Трансформатор блока питания
Для лабораторного блока питания необходимо использовать трансформаторы типа ТС-270 (двухкатушечные, от старых ламповых цветных телевизоров). Но их придется слегка модернизировать. Первичные обмотки остаются на своих местах, вторичные удаляются полностью. Так делается лабораторный блок питания, схема которого приведена в статье. Наматываются новые обмотки, исходя из существующих потребностей. Самый простой вариант – сделать ступенчатое регулирование напряжения на выходе. Для этого нужно посчитать, сколько витков необходимо для снятия одного Вольта:
- Наматываете 10 витков провода вместо вторичной обмотки.
- Включаете трансформатор и проводите замер напряжения на вторичной обмотке.
- Допустим, получилось 2 В. Следовательно, 5 витков выдают 1 В.
- Чтобы сделать «ступени» в 1 В, нужно делать отводы каждые пять витков.
Такая конструкция окажется массивной, да и придется использовать либо несколько гнезд, либо специальный тумблер для переключения режимов работы. Намного проще окажется произвести намотку вторичной обмотки с таким расчетом, чтобы на выходе оказалось примерно 30 вольт переменного напряжения.
Следующие шаги
После этого переделка блока питания от персонального компьютера в зарядное устройство, то есть в ЗУ, продолжается.
Теперь необходимо выполнить все манипуляции, которые касаются режима работы ШИМ (широтно-импульсный модуль).
Работая с этим компонентом будущего зарядного устройства, необходимо:
- отыскать первую ножку на микросхеме, которая является самой нижней в левой части;
- дальше смотрите на дорожку с другой стороны платы, то есть с обратной;
- с первым выводом на микросхеме соединяется 3 резистора;
- нужно найти тот, который соединён с выводами блока +12 В;
- этот резистор отпаивается от платы и измеряется его сопротивление;
- обычно значение сопротивления составляет около 38 кОм;
- на место отпаянного резистора нужно припаять переменный резистор, заранее настроенный на аналогичное сопротивление;
- путём плавного повышения параметров сопротивления на переменном резисторе следует добиться, чтобы на выходе напряжение в итоге составляло 14,4 В.
Стоит быть внимательными, поскольку для различных компьютерных блоков питания заданный производителем номинал переменного резистора может отличаться. Это обусловлено тем, что в разных БП применяются различные компоненты, детали и схемы. Хотя при этом алгоритм измерения напряжения остаётся идентичным для всех версий устройств.
Если поднять поступающее напряжение выше 15 В, генерация широтно-импульсного модуля может быть сорвана. И тогда блок потребуется перезагрузить, предварительно снизив параметры сопротивления на переменном резисторе.
Случается и так, что сразу же повысить напряжение до необходимых для обслуживания АКБ 14 В, что требуется для полноценной работы зарядного устройства, не удаётся. И в основном это происходит по причине нехватки сопротивления у переменного резистора.
Если довелось столкнуться с такой ситуацией, исправить её просто.
Достигнув необходимого напряжения в стандартные 14,4 В, используемый переменный резистор можно выпаивать и проверять на нём параметры сопротивления. Оно должно составлять около 120 кОм.
На основе этих замеров подбирается постоянный резистор. Причём его сопротивление должно быть максимально близким к полученным результатам. Это может быть один постоянный резистор на 120 кОм, либо пара резисторов на 100 и 22 кОм.
Как подключать данный доработанный блок питания к автомобильному аккумулятору
Первым делом запомните, что данная конструкция не претендует на звание идеального блока питания. Конкурировать с фабричными зарядно-пусковыми устройствами она так же не может. Основная ее задача – зарядить аккумулятор, если под рукой не оказалось нормального зарядного устройства. Никакой защиты от неправильного подключения не предусмотрено. Единственный плюс нашей самодельной зарядки – защита от КЗ или перегруза по току. Следовательно, если перепутать полярность подключения проводов, произойдут крайне негативные метаморфозы как с зарядным устройством, так и с аккумулятором. Запомните, что желтые провода (линия 12В) подключаются к «+» аккумулятора, а черные провода («земля») – к отрицательному терминалу аккумулятора. Также стоит отметить, что заряжать аккумулятор нужно при подключенной перемычке, связывающей PC-ON и общий провод, а также при нагрузочных резисторах на 5В шине. При таком включении БП будет давать 13.5В, чего вполне хватит для зарядки.
