Управление мощной нагрузкой

История о блоке питания и газовой колонке

Однажды, пока я ремонтировал клиенту пульт, он рассказал о том, что захотел на свою газовую колонку, ту которая питается от двух батареек LR20, приспособить блок питания, чтобы не покупать довольно дорогие алкалиновые батарейки. Он нашел универсальный блок питания, в котором есть возможность выставить напряжение 3 Вольта и способный выдать ток на нагрузке до 1 Ампера.

Этого тока было бы с лихвой для поставленной задачи, но тем не менее газовая колонка от блока питания не хотела работать, в то время как от батареек прекрасно работала. Так в чём же дело? А дело было в том, что для газовой колонки был необходим стабилизированный блок питания.

Немного позже я объясню в чём разница между блоком питания стабилизированным и не стабилизированным и почему  одни устройства прекрасно работают от не стабилизированного источника, а другие нет.

Случай с этим мужчиной послужил поводом написать небольшую статью о том, как правильно выбрать для своих устройств блок питания или как его ещё называют адаптер питания.

Устройствами  для которых нужен адаптер могут  быть не только смартфоны, телефоны или планшеты.  Речь скорее о таких устройствах как роутеры, зарядные устройства от радиотелефонов, цифровые, спутниковые приставки и телевизоры питающиеся от внешнего блока питания, различные игрушки, светодиодные светильники, тонометры и многое другое. В общем всё то что питается от сети через специальный адаптер.

Схема ускоренного включения

Как уже было сказано, если напряжение на затворе относительно истока
превышает пороговое напряжение, то транзистор открывается и
сопротивление сток — исток мало. Однако, напряжение при включении не
может резко скакнуть до порогового. А при меньших значениях транзистор
работает как сопротивление, рассеивая тепло. Если нагрузку приходится
включать часто (например, в ШИМ-контроллере), то желательно как можно
быстрее переводить транзистор из закрытого состояния в открытое и
обратно.

Относительная медленность переключения транзистора связана опять же с
паразитной ёмкостью затвора. Чтобы паразитный конденсатор зарядился
как можно быстрее, нужно направить в него как можно больший ток. А так
как у микроконтроллера есть ограничение на максимальный ток выходов,
то направить этот ток можно с помощью вспомогательного биполярного
транзистора.

Кроме заряда, паразитный конденсатор нужно ещё и разряжать. Поэтому
оптимальной представляется двухтактная схема на комплементарных
биполярных транзисторах (можно взять, например, КТ3102 и КТ3107).

Ещё раз обратите внимание на расположение нагрузки для n-канального
транзистора — она расположена «сверху». Если расположить её между
транзистором и землёй, из-за падения напряжения на нагрузке напряжение
затвор — исток может оказаться меньше порогового, транзистор откроется
не полностью и может перегреться и выйти из строя

Для чего нужны «фолловеры»

Наверняка вы не раз уже замечали, что на просторах интернета есть те, у кого много фолловеров (то есть, подписчиков), а также блогеры/музыканты и другие известные личности с миллионной аудиторией. И скорее всего с такой же частотой задавались вопросом: как же привлечь фолловеров и зачем это, собственно, нужно?

Дело в том, что, так скажем, статус пользователя какой-либо социальной сети определяется наличием и, разумеется, количеством его подписчиков (проще говоря, людей, которым интересно его творчество и деятельность в целом).

