Идеальный операционный усилитель и его свойства
Так как наш мир не является идеальным, так и идеальных операционных усилителей не существует. Однако параметры современных ОУ находятся на достаточно высоком уровне, поэтому анализ схем с идеальными ОУ даёт результаты, очень близкие к реальным усилителям.
Для понимания работы схем с операционными усилителями вводится ряд допущений, которые приводят реальные операционные усилители к идеальным усилителям. Таких допущений всего пять:
- Ток, протекающий через входы ОУ, принимается равным нулю.
- Коэффициент усиления ОУ принимается бесконечно большим, то есть выходное напряжение усилителя может достичь любых значений, однако в реальность ограничено напряжением питания.
- Разность напряжений между входами идеального ОУ равна нулю, то есть если один из выводов соединён с землёй, то и второй вывод имеет такой же потенциал. Отсюда также следует, что входное сопротивление идеального усилителя бесконечно.
- Выходное сопротивление идеального ОУ равно нулю.
- Амплитудно-частотная характеристика идеального ОУ является плоской, то есть коэффициент усиления не зависит от частоты входного сигнала.
Близость параметров реального операционного усилителя к идеальным определяет точность, с которой может работать данный ОУ, а также выяснить ценность конкретного операционного усилителя, быстро и правильно сделать выбор подходящего ОУ.
Исходя из вышеописанных допущений, появляется возможность проанализировать и вывести соотношения для основных схем включения операционного усилителя.
Дифференциатор
Дифференциатор по своему действию противоположен работе интегратора, то есть выходной сигнал пропорционален скорости изменения входного сигнала. Схема простейшего дифференциатора показана ниже
Дифференциатор на операционном усилителе.
Дифференциатор реализует операцию дифференцирование над входным сигналом и аналогичен действию дифференцирующих RC и RL цепочек, кроме того имеет лучшие параметры по сравнению с RC и RL цепочками: практически не ослабляет входной сигнал и обладает значительно меньшим выходным сопротивлением. Основные расчётные соотношения и реакция на различные импульсы аналогична дифференцирующим цепочкам.
Выходное напряжение составит
Неинвертирующий усилитель
Неинвертирующий усилитель характеризуется тем, что входной сигнал поступает на неинвертирующий вход операционного усилителя. Данная схема включения изображена ниже
Схема включения неинвертирующего усилителя.
Работа данной схемы объясняется следующим образом, с учётом характеристик идеального ОУ. Сигнала поступает на усилитель с бесконечным входным сопротивлением, а напряжение на неинвертирующем входе имеет такое же значение, как и на инвертирующем входе. Ток на выходе операционного усилителя создает на резисторе R2 напряжение, равное входному напряжению.
Таким образом, основные параметры данной схемы описываются следующим соотношением
Отсюда выводится соотношение для коэффициента усиления неинвертирующего усилителя
Таким образом, можно сделать вывод, что на коэффициент усиления влияют только номиналы пассивных компонентов.
Необходимо отметить особый случай, когда сопротивление резистора R2 намного больше R1 (R2 >> R1), тогда коэффициент усиления будет стремиться к единице. В этом случае схема неинвертирующего усилителя превращается в аналоговый буфер или операционный повторитель с единичным коэффициентом передачи, очень большим входным сопротивлением и практически нулевым выходным сопротивлением. Что обеспечивает эффективную развязку входа и выхода.
Инвертирующий усилитель
Инвертирующий усилитель характеризуется тем, что неинвертирующий вход операционного усилителя заземлён (то есть подключен к общему выводу питания). В идеальном ОУ разность напряжений между входами усилителя равна нулю. Поэтому цепь обратной связи должна обеспечивать напряжение на инвертирующем входе также равное нулю. Схема инвертирующего усилителя изображена ниже
Схема инвертирующего усилителя.
Работа схемы объясняется следующим образом. Ток протекающий через инвертирующий вывод в идеальном ОУ равен нулю, поэтому токи протекающие через резисторы R1 и R2 равны между собой и противоположны по направлению, тогда основное соотношение будет иметь вид
Тогда коэффициент усиление данной схемы будет равен
Знак минус в данной формуле указывает на то, что сигнал на выходе схемы инвертирован по отношению к входному сигналу.
Интегратор
Интегратор позволяет реализовать схему, в которой изменение выходного напряжения пропорционально входному сигналу. Схема простейшего интегратора на ОУ показана ниже
Интегратор на операционном усилителе.