Мощный металлоискатель Pirat своими руками
Подобные металлоискатели можно купить примерно за 100-300 долларов. Цена на металлодетекторы сильно взаимосвязана с их глубиной обнаружения, далек не каждый металлоискатель может «видеть» монеты на глубине в 15 см. Помимо этого на стоимости металлодететкора еще сильно сказывается наличие распознавателя типа металлов ну и типа интерфейса, модные металлоискатели порой оснащают дисплеем для удобной работы.
В этой статье будет рассмотрен пример сборки своими руками мощного металлоискателя под названием Pirat. Прибор способен улавливать под землей монеты на глубине в 20 см. Что же касается крупных предметов, то здесь вполне реальна работа на глубине и во все 150 см.
Видео работы с металлоискателем:
Такое название этот металлоискатель получил из-за того, что он является импульсным, это обозначение двух первых его букв (PI-импульс). Ну а RA-T созвучно со словом radioskot — это название сайта разработчиков, где была и выложена самоделка. По словам автора, собирается Пират очень просто и быстро, для этого хватит даже начальных навыков в работе с электроникой.
Недостатком такого устройства является то, что оно не имеет дискриминатора, то есть не умеет распознавать цветные металлы. Так что поработать с ним на загрязненных различного рода металлами участках не получится.
Материалы и инструменты для сборки: — микросхема КР1006ВИ1 (или ее зарубежный аналог NE555) — на ней строится передающий узел; — транзистор IRF740; — микросхема К157УД2 и транзистор ВС547 (на них собирается приемный узел); — провод ПЭВ 0.5 (для наматывания катушки); — транзисторы типа NPN; — материалы для создания корпуса и так далее; — изолента; — паяльник, провода, прочий инструмент.
Остальные радиокомпоненты можно увидеть на схеме. Еще нужно найти подходящую пластиковую коробочку для монтажа электронной схемы. Еще будет нужна пластиковая труба для создания штанги, на которую крепится катушка.
Процесс сборки металлоискателя:
Шаг первый. Создаем печатную плату
Самой сложной частью устройства является, конечно же, электроника, поэтому с нее и целесообразно начать. В первую очередь нужно сделать печатную плату. Всего есть несколько вариантов плат, в зависимости от используемых радиоэлементов. Есть плата для NE555, а есть плата на транзисторах. Все необходимые файлы для создания платы есть к статье. Также в интернете можно найти и другие варианты плат.
Шаг второй. Устанавливаем электронные элементы на плату
Шаг третий. Источник питания для металлоискателя
Шаг четвертый. Собираем катушку для металлоискателя В связи с тем, что это импульсный металлоискатель, здесь точность сборки катушки не так важна. Оптимальным диаметром является оправка 1900-200 мм, всего нужно намотать 25 витков. После того, как катушка будет намотана, ее нужно хорошенько обмотать сверху изолентой для изоляции. Чтобы увеличить глубину обнаружения катушки, нужно намотать ее на оправку диаметром порядка 260-270 мм, а количество витков снизить до 21-22. Провод при этом используется диаметром 0.5 мм.
После того, как катушка будет намотана, ее нужно установить на жестком корпусе, на нем не должно быть металла. Здесь нужно немного подумать и поискать любой подходящий по размерам корпус. Он нужен для того, чтобы защитить катушку от ударов во время работы с устройством.