Именно этим можно объяснить стремление некоторых людей повысить заветное число тех, кто на тебя подписан и смотрит твои новости. Для осуществления желаемого роста подписчиков, такие, в своём роде «целеустремлённые» пользователи интернета, используют совершенно разные способы. Вот несколько примеров:

  • Улучшение контента. Некоторые поступают абсолютно честно, но иногда это обеспечивает более медленный рост аудитории, тем не менее, это лучший способ:  повышать качество контента, повышать частоту публикаций.
  • Другие вручную «накручивают» себе подписчиков, то есть сами подписываются на схожие по тематике аккаунты, ставят лайки и пишут комментарии, надеясь на взаимность. Пару лет назад это способ был очень популярен, особенно в Инстаграме. Но у него есть один существенный минус, он занимает очень много времени, плюс не всегда ваши усилия оправданы, но решать вам.
  • И третий метод привлечения и роста аудитории, не самый честный, и в некоторых случаях даже малоэффективный. В большинстве случаев привлекается, так называемая, мёртвая аудитория (то есть, недействительные аккаунты, пользователи, которых вряд ли будут проявлять какую-нибудь активность). Так вот, это наркутка фолловеров с помощью специальных сервисов, благо таких сейчас много в интернете. Не рекомендуем прибегать к таким методам.

Системы HIMARS — дальность стрельбы и другие характеристики

Первая информация о создании HIMARS появилась в 1994 году. Да, оружие уже не такое современное, как многие предполагают. Данная РСЗО создана на основе пятитонного трехосного шасси FMTV . Машина может нести шесть реактивных снарядов калибром 227 мм, либо одну баллистическую оперативно-тактическую ракету. Ближайшим родственником американских «Химарсов» является M270 MLRS. Эта система имеет гусеничное шасси, а также отличается количеством пусковых контейнеров.

Первые поставки РСЗО HIMRS в армию США начались в начале 2000-х годов. В 2011 году эти машины также поступили на вооружение в армию Сингапура. Вместе с самими установками Сингапуром были закуплены ракеты XM31, которые обладают инерциальной системой управления с GPS, а также унитарной фугасной боевой частью. Что это означает?

Система инерциального управления позволяет оператору определять параметры движения и местоположения ракеты методом, основанным на свойстве инерции тел. То есть используются акселерометры, гравиметры, наклономеры и прочие подобные датчики. В результате отсутствует вероятность помех и потери связи с внешними источниками информации. Вместе с датчиком GPS, обеспечивается точность и надежность позиционирования ракеты.

Что касается боевой части — основным поражающим элементом фугасных зарядов являются продукты взрыва. При этом средство воспламенения и заряд находятся в одном блоке. Отсюда и такое название снаряда — «унитарный».

M142 HIMARS может пускать ракеты типа «земля-воздух»

Возможности M142 HIMARS зависят в первую очередь от типа боеприпаса. Условно все боеприпасы можно поделить на три основных типа: неуправляемые реактивные ракеты, с инерциальной системой управления, а также с самоприцеливающимися боевыми элементами. Наиболее массовыми являются ракеты GMLRS М30, которые оснащены инерциальной системой управления и кассетной боевой частью. Дальность стрельбы такими боеприпасами достигает 70 км.

Самыми дальнобойными являются ракеты ATACMS Block IA. Они поражают цели на расстоянии 300 км. Эта ракета обладает кассетной боевой частью на 300 элементов и системой управления. Надо сказать, что по некоторым данным реальная дальность боеприпасов выше заявленного, однако характеристики засекречены.

Ракеты ATACMS Block IA способны поражать цели на расстоянии до 300 км

Боеголовки с кассетными зарядами разрываются над целью, после чего на нее обрушиваются шарики со скоростью до 3600 км/ч. В результате повреждаются автомобили, военная техника, склады с боеприпасами, живая сила противника и пр. Действие таких ракет можно представить, как выстрел из гигантского дробовика. Подробнее мы рассказывали о кассетных зарядах в посте, посвященном запрещенным видам оружия.

Кроме того существуют ракеты осколочно-фугасной боевой частью — M31 и M31A. Они способны поражать живую силу противника, военную технику и строения ударным действием. Такие ракеты более эффективны, когда противник находится в укрытии.

