосфета. У поврежденного переходы будут отличаться: пробиты или оборваны.
На картинке показываю два измерения для n-канального транзистора. Схему его собрата с p-каналом привел для образца в правом нижнем углу. Действия для него аналогичны, а результат зависит от проводимости.
При первом замере ставим красный щуп с потенциалом плюса на сток, а черный на исток. Если диод исправен, то показания на приборе будут порядка 400-600. Это величина падения напряжения в милливольтах. Таким способом мультиметр в режиме прозвонки оценивает состояние полупроводникового перехода p-n полярности.
Для второго замера меняем щупы местами. Диод закрыт, его огромное сопротивление показывается как 0L.
Очередность этих замеров можно произвольно изменять.
Проверка мосфета положительной проводимости проводится аналогично, а индикацию на табло вам подскажет направление встроенного диода на рисунке.
Режим проверки №2
Оставляем черный щуп на истоке, а красный переставляем на затвор. Этим действием мы подаем ему положительный потенциал с мультиметра. На табло будет отображаться 0L, но транзистор должен открыться.
Проверяем открытие перестановкой красного щупа на сток. Изменение показаний на табло (единицы или десятки) станет достоверной информацией об его открытии. В этом можно убедиться, поменяв щупы между стоком и истоком. Показания останутся примерно в тех же пределах.
Теперь потребуется закрыть мосфет. Смотрим на замер №3: красный щуп ставим на исток, черный — затвор. Показание 0L.
Логика проверки p-канального типа полевика аналогична. Только надо помнить, что он открывается подачей отрицательного напряжения на затвор относительно истока, то есть «прижимается к земле».
Убедившись в исправности встроенного диода, открытии и закрытии силового перехода сток-исток, можно сделать вывод об исправности МДП транзистора.
Однако описанный метод не во всех случаях может обеспечить достоверные результаты. И дело здесь кроется в конструкции вашего мультиметра. Его выходного напряжения может просто не хватить для подачи отпирающего или запирающего потенциала на затвор.
Поэтому более достоверную проверку выполняют двумя мультиметрами:
- одним контролируют состояние перехода сток-исток;
- вторым управляют потенциалом на затворе.
Естественно, что заменить один из мультиметров можно самодельным источником напряжения, например, двумя батарейками АА (3 вольта) или омметром с предварительно оцененными характеристиками.
Принцип таких измерений показывает в своем видеоролике Дмитрий Гильмутдинов. Рекомендую посмотреть.
Достоинства и недостатки
Основной плюс всех ролевиков — высокий уровень входного сопротивления. Сопротивлением выхода называется соотношение силы тока с напряжением затвора-истока.
Суть работы прибора состоит в том, что им управляет электрическое поле, образующееся, когда прикладывается напряжение. Иными словами, полевиками управляет напряжение.
Полевики почти не тратят электричество, что уменьшает потери управления, изменение сигналов, перегруженность по току, исходящему от сигнального источника.
Средние показатели частоты полевиков намного превосходят биполярники. Это вызвано тем, что рассасывание заряда происходит быстрее. Ряд современных биполярников по основным характеристикам не уступают полевикам, за счет использования современных усовершенствованных технологий и сужения базы.
Транзисторы почти бесшумны. Дело в том, что в них практически нет инжекции заряда.
Устройство стабильно работает при температурных перепадах. Оно потребляет невысокую мощность состоянии проводника, что увеличивает КПД.
Основной минус — в том, что у таких транзисторов есть своего рода боязнь статики. То есть, если наэлектризовать руки и притронуться к прибору, он перестанет работать. Это называется результатом управления ключом посредством поля.
Поэтому для работы с транзисторами необходимы перчатки из диэлектрических материалов. Мало того, они должны заземляться с помощью специального браслета, с помощью паяльника с низким напряжением, у которого изолировано жало.
Транзисторные выводы нужно обмотать проволокой. Это приведёт к временному короткому замыканию при монтаже. Для современных приборов это почти безопасно, так как в них входят элементы для защиты, например, стабилитроны. Их задача — сработать при возрастании напряжения.