Выводы от катушки припаиваются к многожильному проводу, диаметром около 0.5-0.75 мм. Лучше всего, если это будут два, свитые между собой провода. Шаг пятый. Настраиваем металлоискатель
При сборке точно по схеме настраивать металлоискатель не требуется, он и так имеет максимальную чувствительность. Для более тонкой настройки металлоискателя нужно покрутить переменный резистор R13, нужно добиться редких щелчков в динамике. Если достичь этого получается только в крайних положения резистора, то необходимо сменить номинал резистора R12. Переменный резистор должен настраивать устройство на нормальную работу в средних положениях.
Если есть осциллограф, то с помощью него можно померить частоту на затворе транзистора Т2. Длительность импульса должна составлять 130-150 мкс, а нормальная рабочая частота равна 120-150 Гц.
Как работать с металлоискателем
После включения прибора нужно подождать около 10-20 секунд, чтобы работа металлоискателя стабилизировалась. Теперь можно крутить резистор R13 для настройки. После этого можно приступать к поиску.
imp_tranz.rar (скачиваний: 11569)
Источник (Source)
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.
Внешний осмотр и ремонт
Судя по всему, он служил перемычкой от одной части платы к другой. Для дальнейшей диагностики было принято решение включить блок питания в сеть через лампочку 40 Вт.
Лампочка сразу вспыхнула. Это значит, что в схеме есть короткое замыкание и резистор не выдержал. Но какой большой ток мог повредить его?
К этому элементу по печатной плате напрямую идет защитный диод, который так же оказался неисправен так как звонился накоротко. Дорожка от диода идет прямо в район мощного полевого транзистора.
Чтобы убедиться в неисправности транзистора, необходимо его выпаять из платы (или же просто оплеткой убрать припой с контактов) тем самым будет исключено влияние схемы на измерения.
Чтобы заменить полевой транзистор — нужно выпаять вот этот здоровый дроссель.
Результат ремонта
И наконец, появляются дежурные 5В. Замкнутые 5В на землю дали и 12В. Однако. моноблок отказался включаться. Всему виной вышедший из строя северный мост. Коллеги по работе поменяли его и моноблок запустился. Видимо, блок питания потянул за собой и мост.
Структурная схема БП компьютера АТХ
Блок питания компьютера является довольно сложным электронным устройством и для его ремонта требуются глубокие знания по радиотехнике и наличие дорогостоящих приборов, но, тем не менее, 80% отказов можно устранить самостоятельно, владея навыками пайки, работы с отверткой и зная структурную схему источника питания.
Практически все БП компьютеров изготовлены по ниже приведенной структурной схеме. Электронные компоненты на схеме я привел только те, которые чаще всего выходят из строя, и доступны для самостоятельной замены непрофессионалам. При ремонте блока питания АТХ обязательно понадобится цветовая маркировка выходящих из него проводов.
Питающее напряжение с помощью подается через разъемное соединение на плату блока питания. Первым элементом защиты является предохранитель Пр1 обычно стоит на 5 А. Но в зависимости от мощности источника может быть и другого номинала. Конденсаторы С1-С4 и дроссель L1 образуют фильтр, который служит для подавления синфазных и дифференциальных помех, которые возникают в результате работы самого блока питания и могут приходить из сети.
Сетевые фильтры, собранные по такой схеме, устанавливают в обязательном порядке во всех изделиях, в которых блок питания выполнен без силового трансформатора, в телевизорах, видеомагнитофонах, принтерах, сканерах и др. Максимальная эффективность работы фильтра возможна только при подключении к сети с заземляющим проводом. К сожалению, в дешевых китайских источниках питания компьютеров элементы фильтра зачастую отсутствуют.
Вот тому пример, конденсаторы не установлены, а вместо дросселя запаяны перемычки. Если Вы будете ремонтировать блок питания и обнаружите отсутствие элементов фильтра, то желательно их установить.
Вот фотография качественного БП компьютера, как видно, на плате установлены фильтрующие конденсаторы и помехоподавляющий дроссель.