Многие задаются вопросом — могут ли современные средства ПВО, такие как С-300 и С-400, противостоять американскому РСЗО? На самом деле однозначного ответа нет. Эти системы ПВО считаются одними из лучших в мире. Однако прогресс существует и в области создания ракет РСЗО. Многие современные ракеты способны изменять траекторию полета, что усложняет их уничтожение в воздухе. Реальных же ситуаций, когда «Химарсам» противостояли российские системы ПВО, еще не было.

Торнадо-С — самая мощная реактивная система залпового огня в мире

↑ Техническое задание

Как всегда, считаю, что любительская конструкция, как правило, должна быть простой, дешевой, технологичной, состоять из недефицитных деталей. Кроме того, я давно пришел к выводу, что для подобных целей лучше делать небольшие простые платы без блока питания, без цифрового индикатора, без сложного корпуса. Достаточно предусмотреть зажимы для подключения внешнего лабораторного регулируемого блока питания, индикатора в виде простого цифрового тестера или стрелочного прибора, при необходимости — осциллографа и т. п.

Такие приборы быстро делаются и переделываются, а главное — они работают и приносят пользу. Если же задумать многофункциональный самодостаточный прибор в отдельном красивом корпусе, он обычно так и останется в прожектах. Кроме того, если прибор сделан, вдруг оказывается, что надо добавить еще одну функцию, например, капацитовизор, а места на передней панели уже нет и дизигн надо портить… Поэтому я считаю, что неказистые любительские узкофункциональные изделия имеют право на жизнь.

Итак, задумана проверка кремниевых транзисторов в режиме — ток 200 мА, напряжение К-Э = 2 В. Оперативно можно изменять ток в диапазоне примерно 150…300 мА, напряжение К-Э до 5…7 В. Можно проверять (чуть изменив настройки) составные транзисторы с двумя последовательными P-N переходами.

Тумблером можно изменить ток, например, в 10 раз. Это позволит проверять и маломощные транзисторы при токе 15…30 мА (заменой одного резистора можно установить любой разумный ток). Важным считаю удобство подключения любых транзисторов. Для транзисторов КТ814-819 на плате стоят панельки, для мощных транзисторов в корпусах типа ТО-247, ТО-3Р, есть зажимы. В них устанавливают провода с «крокодилами», которые позволяют подключать транзисторы в корпусе ТО-3, любые транзисторы с гнутыми паяными выводами и т. д.

Изменение напряжения К-Э осуществляется внешним источником питания, цель – проверка идентичности режимов при большем напряжении и значительном нагреве транзисторов. При 5 В и 200 мА получаем предельную мощность для КТ814 без теплоотвода — 1 Вт. Для бОльших корпусов без теплоотводов тепловая мощность обычно = 2 Вт.

Легко заметить, что усиление транзистора зависит в некоторых пределах как от напряжения, так и от температуры, поэтому определение абсолютного значения усиления транзистора с помощью микропроцессора с точностью до седьмого знака, не имеет смысла. По этой причине выбрано простейшее схемное решение, которое дает достаточную для практики точность и позволяет обойтись без ОУ, МК и нескольких источников питания. Для измерения тока базы годится любой цифровой тестер, например, М-832.

Принципы работы полевых транзисторов в электронных схемах: упрощенная информация

Все сложные процессы электроники удобно представлять на примере обычного водопроводного крана с рукояткой, которая позволяет перекрывать воду или регулировать ее напор от очень тонкой струйки (течь) до максимально сильного проходящего потока.

Показал это примитивной картинкой, на которой:

  • входной патрубок с напором назван стоком;
  • место выхода воды (истечения) обозначен истоком;
  • рукоятка управления или вентиль со штоком — затвор.

Аналогичным образом работает рассматриваемая нами электрическая схема полевого транзистора. Только у нее между стоком и истоком приложено основное постоянное напряжение. Эту область называют каналом. Он выполнен из полупроводника определенной структуры:

  1. n-типа (преобладают электроны — носители отрицательных зарядов);
  2. p-типа — с излишком положительных дырок.

На чертежах эти выводы показываются одним из следующих образов.