Бывают случаи, когда радиоэлектроники излишне опасаются, поэтому надевают на голову шапки, изготовленные из фольги. Инструкцию, конечно, нужно соблюдать, но это не говорит о том, что при минимальном отклонении от нее сразу сломается прибор.
Когда стоит использовать полевые МОП-транзисторы?
Биполярные и униполярные транзисторы — очень важные элементы, но возникает вопрос: когда их использовать? Оба типа имеют свои преимущества и недостатки, поэтому в некоторых проектах, один имеет преимущество перед другим. Использование биполярных транзисторов, безусловно, заслуживает внимания, когда схема питается от низкого напряжения (например, 1,5 В или 3,3 В), поскольку для ее работы достаточно напряжения 0,7 В. Униполярный транзистор может быть еще не полностью открыт в этих условиях.
МОП-транзисторы рекомендуются для управления нагрузками, потребляющими токи в диапазоне ампер, поскольку управляющий элемент (например, Arduino) не должен подавать на них питание — этого достаточно, чтобы установить достаточно высокий потенциал. Чтобы полностью открыть транзистор, приложите напряжение, в несколько раз превышающее пороговое напряжение между затвором и истоком (это напряжение включения).
МОП-транзисторы практически не потребляют ток от цепи, которая контролирует их работу! |
Использование униполярных транзисторов рекомендуется там, где важно потребление тока. В некоторых проектах, особенно в схемах с питанием от небольших батарей, даже несколько микроампер, потребляемых базой биполярного транзистора, могут значительно сократить время работы устройства
Между эмиттером и коллектором полностью включенного (насыщенного) биполярного транзистора создается постоянное напряжение — обычно 0,2 В, но это значение может быть выше для мощных транзисторов. У униполярных транзисторов есть только сопротивление открытого канала, поэтому падение напряжения на них зависит от протекающего тока.
Напоследок еще одно практическое замечание. Если нам нужно контролировать, например, 10 так называемых сверхярких светодиодов, каждый через отдельный транзистор, то следует использовать 10 биполярных транзисторов вместе с 10 резисторами, по одному на каждую базу. Между тем, использование полевых МОП-транзисторов устранит необходимость в дополнительных резисторах, что сэкономит место на плате.
Как можно быстро повредить полевой МОП-транзистор?
В отличие от биполярных транзисторов, полевые МОП-транзисторы очень чувствительны к электростатическим зарядам. Такие заряды накапливаются повсюду, в том числе на поверхности нашего тела. Характерный «электрический удар» ощущается при разности потенциалов в тысячи вольт. Такие же напряжения могут накапливаться в структуре транзистора, поскольку его затвор идеально изолирован от стока и истока.
Почему мы об этом говорим? Достаточно взглянуть на любой технический паспорт этого типа транзистора, чтобы понять, что максимальное напряжение UGS составляет всего 20 В!
Вывести из строя транзистор легко — достаточно неосторожно прикоснуться к транзистору в тот момент, когда наше тело электростатически заряжено.
Электростатический заряд может легко повредить MOSFET-транзистор
По этой причине, эти транзисторы следует хранить в антистатических пакетах, которые легко узнать по тому факту, что они сделаны из материала, похожего на металл. В качестве альтернативы их также можно вставить в специальную токопроводящую губку, которая закорачивает все три клеммы. Короткое замыкание между ножками разрядит транзистор и устранит угрозу.
Токопроводящая губка | Специальный пакет ESD |
Если у вас нет антистатического пакета или специальной губки, выводы этих транзисторов можно закоротить, например, алюминиевой фольгой. С другой стороны, когда мы создаем более крупную схему, например, припаивая ее к плате, стоит установить транзисторы MOSFET в самом конце (если это возможно).
Конечно, впадать в крайности тоже не стоит. Во время тренировки вы можете прикоснуться к этому элементу, как и к любому другому. Шанс повредить его относительно невелик. Однако стоит иметь в виду, что теоретически может случиться так, что такой транзистор не будет работать должным образом. Тогда стоит разрядить накопившиеся заряды и начать эксперименты с новым транзистором.