Для защиты схемы БП от скачков питающего напряжения в дорогих моделях устанавливаются варисторы (Z1-Z3), на фото с правой стороны синего цвета. Принцип работы их простой. При нормальном напряжении в сети, сопротивление варистора очень большое и не влияет на работу схемы. В случае повышении напряжения в сети выше допустимого уровня, сопротивление варистора резко уменьшается, что ведет к перегоранию предохранителя, а не к выходу из строя дорогостоящей электроники.
Чтобы отремонтировать отказавший блок по причине перенапряжения, достаточно будет просто заменить варистор и предохранитель. Если варистора под руками нет, то можно обойтись только заменой предохранителя, компьютер будет работать нормально. Но при первой возможности, чтобы не рисковать, нужно в плату установить варистор.
В некоторых моделях блоков питания предусмотрена возможность переключения для работы при напряжении питающей сети 115 В, в этом случае контакты переключателя SW1 должны быть замкнуты.
Для плавного заряда электролитических конденсаторов С5-С6, включенных сразу после выпрямительного моста VD1-VD4, иногда устанавливают термистор RT с отрицательным ТКС. В холодном состоянии сопротивление термистора составляет единицы Ом, при прохождении через него тока, термистор разогревается, и сопротивление его уменьшается в 20-50 раз.
Для возможности включения компьютера дистанционно, в блоке питания имеется самостоятельный, дополнительный маломощный источник питания, который всегда включен, даже если компьютер выключен, но электрическая вилка не вынута из розетки. Он формирует напряжение +5 B_SB и построен по схеме трансформаторного автоколебательного блокинг-генератора на одном транзисторе, запитанного от выпрямленного напряжения диодами VD1-VD4. Это один из самых ненадежных узлов блока питания и ремонтировать его сложно.
Необходимые для работы материнской платы и других устройств системного блока напряжения при выходе из блока выработки напряжений фильтруются от помех дросселями и электролитическими конденсаторами и затем посредством подаются к источникам потребления. Кулер, который охлаждает сам блок питания, запитывается, в старых моделях БП от напряжения минус 12 В, в современных от напряжения +12 В.
Общее описание
Слово «лабораторные» применяется неспроста, так как их главное предназначение – помогать в лабораториях. Они «живут» там постоянно и даже не транспортируются для проведения ремонта в посторонних помещениях. Специалисты не рекомендуют использовать устройство на открытом воздухе или в автомобиле. Лабораторные также подразумевают корректировку параметров и точную установку показателей.
Продукция российского производства имеет сертификаты соответствия, проходит регулярные поверки, что приводит к удорожанию ее использования. Данные БП могут допустить незначительную погрешность, отличаются надежностью и эффективностью работы, а также длительным сроком эксплуатации.
Как работает схема включения питания материнской платы?
Для работы схемы включения материнской платы используется дежурное напряжение +5VSB, которое преобразуется с помощью линейного регулятора в 3 вольта, а затем подается на чипсет (южный мост), микросхему-контроллер Super I/O, сетевую карту и кнопку включения питания.
Преобразование напряжения +5VSB на материнской плате еще не включенного компьютера:
При включении материнской платы сигналы 5VSB и 3VSB передаются на контроллер SIO, сетевую плату и кнопку включения (Switch Button, SB). Затем контроллер SIO (Super I/O) отправляет разрешающий сигнал высокого уровня RSMRST# на схему включения, что переводит ее в рабочий режим. При низком уровне сигнала RSMRST# материнская плата не будет запускаться (этому мешает запрещающий сигнал Lo-уровня).
Замыкание кнопки включения на материнской плате приводит к снижению уровня напряжения Ps_On до нуля и включению компьютера:
После активации сигнала Power On на материнской плате начинают формироваться питающие напряжения, необходимые для работы процессора, задающего генератора, оперативной памяти, вентиляторов, устройств ввода-вывода, шины PCI-E и других устройств.
Блок питания ATX-400W — принципиальная схема
Конденсаторы С1, С2 образуют фильтр низкочастотной сети.