На обозначении затвора нам надо обращать внимание на направление стрелки. У полупроводников n- канального типа она направлена на затвор, а с p- проводимостью — в противоположную сторону

Любой field-effect transistors является полупроводником, причем управляемым. Это значит, что он пропускает через себя нагрузку исключительно в одну сторону, а противоположное движение электрических зарядов всегда заблокировано.

Движение тока через полупроводниковые переходы всегда направлено от стока к истоку, как и воды в кране

Это важно запомнить.. Функции закрытия или открытия этого крана (затвора), а также роль регулирования силы потока электрических зарядов возложены на затвор

Здесь действует известный всем закон Ома:

Функции закрытия или открытия этого крана (затвора), а также роль регулирования силы потока электрических зарядов возложены на затвор. Здесь действует известный всем закон Ома:

Сопротивление среды канала управляет нагрузкой, а на него действует приложенный извне потенциал.

Говоря другими словами: энергия электрического поля, приложенная к затвору, меняет сопротивление внутренних полупроводниковых переходов и влияет на величину тока в выходной силовой цепи.

Слово «поле» здесь знаковое. Оно определило целый ряд транзисторных изделий, работающих по этому принципу управления.

Потенциал электрического поля регулирует величину сопротивления через силовой полупроводниковый слой (канал), закрывая/открывая транзистор или изменяя ток через него.

Аналогичным образом управляются биполярные транзисторы (БТ), про которые у меня на блоге опубликована предыдущая статья.

Только у них силовая цепь образована меду коллектором и эмиттером, а схема управления работает от тока, образованного приложением напряжения между базой и эмиттером. У БТ своя система обозначения выводов, но те же два внутренних контура (силовая цепь и цепочка ее регулирования).

Заостряю внимание: при одном и том же напряжении между входом и выходом полевого транзистора (сток-исток) потенциал на затворе изменяет электрическое сопротивление встроенных полупроводниковых переходов.

Причем происходит это по одному из предусмотренных заранее сценариев. О них я последовательно рассказываю дальше.

Настройка:

Настройка правильно собранного из исправных элементов усилителя сводится к установке подстроечным резистором тока покоя выходного каскада 100мА (удобно контролировать на эмиттерном резисторе 1 Ом — напряжение 100мВ).
Диод VD1 желательно приклеить или прижать к радиатору выходного транзистора, что способствует лучшей термостабилизации. Однако если этого не делать, ток покоя выходного каскада от холодного 100мА до горячего 300мА меняется, в общем-то, не катастрофично.

Важно:
перед первым включением необходимо выставить подстроечный резистор в нулевое сопротивление.
После настройки желательно подстроечный резистор выпаять из схемы, измерить его реальное сопротивление и заменить на постоянный.

Самая дефицитная деталь для сборки усилителя по вышеприведённой схеме — это выходные германиевые транзисторы ГТ806. Их и в светлое советское время было не так легко приобрести, а сейчас наверно и того труднее. Гораздо проще найти германиевые транзисторы типов П213-П217, П210.
Если Вы не сможете по каким либо причинам приобрести транзисторы ГТ806, то Вашему вниманию предлагается ещё одна схема усилителя, где в качестве выходных транзисторов, можно использовать как раз вышеупомянутые П213-П217, П210.

Схема эта — модернизация первой схемы. Выходная мощность этого усилителя составляет 50Вт при сопротивлении нагрузки 4 Ом и 30Вт при 8-Омной нагрузке.
Напряжение питания этого усилителя (U пит) так же двухполярное и составляет ±27 В;
Диапазон рабочих частот 20Гц…20кГц:

Какие же изменения внесены в эту схему;
Добавлены два источника тока в «усилитель напряжения» и еще один каскад в «усилитель тока».
Применение еще одного каскада усиления на довольно высокочастотных транзисторах П605, позволило несколько разгрузить транзисторы ГТ402-ГТ404 и расшевелить совсем уж медленные П210.