Данная схема реализует операцию интегрирования над входным сигналом. Я уже рассматривал схемы интегрирования различных сигналов при помощи интегрирующих RC и RL цепочек. Интегратор реализует аналогичное изменение входного сигнала, однако он имеет ряд преимуществ по сравнению с интегрирующими цепочками. Во-первых, RC и RL цепочки значительно ослабляют входной сигнал, а во-вторых, имеют высокое выходное сопротивление.
Таким образом, основные расчётные соотношения интегратора аналогичны интегрирующим RC и RL цепочкам, а выходное напряжение составит
Интеграторы нашли широкое применение во многих аналоговых устройствах, таких как активные фильтры и системы автоматического регулирования
Логарифмирующий преобразователь
Одной из схем на операционном усилителе, которые нашли применение, является логарифмирующий преобразователь. В данном схеме используется свойство диода или биполярного транзистора. Схема простейшего логарифмического преобразователя представлена ниже
Логарифмирующий преобразователь.
Данная схема находит применение, прежде всего в качестве компрессора сигналов для увеличения динамического диапазона, а так же для выполнения математических функций.
Рассмотрим принцип работы логарифмического преобразователя. Как известно ток, протекающий через диод, описывается следующим выражением
где IO – обратный ток диода,
е – число е, основание натурального логарифма, e ≈ 2,72,
q – заряд электрона,
U – напряжение на диоде,
k – постоянная Больцмана,
T – температура в градусах Кельвина.
При расчётах можно принимать IO ≈ 10-9 А, kT/q = 25 мВ. Таким образом, входной ток данной схемы составит
тогда выходное напряжение
Простейший логарифмический преобразователь практически не используется, так как имеет ряд серьёзных недостатков:
- Высокая чувствительность к температуре.
- Диод не обеспечивает достаточной точности преобразования, так как зависимость между падением напряжения и током диода не совсем логарифмическая.
Вследствие этого вместо диодов применяют транзисторы в диодном включении или с заземлённой базой.
Определение вывода базы (затвора)
Наиболее простой способ определить назначение выводов транзистора (цоколевку) — скачать на него документацию. Поиск ведется по маркировке на корпусе. Этот буквенно-цифровой код набирают в строке поиска и далее добавляют «даташит».
Если документацию обнаружить не удается, базу и прочие выводы биполярного транзистора распознают исходя из его особенностей:
- p-n-p транзистор: открывается приложением к базе отрицательного напряжения;
- n-p-n транзистор: открывается приложением к базе положительного напряжения.
- Настраивают мультиметр: красный щуп подсоединяют к разъему со значком «V/Ω» (плюсовой потенциал), черный — к разъему COM (минусовой потенциал), а переключатель устанавливают в режим «прозвонка» или, если такого нет, в сектор измерения сопротивления (значок «Ω») на верхнюю позицию (обычно «2000 Ом»).
- Определяют базу. Красный щуп подсоединяют к первому выводу транзистора, черный — поочередно к остальным. Затем красный подсоединяют ко второму выводу, черный снова по очереди к 1-му и 3-му. Признак того, что красный подсоединен к базе, — одинаковое поведение прибора при контакте черного щупа с другими выводами. Прибор оба раза пискнул или показал на дисплее некое конечное сопротивление — транзистор относится к n-p-n типу; прибор оба раза промолчал или отобразил на дисплее «1» (отсутствие проводимости) – транзистор принадлежит p-n-p типу.
- Распознают коллектор и эмиттер. Для этого к базе подсоединяют щуп, соответствующий типу проводимости: для n-p-n транзистора – красный, для p-n-p транзистора: черный.
Читать также: Газовые водонагреватели проточного типа
Конструкция полевого транзистора с управляющим p-n-переходом и канлом n-типа а) с затвором со стороны подложки; b) с диффузионным затвором
Второй щуп поочередно подсоединяют к другим выводам. При контакте с коллектором на дисплее отображается меньшее значение сопротивления, чем с эмиттером.
Выводы полевого транзистора обычно промаркированы:
Полевые транзисторы чувствительны к статическому электричеству. Из-за этого их выводы при хранении закорачивают фольгой, а перед началом манипуляций надевают антистатический браслет или хотя бы касаются заземленного металлического предмета (приборный шкаф), чтобы снять статический заряд.