Главным достоинством являются высокие показатели КПД усилителей мощности и широкие возможности в использовании. Такая упрощенная схема БП с использованием контроллера широтно-импульсной модуляции показана на следующем рисунке.
Диоды D13, D14 предназначены для рассеивания магнитной энергии, накопленной полуобмотками трансформатора Т2. В случае исправности элементов обвязки заменить U4. Магнитный поток, создаваемый этим током, наводит ЭДС в обмотке положительной обратной связи.
При этом в трансформаторе Т1 накапливается больше электромагнитной энергии, отдаваемой в нагрузку, вследствие чего выходное напряжение повышается до номинального значения. Структурная схема источника рис. Конструктивные особенности Для подключения комплектующих персонального компьютера на БП предусмотрены различные разъемы. Значительно реже происходит отказ вентилятора, но это также приводит к печальным последствиям: от перегрева выгорают дроссели L1, L 2.
Во вторичных обмотках блока питания компьютера, кроме диодных сборок на радиаторах задействованы дроссели. Принципиальные схемы блоков питания ATX. Особых предпочтений в порядке подключения нет, главное все сделать аккуратно и правильно.
Этой величины достаточно для запирания транзистора Q6. Резистор R47 и конденсатор С29 — элементы частотной коррекции усилителя.
Распиновка основного коннектора БП
Проверить исправность цепи стабилизации U1, U2, неисправный элемент заменяется. В отличие от линейных, импульсные блоки питания компактнее и обладают высоким КПД и меньшими тепловыми потерями. Выходной сигнал инвертора подается через токовый датчик Т4 на первичную обмотку силового трансформатора Т1. На неинвертирующий вход усилителя ошибки 1 выв. При протекании тока через первичную обмотку ТЗ происходит процесс накопления энергии трансформатором, передача этой энергии во вторичные цепи источника питания и заряд конденсаторов С1, С2.
Заметим, что у некоторых устройств цветовая маркировка может отличаться от стандартной, как правило, этим грешат неизвестные производители из поднебесной. В отличие от линейных, импульсные блоки питания компактнее и обладают высоким КПД и меньшими тепловыми потерями. С выводов 8 и 11 микросхемы управляющие импульсы поступают в базовые цепи транзисторов Q5, Q6 каскада управления. Импульсный ток, возникающий в процессе заряда конденсаторов, установленных на входе, может стать причиной пробоя диодного моста; Дисковый термистор обозначен красным тестируем диоды или диодный мост на выходном выпрямителе, в них не должно быть обрыва и КЗ. Обзор схем источников питания Главной частью структурной схемы ИП, формата ATX, является полумостовой преобразователь.
Как работает ATX
Переделка atx в лабораторный бп подробно
9zip.ru
Напомним, что переделывать можно любые блоки, как AT, так и ATX. Первые отличаются просто отсутствием дежурки. Как следствие, TL494 в них питается непосредственно с выхода силового трансформатора, и, опять же, как следствие, — при регулировке на малых нагрузках ей просто не будет хватать питания, т.к
скважность импульсов на первичке трансформатора будет слишком мала. Введение отдельного источника питания для микросхемы решает проблему, но требует дополнительное место в корпусе
Блоки питания ATX здесь выгодно отличаются тем, что ничего не нужно добавлять, нужно лишь убрать лишнее и добавить, грубо говоря, два переменных резистора.
На переделке — компьютерный блок питания ATX MAV-300W-P4. Задача — переделать в лабораторный 0-24В, по току — тут уж как получится. Говорят, что удаётся получать 10А. Что ж, проверим.
Блок питания включаем в сеть через лампу накаливания мощностью 200Вт, которая предназначена для защиты от пробоя силовых транзисторов в случае внештатной ситуации. На холостом ходу напряжение прекрасно регулируется практически от 0 до 24 вольт. А что же будет под нагрузкой? Подключаем несколько мощных галогенок и видим, что напряжение регулируется уже до 20 вольт. Это ожидаемо, ведь мы используем 12-вольтовые обмотки и выпрямитель со средней точкой. На мощной нагрузке ШИМ уже на пределе и получить больше уже невозможно.