Получилось довольно не плохо. При входном сигнале 20кГц, и при выходной мощности 50Вт — на нагрузке искажений практически не заметно (на экране осциллографа).
Минимальные, мало заметные искажения формы выходного сигнала с транзисторами типа П210, возникают только на частотах около 20 кгц при мощности 50 вт. На частотах ниже 20 кгц и мощностях менее 50 вт искажений не заметно.
В реальном музыкальном сигнале таких мощностей на столь высоких частотах обычно не бывает, по этому отличий в звучании (на слух) усилителя на транзисторах ГТ806 и на транзисторах П210 я не заметил.
Впрочем, на транзисторах типа ГТ806, если смотреть осциллографом, усилитель работает все-таки лучше.

При нагрузке 8 Ом в этом усилителе, также возможно применение выходных транзисторов П216…П217, и даже П213…П215. В последнем случае напряжение питания усилителя нужно будет снизить до ±23В. Выходная мощность при этом, разумеется, тоже упадет.
Повышение же питания — ведет к увеличению выходной мощности, и я думаю, что схема усилителя по второму варианту имеет такой потенциал (запас), однако, я не стал экспериментами искушать судьбу.

Радиаторы для этого усилителя обязательны следующие — на выходные транзисторы площадью рассеивания не менее 300см2, на предвыходные П605 — не менее 30см2 и даже на ГТ402, ГТ404 (при сопротивлении нагрузки 4 Ом) тоже нужны.
Для транзисторов ГТ402-404 можно поступить проще;
Взять медную проволоку (без изоляции) диаметром 0,5-0,8, намотать на круглую оправку (диаметром 4-6 мм) проволоку виток к витку, согнуть в кольцо полученную обмотку (с внутренним диаметром меньше диаметра корпуса транзистора), соединить концы пайкой и надеть полученный «бублик» на корпус транзистора.

Эффективней будет наматывать проволоку не на круглую, а на прямоугольную оправку, так как при этом увеличивается площадь соприкосновения проволоки с корпусом транзистора и соответственно повышается эффективность отвода тепла.
Также для повышения эффективности отвода тепла для всего усилителя, можно уменьшить площадь радиаторов и применить для охлаждения 12В куллер от компьютера, запитав его напряжением 7…8В.

Транзисторы П605 можно заменить на П601…П609.
Настройка второго усилителя аналогична описанной для первой схемы.
Несколько слов об акустических системах. Понятно, что для получения хорошего звучания они должны иметь соответствующую мощность. Желательно также, используя звуковой генератор — пройтись на разных мощностях по всему диапазону частот. Звучание должно быть чистым, без хрипов и дребезга. Особенно, как показал мой опыт, этим грешат высокочастотные динамики колонок типа S-90.

Если у кого возникнут какие либо вопросы по конструкции и сборке усилителей — задавайте, по возможности постараюсь ответить.

Удачи всем Вам в Вашем творчестве и всего наилучшего!

Результаты

Таким образом, как показали наши тесты, даже без доработок усилитель звучит хорошо. Но если вы хотите улучшить звучание, то мы показали вам, какие характеристики можно поменять. Выходные транзисторы в наборе — это лотерея, поэтому часто можно услышать противоположное мнение при прослушивании собранного набора.

С новыми транзисторами усилитель играет лучше и нет опасности, что они выйдут из строя во время работы. Поэтому рекомендуем сразу заменить выходные транзисторы на оригинальные 2N3055 или MJ15003G. 

Недостатки усилителя — это, в первую очередь, большое энергопотребление из-за работы в классе А и относительно небольшая мощность.

Достоинства этого усилителя — это легкая сборка и настройка, а также небольшая цена и отличный звук.

На нашем форуме есть довольно большая ветка, где многие пользователи повторили усилитель JLH1969 и делятся своим опытом. Если вы хотите повторить этот усилитель или у вас есть что рассказать или спросить на эту тему, то вам сюда.