Типы униполярных транзисторов
Униполярные транзисторы бывают разных типов, каждый из которых полностью отличается от других. На этот раз мы обсудим популярные MOSFET (металлооксидные полупроводниковые полевые транзисторы), потому что они чаще всего используются в ситуациях, когда необходимо управлять компонентом, потребляющим большой ток (например, двигателем).
Типы униполярных транзисторов — выделим, среди прочего JFET и MOSFET транзисторы с обедненным и обогащенным каналом
Здесь стоит упомянуть, что большинство интегральных схем производятся с использованием только униполярных транзисторов. Позже в этой статье мы обсудим особенности, которые делают эти типы транзисторов столь широко используемыми.
Предельные режимы диодов в выпрямительном и инверторном режимах
Режим рекуперации энергии в сеть, как правило, обеспечивается с помощью 4-квадрантного (4Q) преобразователя, состоящего из двух идентичных конвертеров — сетевого LSC (Line Side Converter) и выходного MSC (Machine Side Converter). В зависимости от направления потока энергии диоды в схеме работают в выпрямительном или инверторном режиме и, соответственно, испытывают разную нагрузку при передаче одной и той же мощности.
Рис. 5. Базовая схема стойки инвертора с IGBT и оппозитными диодами, эпюры токов и напряжений
В инверторном режиме энергия из ЗПТ направляется в трехфазную АС-нагрузку, например электродвигатель. В выпрямительном режиме поток энергии из трехфазной питающей сети поступает в ЗПТ. В этом случае конвертер работает как импульсный выпрямитель, подключенный к сети переменного тока или генератору. Хотя средняя передаваемая мощность при этом одна и та же, потери силовых полупроводников будут разными, поскольку отличается фазовый сдвиг между током и напряжением основного сигнала. Сказанное поясняется с помощью базовой схемы, показанной на рис. 5, где возможны следующие состояния:
- при положительном значении Voutи iL > 0 ток идет через IGBT Т1;
- при отрицательном значении Voutи iL > 0 ток идет через диод D2;
- при положительном значении Voutи iL< 0 ток идет через диод D1;
- при отрицательном значении Voutи iL< 0 ток идет через IGBT Т2.
Статические потери IGBT и диода при определенном значении эффективного тока зависят от разницы фаз тока и напряжения (cos j) и коэффициента модуляции m, определяемого в свою очередь коэффициентом заполнения импульсов. В инверторном режиме справедливо соотношение 0 ≤ m × cos j ≤ 1, рассеяние мощности в полупроводниках достигает своего предела при m × cos j = 1. В этом случае максимальными оказываются потери проводимости и общие потери в IGBT, а у диодов они минимальны. Для выпрямительного режима 0 ≥ m × cos j ≥ 1, при m ×cos j = –1 в диодах рассеивается максимальная мощность, а потери IGBT, соответственно, минимальны. Применительно к кривым, показанным на рис. 5, эта ситуация соответствует режиму, когда импульсный выпрямитель преобразует чисто активную мощность сети (на частоте основной гармоники) и нейтраль соединена со средней точкой DC-шины. Все описанные выше соотношения графически проиллюстрированы на рис. 6.
Рис. 6. Статические и динамические потери IGBT и оппозитного диода в преобразователе частоты
При определенных значениях напряжения DC-шины и выходного тока потери переключения полупроводниковых приборов почти линейно зависят от частоты коммутации (рис. 6)
Для IGBT/MOSFET-модулей со встроенными диодами в инверторном режиме работы наиболее важно определить максимальную величину мощности, которая может быть рассеяна при номинальном токе (cos j = 0,6…1). Поскольку потери проводимости и их общий уровень у диодов меньше, чем у транзисторов, они разрабатываются с учетом соотношения PDIGBT: PDDiode≈ 2…3:1
Однако при использовании конвертера в режиме импульсного выпрямителя анализу мощности, рассеиваемой диодами, следует уделить особое внимание
MOSFET-транзистор — влияние резистора затвора
Большинство полевых МОП-транзисторов используются как переключатели, управляемые напряжением. Эти элементы очень популярны по двум причинам. Во-первых, их ворота не потребляют электричество. Во-вторых, из-за низкого сопротивления открытого канала происходят очень маленькие потери (что всегда является большим преимуществом).