Что же делать? Можно просто использовать блок питания для питания не очень мощных нагрузок. Но что же делать, если очень хочется получить заветные 10 ампер, тем более, что на этикетке блока питания они как раз заявлены для линии 12 вольт? Всё очень просто: меняем выпрямитель на классический мостик из четырёх диодов, тем самым увеличивая амплитуду напряжения на его выходе. Для этого понадобится установить ещё два диода. На схеме видно, что такие диоды как раз были установлены, это D24 и D25, по линии -12 вольт. К сожалению, их расположение на плате для нашего случая неудачное, поэтому придётся использовать диоды в «транзисторных» корпусах и либо устанавливать на них отдельные радиаторы, либо крепить к общему радиатору и припаивать проводками. Требования к диодам те же: быстрые, мощные, на требуемое напряжение.
С переделанным выпрямителем напряжение даже с мощной нагрузкой регулируется от 0 до 24 вольт, регулировка тока также работает.
Осталось решить ещё одну проблему — питание вентилятора. Оставлять блок питания без активного охлаждения нельзя, потому что силовые транзисторы и выпрямительные диоды нагреваются соответственно нагрузке. Штатно вентилятор питался от линии +12 вольт, которую мы превратили в регулируемую с диапазоном напряжений несколько более широким, чем нужно вентилятору. Поэтому самое простое решение — питать его от дежурки. Для этого заменяем конденсатор C13 на более ёмкий, увеличив его ёмкость в 10 раз. Напряжение на катоде D10 — 16 вольт, его и берём для вентилятора, только через резистор, сопротивление которого нужно подобрать так, чтобы на вентиляторе было 12 вольт. Бонусом с этого БП можно вывести хорошую пятивольтовую линию питания +5VSB.
Требования к дросселю те же: с ДГС сматываем все обмотки и наматываем новую: от 20 витков, 10 проводов диаметром 0,5мм впараллель. Конечно, такая толстая жила может не влезть в кольцо, поэтому количество параллельных проводов можно уменьшать соответственно вашей нагрузке. Для максимального тока в 10 ампер индуктивность дросселя должна быть в районе 20uH.
Где взять комплектующие
Все комплектующие можно приобрести в специализированных магазинах, однако не всегда есть возможность их посетить. Кроме того, цена на некоторые составляющие может быть завышена.
К счастью, все необходимые элементы, которые нужны для создания блока питания, можно достать в старых устройствах, лежащих в кладовых, на складах, или просто за
В качестве корпуса для лабораторного источника питания, собранного своими руками отлично подойдет старый, прочный корпус от советского регулятора паяльного инструмента. Если нет подобного корпуса, можно взять любой, подходящий по размерам. Предпочтение стоит отдавать алюминиевым корпусам.
В старом, ненужном телевизоре вполне реально найти нужный трансформатор, лучше делать отвод в 22 в.
После того, как диодный мост будет собран, сверху устанавливается электролитический конденсатор. Вольтамперметр можно заказать из Китая, либо купить в России, цена не сильно отличается. Если нет возможности или желания его использовать, можно ограничиться подстроечными резисторами.
Схема простого и достаточно эффективного металлоискателя «ПИРАТ»
Собрать такой аппарат под силу каждому, даже тем кто совершенно далек от электроники, просто нужно припаять все детали как на схеме. Металлоискатель состоит из двух микросхем. Они не требуют ни каких прошивок и программирования.
Питание 12 вольт, можно от пальчиковых батареек но лучше АКБ на 12в (небольшой)
Катушка намотана на оправке 190мм и содержит 25 витков провода ПЭВ 0.5
Характеристики: — Потребляемый ток 30-40 мА — Реагирует на все металлы дискриминации нет — Чувствительность 25 миллиметровая монета — 20 см — Крупные металлические предметы — 150 см — Все детали не дорогие и легкодоступные.
Список необходимых деталей: 1)Паяльник 2)Текстолит 3)Провода 4)Сверло 1мм
Вот список необходимых деталей
Схема самого металлоискателя
В схеме используются 2 микросхемы (NE555 и К157УД2). Они достаточно распространенные. К157УД2 — можно выковырять из старой аппаратуры, что я с успехом и сделал
Конденсаторы 100нФ обязательно брать пленочные, вот такие, вольтаж берем как можно меньше
Распечатываем эскиз платы на простой бумаге
Вырезаем под ее размер кусок текстолита.
Плотно прикладываем и острым предметом продавливаем по местам будущих отверстий
Вот как должно получиться.
Далее берем любую дрель или сверлильный станок и сверлим отверстия
После сверления, нужно прочертить дорожки. Можно сделать это через фоторезист, ЛУТ или просто прорисовать их Нитро лаком простой кисточкой. Дорожки должны получится точно такие же как на бумажном шаблоне. И травим плату.
В помеченных красным местах, ставим перемычки:
Далее просто припаиваем все компоненты на свои места.
Для К157УД2 лучше поставить переходную панельку.
Если такового нет, можно воспользоваться другим. У меня же медного лакированного провода оказалось не достаточно. Взял старый сетевой кабель.
Снял оболочку. Там проводов оказалось достаточно. Мне хватило двух жил, ими же и мотал катушку.
По схеме катушка диаметром 19 см и содержит 25 витков. Сразу замечу, что катушку нужно делать такого диаметра исходя из того, что вы будете искать. Чем больше катушка тем глубже поиск, но большая катушка плохо видит мелкие детали. Маленькая катушка хорошо видит мелкие детали, но глубина не большая. Я сразу намотал себе три катушки 23см(25 витков), 15см(17 витков) и 10см(13-15 витков). Если нужно накопать металлолом, то ставим большую, если на пляже мелочевку искать, то катушку меньше, ну сами разберетесь.
Катушку мотаем на чем угодно подходящего диаметра и плотно обматываем изолентой, что бы витки были плотно друг возле друга.
Катушка должна быть, как можно ровной. Динамик взял первый попавшийся.
Теперь все подключаем и пробуем схему на работоспособность.
После подачи питания, нужно подождать 15-20 секунд пока схема прогреется. Ставим катушку подальше от любого металла, лучше всего подвесить в воздухе. После начинаем крутить переменный резистор 100К пока не появятся щелчки. Как только щелчки появились крутим в обратную сторону, как только щелчки пропадут хватит. После этого, так же настраиваем резистор 10К.
На счет микросхемы К157УД2. Кроме той, что я выковырял, я еще 1 попросил у соседа и две купил на радио рынке. Вставил купленные микросхемы, включил прибор, а он отказался работать. Долго ломал голову, пока просто не поставил другую микросхему (ту что выпаял). И все сразу заработало. Так что вот для чего нужна переходная панелька, что бы подобрать живую микросхему и не мучатся с выпаиванием и впаиванием.
Покупные микросхемы
Моя и та что у соседа взял
Все готово, осталось только сделать штангу и поместить плату в корпус и на поиски кладов )
Вот ВИДЕО испытаний
Испытания дома проводил на средней катушке диаметром 15 см. Так вот золотое кольцо по воздуху ловило на 18см, ножницы 30см. настольная лампа 50см. что достаточно не плохо для такого метало детектора.
Качаем эскиз схемы платы: imp-MS.rar (скачиваний: 15727)
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.
Возможные неисправности БП
Использование в течение многих лет отработанной схемы импульсного преобразователя позволило сделать ее крайне надежной.
Поэтому большинство неисправностей БП персональных компьютеров связаны либо со старением его компонентов, либо со значительными отклонениями питания или нагрузки от номинальных параметров. Отдельно стоит упомянуть перегрев выходных каскадов из-за накопления пыли внутри БП при недостаточной частоте обслуживания компьютера.