Подключаем 2 телевизора к активной антенне

Под активной антенной понимается устройство, в котором блок усиления является ее конструктивной частью. При этом питание он чаще всего получает по коаксиальному кабелю. Подключить к такой антенне столько телевизоров, сколько требуется, можно двумя разными способами.

Через делитель с согласованием

Усиливающий блок нуждается в питании. Однако, если использовать обычный делитель, ток на антенну не пойдет: там стоит трансформаторная или емкостная развязка. Чтобы подать ток на усилитель, потребуется специальное устройство – делитель с проходом по питанию (Power Pass).

Чтобы подключить к такому делителю 3, 4 или более телевизоров, можно воспользоваться активными разветвителями с внешним питанием. Цепочка соединения строится в этом случае так же, как описано выше для пассивной антенны.

Через обычный разветвитель

В том случае, если делителя с проходом питания нет, ток можно подать на участке между ней и сплиттером. В этом случае используется крепежный элемент для врезки и сепаратор блока питания.

  • на усилитель подается необходимый ток;
  • сигнал через делитель идет к приемникам.

Если потребуется подключить 3 и более телевизора, нужно взять сплиттер с соответствующим количеством разъемов. Принципиальная схема та же.

https://youtube.com/watch?v=-_J-GQ7WHVE

Зачем нужны подписчики в социальных сетях

Владельцы личных или бизнес страниц, групп стремятся привлечь к своим ресурсам как можно больше бесплатных фолловеров. Это повышает их популярность в социальной сети и интернет-среде, способствует появлению заработка или его повышению.

Instagram

Чтобы начать получать доход с аккаунта в сети, нужно собрать десятки тысяч подписчиков. Прибыль пользователей Instagram растет, если они рекламируют на странице свои или чужие товары, услуги. Производители сами выходят на связь с владельцами популярных аккаунтов. Пользу приносят партнерские программы. Например, владелец аккаунта размещает рекламу с фотографиями и дает ссылку, по которой фолловеры в инстаграме покупают нужную вещь или услугу.

Наличие аккаунта в этой сети – хорошее подспорье для развития бизнеса. Компании отвечают на твиты подписчиков, которые спрашивают о продуктах, ищут помощь по конкретному вопросу. Twitter используют для оповещения потребителей и клиентов о предстоящих событиях, распродажах.

Чем больше фолловеров, тем шире распространяется информация через ретвиты, скорее появляются желающие разместить рекламу.

Настройка транзисторного усилителя низкой частоты

Питание обоих усилителей можно осуществить от 3 пальчиковых батарей или же от простого и надежного стабилизатора напряжения построенного на микросхеме LM317.

Настройка усилителя первого варианта сводится к подбору сопротивлений R2 и R4. Величину сопротивлений нужно подобрать такой, чтобы миллиамперметр, подключенный в коллекторную цепь каждого транзистора, показывал ток в районе 0,5…0,8 мА. По второй схеме необходимо также выставить коллекторный ток второго транзистора путем подбора сопротивления резистора R3.

В первом варианте возможно применить транзисторы марки КТ312, КТ3102, или их зарубежные аналоги, однако при этом необходимо будет выставить правильное смещение напряжения транзисторов путем подбора сопротивлений R2, R4. Во втором варианте в свою очередь, возможно применить кремневые транзисторы марки КТ209, КТ361, или зарубежные аналоги. При этом выставить режимы работы транзисторов можно путем изменения сопротивления R3.

В коллекторную электроцепь транзистора VT2 (обоих усилителей) взамен наушников возможно подключить динамик с высоким сопротивлением. Если же необходимо получить более мощное усиление звука, то можно собрать усилитель на TDA2030, который обеспечивает усиление до 15 Вт.

Подключение 2-х и более телевизоров к пассивной антенне

Пассивными называют те, которые не имеют конструктивно встроенного усилителя. Они принимают сигнал только за счет своей формы. Если усиление требуется, то оно обеспечивается за счет дополнительно подключаемого внешнего блока.