Лучше всего проверить это на практике. На этот раз для выполнения упражнения вам понадобятся:
- 1 × зуммер с генератором,
- 1 × транзистор BS170,
- Резистор 1 × 100 R,
- Резистор 1 × 1 кОм,
- Резистор 1 × 1М,
- Батарея 4 × AA,
- 1 × корзина для 4 батареек АА,
- 1 × макетная плата,
- Комплект соединительных проводов.
Описание выводов транзистора BS170 (слева вид снизу, т.е. со стороны выводов)
Теперь нам необходимо собрать простую схему, в которой мы заменим резистор, подключенный к затвору — пусть в начале он будет 10 кОм. Если хотите, для безопасности, при сборке схемы, можно закоротить ножки транзистора фольгой — не забудьте снять ее непосредственно перед подключением батареи.
Пример использования полевого МОП-транзистора
На практике схема может выглядеть так:
Схема на макетной плате | MOSFET на практике |
Если схема собрана правильно, зуммер должен пищать. В такой ситуации стоит измерить ток, протекающий через зуммер, и напряжение между стоком и истоком транзистора. Также стоит измерить напряжение между выводами резистора.
Измерение напряжения сток-исток | Измерение тока стока |
Измерение напряжения затвор-исток | Измерение тока затвора |
Когда измерения готовы, замените наш резистор на резистор большего размера, то есть на 1 МОм, и повторите измерения, затем то же самое для резистора 100 Ом. Наконец, также стоит проверить, что произойдет, если мы подключим затвор через резистор к земле.
Схема с заземлением
В этом эксперименте, каждый раз, напряжение транзистора UGS превышало пороговое значение напряжения. Это произошло из-за того, что исток был подключен к земле, а затвор — к напряжению, близкому к +6 В, а пороговое напряжение этого транзистора было от 2 до 3 В. В свою очередь, подключение затвора к земле вызвал исчезновение канала и отсутствие тока, потому что UGS = 0.
Идеально работающий мультиметр имел бы бесконечно большое сопротивление. Однако наш мультиметр имеет сопротивление 1 МОм, что приводит к большим искажениям при последовательном измерении с R = 1 МОм. |
Результаты, полученные нами в этом упражнении, могут отличаться от ваших
Собранные в таблице данные, наглядно показывают состояние засорения и насыщения транзистора. В насыщенном состоянии (когда UGS намного больше, чем UGSth), сопротивление между стоком и истоком незначительно, следовательно, падение напряжения составляет порядка нескольких мВ, а сток ограничен током, ограниченным только зуммером. В засоренном состоянии сопротивление настолько велико, что ток стока практически не течет, и почти все напряжение протекает между стоком и истоком. Все эти наблюдения не зависят от используемого резистора затвора (ситуация была бы иной в случае с биполярными транзисторами).
Если резистор удален из работающей схемы (что мы не рекомендуем делать из-за возможности повреждения транзистора), зуммер все еще мог бы издавать звуковой сигнал. Почему? Затвор отделен от канала изолятором, поэтому там создается емкость, то есть там есть небольшой внутренний конденсатор. Только через некоторое время из-за несовершенства изолятора он разрядится.
Заключение
До недавнего времени области применения MOSFET и IGBT, где их преимущества проявляются наиболее ярко, были определены достаточно четко (табл. 5).
Режим коммутации |
Тип ключа |
Рабочее напряжение |
Частота коммутации, кГц |
HS |
MOSFET |
Низковольтные |
до 250 |
Высоковольтные |
до 100 |
||
IGBT |
600 В |
до 30 |
|
1200 В |
до 20 |
||
1700 В |
до 10 |
||
3300 В |
до 3 |
||
SS |
MOSFET |
Низковольтные |
до 500 |
Высоковольтные |
до 250 |
||
IGBT |
до 150 |
Несмотря на то, что существуют пограничные режимы, требующие более детального анализа, окончательный вывод всегда делается на основании расчета мощности потерь и температуры кристаллов в критических режимах работы. Подробно вопросы анализа импульсных характеристик и тепловых режимов освещены в .