Сильнее всего старение сказывается на состоянии электролитических конденсаторов выпрямителя и выходных каскадов. Со временем они деградируют, теряя емкость, что приводит к заметному росту пульсаций напряжения на выходе блока, что может приводить к сбоям в работе ПК. Также, особенно в дешевых блоках, старение электролитических конденсаторов сопровождается их заметным вздутием, иногда приводящему к их разрушению с характерным хлопком.
Значительный рост напряжения питания или избыточная нагрузка способны привести к перегреву и короткому замыканию внутри диодного моста входного выпрямителя. В этом случае переменный ток из сети поступает в цепи, не рассчитанные на работу с ним: разрушаются электролитические конденсаторы, рассчитанные на однополярное питание, повреждаются ШИМ-контроллер и его транзисторная обвязка. Зачастую повреждение БП при этом делает его ремонт менее рентабельным по сравнению с полной заменой.
Отказ выходных транзисторов импульсного преобразователя чаще всего является следствием их длительного перегрева, вызванного перегрузкой или недостаточным охлаждением.
Формирование напряжений на материнской плате
Для формирования рабочих напряжений с малым током потребления используют простые схемы с понижающим линейным преобразованием.
Пример схемы питания +VDD_CLK материнской платы ASUS P9X79 Deluxe:
Более мощные потребители (CPU, RAM, интегрированная видеокарта) запитываются многофазными цепями под управлением ШИМ-контроллеров:
Как правило, на современных платах в цепях питания используются мощные полевые транзисторы (MOSFET-ы):
Типовая схема работы одной фазы питания с диаграммами напряжения-тока на входе и выходе:
Критические напряжения, формируемые на материнской плате ASUS P9X79 Deluxe для процессора:
Напряжение +1.5 вольт, формируемое для работы DDR3-памяти (для DDR3L памяти используется вольтаж 1.35V):
Питание контроллера хаба чипсета (Chipset Platform Controller Hub, PCH), используются напряжения +1.1 и 1.5 вольт:
Упрощенная последовательность работы электронных элементов фазы формирования напряжения 1.8 вольт на материнской плате производства компании ASUS:
Для сопряжения работы силовых транзисторов с ШИМ-контроллером используют драйверы. Они могут находиться в одном корпусе с ключевыми полевыми транзисторами, либо монтироваться в отдельном корпусе.
Пример схемы многофазной системы питания под управления ШИМ-контроллера с использованием драйверов:
Малогабаритный блок питания
Этот БП имеет параметрический стабилизатор тока и компенсационный стабилизатор напряжения. Поэтому он не боится короткого замыкания по выходу, и выходной транзистор стабилизатора практически не может выйти из строя. Конструкция двухполярного импульсного блок питания
В момент включения блока питания в сеть осуществляется выпрямление переменного напряжения электросети диодным мостом, пульсацию от которого сглаживается емкостным фильтром на конденсаторах. Для снижения величины тока заряда, проходящего через эти конденсаторы, в схему добавлен резистор. Затем выпрямленное напряжение поступает на полумостовой инвертор, построенный на транзисторах. Самодельный источник бесперебойного питания
Краткие теоретические сведения о построение и работе источников бесперебойного питания, а также рассмотрена конструкция самодельного ИБП. Блок зарядки мощной батареи конденсаторов. Электронная конструкция с некоторой периодичностью разряжает мощную конденсаторную батарею на индуктор, потом на следующий, и так по цепочке. Блок питания на 12 вольт схема
Сетевое напряжение поступает через предохранитель на первичную обмотку силового трансформатора. С его вторичной обмотки снимем уже пониженное напряжение на 20 вольт при токе до 25А. При желании этот трансформатор можно сделать своими руками на основе силового трансформатора от старого лампового телевизора. Блок аварийного питания
В российской глубинке до сих пор случается частое отключение электроэнергии, что серьезно меняет устаканившийся образ жизни в нелучшую сторону. Решить возникшую проблему очень легко.