Наилучшими вариантами здесь будут:

Максимальное число телевизоров, подключаемое с помощью одного сплиттера, – 8 штук с использованием SAH 812F . Если требуется большее число, необходимо уже строить цепь из делителей, разветвителей и как минимум одного усилителя.

Другой вариант подключения трех и более телеприемников – использование активного разветвителя. В этом случае кабель с антенны подключается к делителю, имеющему каскад усиления, а он, в свою очередь, передает сигнал на еще один разветвитель пассивного типа.

Активный разветвитель может иметь отдельный вход для питания или использовать ток, подаваемый от ресивера по тому же кабелю, по которому идет антенный сигнал.

Принцип действия

Работа звукоусиливающей аппаратуры основывается на преобразовании энергии, полученной усилительным элементом от источника питания, в энергию усиливаемого входного сигнала.

Основные этапы:

  1. На вход от источника звука поступает сигнал, который на первом каскаде предварительно усиливается и без искажений направляется в усилитель. Здесь же находится регулировка громкости. При этом качество исходного звука не должно быть потеряно.
  2. Во втором каскаде – драйверном, сигнал готовится к передаче в оконечный каскад.
  3. К третьему самому мощному каскаду подключены колонки, которые без искажений воспроизводят звук с требуемой громкостью.

Влияние входного и выходного конденсаторов на АЧХ нашего усилителя

Замеряем АЧХ нашей платы. На входе: конденсатор 1 мкФ, на выходе: 2200 мкФ.

Если посмотреть график внизу, на АЧХ (частотную характеристику) нашего усилителя, то можно заметить завал на низких частотах, начиная от 100 Гц и ниже. А также небольшой завал на высоких частотах (от 10 кГц и выше). По высоким частотам этот завал совсем незначительный, поэтому мы его трогать не будем. А вот низких частот нужно немного добавить.

Часто начинающие пользователи методом научного тыка добавляют конденсаторы в усилитель. Иногда им везет, а иногда нет.

Для начала обратим внимание на рекомендации автора:

На нашей собранной плате выходной конденсатор имеет ёмкость 2200 мкФ, входной — 1 мкФ. Нагрузка у нас 4 Ом. На схеме Худа входной конденсатор — 0.5 мкФ, а выходной — 5000 мкФ. Частенько любители увеличивают входной конденсатор для выравнивания АЧХ. Но на самом деле нужно увеличить ёмкость выходного.

Сейчас мы добавим по очереди конденсаторы и будем замерять АЧХ.

1. Добавляем входной конденсатор 3.3 мкФ параллельно 1 мкФ = 4.3 мкФ:

На входе  4.3 мкФ на выходе 2200 мкФ

Видно, что практически ничего не поменялось на нашем графике, поэтому конденсатор мы пока выпаяем.

2. Теперь добавим параллельно выходному конденсатору 2200 мкФ ещё на 4700 мкФ и смотрим график:

На входе 1 мкФ на выходе 6900 мкФ

Как видим, наша АЧХ стала лучше на низких частотах и этого вполне достаточно для комфортного прослушивания музыки.

3. Но нам этого, конечно же, мало. Мы хотим ещё, поэтому добавим ещё 4700 мкФ к нашим конденсаторам:

На входе 1 мкФ на выходе 11600 мкФ

АЧХ ещё немного выровнялась, но это незначительно.

4. Давайте вернем наш конденсатор на вход, видно еще небольшое выравнивание АЧХ. Получилась такая картинка:

На входе 4.3 мкФ на выходе 11600 мкФ

Посмотрев на график, вы можете выбрать вариант, который вам подойдет для 4 Ом. Если же у вас акустика 8 Ом, просто делите емкость конденсаторов на 2.

Для себя мы оставим 2 вариант, этого достаточно для нашего усилителя. То есть, на входе — 1 мкФ а на выходе — 2200+4700 мкФ.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: