Изготовление намоточного станка своими руками

Устройство укладчика проволоки

Укладка и намотка проволоки осуществляются за счет трех пластин, скрепленных между собой винтами диаметром 20 мм. В верхней части делают небольшое отверстие 6 мм, куда вставляют винт регулировки натяжения:

  • В верхнюю и нижнюю часть внутренней пластины монтируют фторопластовую и стальную втулки диаметром и длиной по 20 мм.
  • Между наружными элементами вклеивают кожаный желобок толщиной до 2-х мм, необходимый для выравнивания и натягивания проволоки катушки.
  • Вверху укладчика монтируют специальный стержень с резьбой или мини-струбцину, которая скрепляет внешние пластины и регулирует натяжение. Расстояние крепления зависит от диаметра провода.
  • Для удобства работы конструкцию дополнительно оснащают откидным кронштейном для катушки.

Читать также: Отличие вгп трубы от электросварной

Необходимые материалы и комплектация для изготовления

Чтобы собственноручно сделать станок для намотки проволоки на круглый каркас, понадобится несколько деталей.

Станина из листового материала, скрепленного сварочным методом. Оптимальная толщина основания – 15 мм, боковых частей – 6 мм. Устойчивость конструкции обеспечивается ее тяжестью:

  • Боковые части прикладывают друг к другу, одновременно просверливают в них отверстия.
  • Подготовленные элементы приваривают к основанию.
  • В высоко расположенные пробоины монтируют втулки, в нижние – подшипники, которые можно взять из использованного дисковода.
  • Крепежные детали с внешней стороны боковин надежно фиксируют крышками.

Важные составляющие конструкции станка – валы:

  • Верхний вал диаметром 12 мм держит каркас катушки. Его роль может исполнять аналогичная конструктивная деталь вышедшего из строя матричного принтера.
  • На средний вал такого же диаметра опирается устройство подачи длинномерного материала. Перед вводом в эксплуатацию его желательно отполировать.
  • Нижний вал является подающим элементом. Его размеры зависят от шага резьбы.

Втулка укладчика диаметром и длиной по 20 мм. Ее внутренняя резьба совпадает с резьбой нижнего вала.

Шкивы – трехступенчатые, выточенные из стали, общей толщиной не более 20 мм. В противном случае придется увеличить хвостовики верхнего и нижнего валов. Каждый блок содержит три канавки с разным диаметром, в зависимости от сечения проволоки. Их ширина определяется пассиками. Такая комбинация обеспечивает большое разнообразие шагов намотки провода.

Механизм намоточного станка

Рассматривая ручной намоточный станок нужно учитывать, что в продаже есть несколько различных вариантов конструкции: рядовой, тороидальный и универсальный. Все варианты исполнения характеризуются определенными особенностями, которые нужно учитывать.

Схема сборки намоточного станка

Намоточный станок, который проводит рядовую укладку проволоки, состоит из следующих элементов:

  1. В основе конструкции лежит сварная рама, которая имеет посадочные места и отверстия для фиксации других основных элементов.
  2. Подобный станок обладает механизмом, за счет которого длинномерный материал распределяется по всей длине барабана равномерно. Распределение проводится за счет каретки с направляющими роликами, которая и переводится вдоль барабана.
  3. Модели намоточных станков могут отличаться друг от друга размерами и функциональными возможностями.

Встречаются и стандартные механизмы, предназначенные для укладки проволоки. Среди их особенностей можно отметить следующие моменты:

  1. Основная часть конструкции представлена каркасом, который изготавливается из металла и дерева. Она расположена вертикально.
  2. Опоры служат для расположения двух горизонтальных осей: одна используется для установки пластин, вторая катушки.
  3. Механизм имеет и сменные шестерни, которые предназначены для передачи вращения.
  4. Ось соединена с рукояткой. Для ее фиксации используется цанговый зажим.
  5. В качестве фиксатора используются винты и гайки.

Если наматывать нужно на тороидальные сердечники, то используется механизм кольцевого типа. Он имеет следующие особенности:

  1. Конструкция напоминает челнок, который работает по принципу швейной иглы.
  2. Намоточное устройство подобного типа имеет шпулю. Она представлена сочетанием двух пересекающихся колец со съемным сектором.
  3. Для того чтобы шпуля вращалась устанавливают электрический двигатель.

При учете особенностей подобных механизмов можно создать самодельный намоточный станок. Он не будет существенно уступать покупным, при этом обойдется недорого.

Необходимые материалы и комплектация для изготовления

Чтобы собственноручно сделать станок для намотки проволоки на круглый каркас, понадобится несколько деталей.

Станина из листового материала, скрепленного сварочным методом. Оптимальная толщина основания – 15 мм, боковых частей – 6 мм. Устойчивость конструкции обеспечивается ее тяжестью:

  • Боковые части прикладывают друг к другу, одновременно просверливают в них отверстия.
  • Подготовленные элементы приваривают к основанию.
  • В высоко расположенные пробоины монтируют втулки, в нижние – подшипники, которые можно взять из использованного дисковода.
  • Крепежные детали с внешней стороны боковин надежно фиксируют крышками.

Важные составляющие конструкции станка – валы:

  • Верхний вал диаметром 12 мм держит каркас катушки. Его роль может исполнять аналогичная конструктивная деталь вышедшего из строя матричного принтера.
  • На средний вал такого же диаметра опирается устройство подачи длинномерного материала. Перед вводом в эксплуатацию его желательно отполировать.
  • Нижний вал является подающим элементом. Его размеры зависят от шага резьбы.

Втулка укладчика диаметром и длиной по 20 мм. Ее внутренняя резьба совпадает с резьбой нижнего вала.

Шкивы – трехступенчатые, выточенные из стали, общей толщиной не более 20 мм. В противном случае придется увеличить хвостовики верхнего и нижнего валов. Каждый блок содержит три канавки с разным диаметром, в зависимости от сечения проволоки. Их ширина определяется пассиками. Такая комбинация обеспечивает большое разнообразие шагов намотки провода.

Эксплуатация

Находясь в спящем режиме, схема не проявляет никаких признаков работы. После однократного нажатия кнопки SW1 считывается информации с делителя и начинается отсчет времени, о чем свидетельствует однократное мигание светодиодов. С этого момента они будут мигать каждые 1 секунду до окончания обратного отсчета. Если все переключатели SW2 находятся в положении OFF, светодиоды не будут мигать, а устройство перейдет в спящий режим.

По истечении установленного времени светодиоды начинают мигать интенсивно, а звуковой излучатель издает короткие звуки. Остановка производиться кратким нажатием SW1.

Важно отметить, что как только обратный отсчет запущен, вы не сможете остановить или изменить его продолжительность. Это позволяет избежать ситуации случайного выключения отсчета времени, которое может произойти при случайном нажатии кнопки SW1

Потребляемый ток в состоянии покоя составляет около 0,5 мА, поэтому теоретически батареи номинальной емкостью 200 мАч должно хватить на 45 лет в режиме ожидания. На практике же можно рассчитывать на время сопоставимое со сроком годности батареи. Во время обратного отсчета среднее потребление тока составляет около 8 мА, а в состоянии оповещения повышается до 15 мА.

Скачать печатную плату и прошивку (11,5 KiB, скачано: 1 106)

Лабораторный блок питания 30 В / 10 А

Подробнее

Составные части намоточного станка и принцип его работы

Элементы намоточного станка собирались неспешно. Почти все было взято от старой советской киноаппаратуры. Подвижные части: ручка, шпильки осей, направляющий ролик — все оснащено подшипниками. Шпильки, гайки, шайбы и уголки были куплены в магазине, торгующем метизами. Потратиться пришлось только на шпильки, длинные гайки и уголки. В остальном все сделано из подручных материалов, имеющихся в наличии.

Для точного подбора плотности намотки проволоки на шпильку укладчика нанизывается набор из нескольких шкивов. Так, в случае не плотной намотки, можно было на один размер перебросить пассик и подогнать скорость вращения осей. Пассик в процессе намотки проволоки перекручивают в зависимости от направления хода намотки по типу формы «Восьмерка» либо прямое расположение пассика. Следует сделать пару десятков пробных витков, чтобы правильно подогнать шкивы под диаметр проволоки.

Из дерева либо другого материала изготавливают основу по форме внутренней части катушки трансформатора и гайками-барашками фиксируется на шпильке. Так же для фиксации катушки можно сделать универсальные удерживающие уголки. Демонстрация работы намоточного станка показана на видео:

Принцип работы на станке

Трудиться на сконструированном станке несложно. Технологический процесс требует выполнения определенных действий:

  1. Верхний вал подготавливают к работе: снимают шкив, задают нужную длину каркаса катушки, устанавливают правый и левый диски.
  2. В отверстие верхнего вала вставляют крепежное изделие, центрируют и зажимают каркас специальной гайкой.
  3. На подающий вал монтируют нужный шкив для первичной обмотки.
  4. Напротив каркаса катушки устанавливается укладчик.
  5. Пассик одевают на шкивы кольцом или восьмеркой, в зависимости от вида укладки.
  6. Металлический провод заводят под дополнительный вал, укладывают в желобок, закрепляют.
  7. Натяжение проволоки регулируют при помощи зажимов, расположенных вверху укладчика.
  8. Провод должен плотно наматываться на основу катушки.
  9. На калькуляторе фиксируют числовое значение «1+1».
  10. Каждый оборот вала прибавляет заданный счет.
  11. Если витки нужно отмотать назад, на вычислительном устройстве нажимают «–1».
  12. Когда провод достигнет противоположной части каркаса, с помощью цангового зажима меняют положение пассика.

Под разную толщину металлического провода соотносят шкив с шагом намотки.

Намоточный станок на Arduino

Порой в радиолюбительской практике возникает необходимость намотки большого количества витков провода для создания трансформаторов, дросселей, катушек и им подобных моточных изделий. Если речь идет о сотне витков особых проблем нет, мотается при помощи простейших механических приспособлений. Но когда нужно намотать несколько тысяч витков, да еще и виток к витку, то тут задумываешься об автоматизации этого весьма утомительного процесса.

Устройство, о котором пойдет речь, представляет из себя автоматический намоточный станок с укладчиком витков и индикацией процесса на символьном ЖК экране. Интеллектуальным ядром устройства является знакомый многим микроконтроллер ATmega328P, расположенный на китайском варианте платы Arduino UNO. Контроллер через CNC Shield (плата расширения ЧПУ) управляет силовой частью устройства, состоящей из двух драйверов шаговых двигателей (ШД) на базе микросхемы DRV8825 и двух ШД 17HS3401 и 17HS4401 (полный оборот 200 шагов). Человеко-машинный интерфейс состоит из модуля поворотного энкодера KY-040 и символьного дисплея 16×2 с контроллером HD44780 и модулем связи по шине I2C на расширителе портов PCF8574A. Питание схема получает от импульсного БП 220AC-12DC 60W.

Микроконтроллер задействует драйвера «Z» и «A» при этом на CNC Shield-е для соединения драйвера «A» с пинами 12 и 13 ардуино необходимо установить перемычки D12-A.STP и D13-A.DIR. Режим работы DRV8825 выбираем с микрошагом 1/16 установив перемычки M2 на плате, это означает что на один шаг ШД (1,8°) необходимо подать 16 фронтов сигнала STP. Установку модулей DRV8825 необходимо произвести так как показано ниже.

После установки драйверов ШД необходимо обязательно выставить ограничение по току. При подключенном напряжении 12В к плате CNC Shield, но без электродвигателей, необходимо вращая подстроечный резистор выставить значения ограничений. Текущее значение контролируем мультиметром и вращая отверткой подстроечник, добиваемся значений напряжения для драйвера «Z» 0,68В и 0,52В для драйвера «A». Эти значения напрямую связаны с номинальным током ШД. Для 17HS4401 In = 1,7А, а для 17HS3401 In = 1,3А. Значение напряжения в щадящем для ШД режиме вычисляем по формуле Vref = 0,8*(In / 2).

Подключение I2C 1602 LCD выполняем к соответствующим выводам SCL, SDA, 5V, GND платы расширения. На модуле энкодера допаиваем подтягивающий резистор R1 10k если его там нет. Для устранения дребезга контактов необходимо собрать схему аппаратного подавления, ее можно оформить в виде модуля, дополняющего модуль KY-040 как показано ниже. Фильтры низких частот на R4-6 и C1-3 устраняют дребезг, а триггеры Шмитта МС 74НС14N восстанавливают фронт и спад сигнала.

Для подключения энкодера к ардуино соединяем пины X.STEP и CLK, Y.STEP и SW, X.DIR и DT а так же GND и +5V с соответствующими выводами платы.

Механическая часть намоточного станка это шесть стоек прикрученных к оргстеклу. Стоики напечатаны пластиком на 3D принтере, но при наличии должной пряморукости могут быть изготовлены другими способами и из других материалов. Основной вал (шпилька М6) приводится в движение ШД 4401 и на нем располагается каркас для намотки. Далее две стоики укладчика с валом диаметром 6мм и шпилькой М4 (шаг резьбы 0,7мм) на валу ШД 3401. Вращение двигателя приводит к линейному перемещению укладчика, при этом один шаг ШД дает перемещение L = шаг резьбы / шагов на оборот = 0,7/200 = 0,0035мм. Последние две стойки держат подающую катушку. Поджатием резиновой шайбы к подшипнику обеспечивается натяжение провода при намотке.

Программа для ATmega328P написана в среде разработки Arduino IDE на языке C++. Для успешной компиляции кода необходимо иметь установленную библиотеку LiquidCrystal_I2C.

Из основного меню можно попасть в подменю управления позицией шаговых двигателей POS CONTROL это необходимо для установки начальной позиции основного вала и укладчика. Подменю AUTOWINDING предназначено для ввода значений автоматической намотки. Работа с кнопкой энкодера, а также, с самим энкодером и драйверами ШД осуществляется через прерывания.

Здесь вам не тут — золотые фразы Черномырдина

Я бы не стал увязывать эти вопросы так перпендикулярно.

Болит душа о внуках и о стране.

Депутаты все высказались, чтобы я шёл — избирался точнее.

В этот вечер, сильнейшие футболисты страны, были далеки от футбольной мысли.

Нельзя думать и не надо даже думать о том, что настанет время, когда будет легче.

Это глупость вообще, но мне знакомая песня.

Я бы не стал увязывать эти вопросы так перпендикулярно.

Я не сторонник сегодня влезать с распростёртыми объятиями.

Это не тот орган, который готов к любви.

Ни то не сделали, ни эту не удовлетворили, ни ту…

Правительство — не тот орган, где, как говорят, можно одним только языком.

Я готов и буду объединяться. И со всеми. Нельзя, извините за выражение, всё время врастопырку.

Россия со временем должна стать еврочленом.

Надо всем лечь на это и получить то, что мы должны иметь.

У кого руки чешутся — чешите в другом месте ( по поводу отставки кабинета Черномырдина).

У меня к русскому языку вопросов нет…

Все говорят, что не довольны итогами приватизации, и я недоволен, и не говорю.

На любом языке я умею говорить со всеми, но этим инструментом я стараюсь не пользоваться.

Локомотив экономического роста — это как слон в известном месте…

Я сейчас скажу и по другим, там не только Зюганов, но и туда ездили Немцов, и не поймешь с чем.

Надо делать то, что нужно нашим людям, а не то, чем мы здесь занимаемся.

Страна у нас — хватит ей вприпрыжку заниматься прыганьем.

Не надо умалять свою роль и свою значимость. Это не значит, что нужно раздуваться здесь и, как говорят, тут махать, размахивать кое-чем…

Принципы, которые были принципиальны, были не принципиальны.

Цитата Стива Джобса: слова на прощание перед смертью

Стив Джобс умер от продолжительной болезни 5 октября, ему было 56 лет. Вот его прощальные слова, которые стали самой известной цитатой Стива Джобса:

«Я достиг вершины в бизнесе. Другим кажется, что моя жизнь стала символом успеха, но, помимо работы, в ней было мало радости. Само мое богатство – это просто факт, к которому я привык. Сейчас я лежу на больничной кровати и понимаю, что все почести и деньги, которые вызывали у меня гордость, утратили всю свою значимость перед неминуемой смертью.

Я смотрю в темноте на зеленый свет аппарата для искусственного дыхания, слышу его звуки, и мне кажется, что это приближение смерти. У меня достаточно денег, но только теперь мне стало ясно, что нужно идти к другим целям, не имеющим отношения к богатству

В жизни должно быть что-то более важное: рассказы о любви, искусство, мечты из детства. Человек становится марионеткой, все время пытаясь заработать – именно это произошло со мной

Бог подарил нам чувства, чтобы мы могли сказать о них близким. Я не могу забрать с собой нажитое богатство, единственное, что мне суждено унести – это воспоминания о любви. Они и есть настоящее богатство, которое должно быть у человека, сопровождать его, дарить силы продолжать двигаться. Любовь преодолевает огромные расстояния, для жизни не существует пределов. Идите к высотам, которых вы хотите достичь. Спешите туда, куда зовет сердце, – все в ваших руках.

Упущенные материальные вещи можно найти, заработать. И только потерянную жизнь не удастся найти еще раз

Неважно, сколько вам лет, чего вы добились, ведь для любого человека однажды все закончится. Главное наше сокровище – любовь к семье, близким, друзьям

Берегите себя, заботьтесь о других».

Программирование

Итак, что же даёт нам ядро помимо выбора настроек МК? Можно программировать МК всё теми же командами, что и раньше! Мигать светодиодами через digitalWrite, измерять напряжение через analogRead и прочее прочее. Давайте напишем классический Blink:

void setup() {
  pinMode(PB3, OUTPUT);
}

void loop() {
  digitalWrite(PB3, HIGH);
  delay(500);
  digitalWrite(PB3, LOW);
  delay(500);
}

PB3 – это номер пина, прямо как на распиновке. Всё! Осталось загрузить прошивку. Для этого нажимаем Скетч/Загрузить через программатор:   Я подключил светодиод через резистор на 220 Ом и он мигает два раза в секунду, всё как написано.   Что следует помнить при работе с тиньками: у них мало памяти, а все вот эти Ардуино-функции являются кошмаром индуса и занимают очень много места в памяти. Если тини85 ещё как-то переживёт такие издевательства и сможет уместить в себе вполне интересный проект из Ардуино-функций, то в тини13 уже сложно уместить что-то серьёзное. Напомню: всего 64 байта оперативной памяти и 1 кб флэша!

Важный момент по работе с ядрами для других МК, у которых больше 8 ног. Для сохранения удобства работы с IO функциями ядра (digital/analog/Read/Write) к пину можно обращаться как PIN_ + имя_ноги на распиновке, например подадим высокий сигнал на пин PC3: . Все остальные нюансы расписаны на странице ядер по ссылкам выше.

Я думаю вы поняли, что в целом работа с голыми МК не особо то и отличается от работы с обычной платой Arduino, и теперь можно переходить к сложным самоделкам на базе своей платы, в центре которой будет стоять микроконтроллер. Давайте поделюсь парой советов по минимальной обвязке.

“Загрузить через программатор”

Одноимённый пункт в меню “Скетч” в Arduino IDE загружает скетч через выбранный программатор, а также затирает загрузчик! Если в проекте было решено использовать загрузчик – не используйте загрузку через программатор после его прошивки!

Устройство и принцип действия.

Подающий узел.

Подающий узел предназначен для закрепления на нём бобины с проводом, различных величин, и обеспечения натяжения провода. В него входит механизм крепления бобин и механизм подтормаживания вала.

Рисунок 2.Подающий узел.

Подтормаживание.

Без подтормаживания подающей бобины, намотка провода на каркасах будет рыхлая и качественной намотки не получится. Войлочная лента «2», тормозит барабан «1». Поворот рычага «3», натягивает пружину «4» — регулировка силы торможения. Для разной толщины провода, настраивается своё притормаживание. Здесь используются готовые детали видеомагнитофона.

Рисунок 3.Подтормаживающий механизм.

Центровка бобины.

Малые габариты станка и расположение в непосредственной близости, наматываемой катушки и подающей бобины с проводом, потребовали ввести дополнительный механизм центровки подающей бобины.

Рисунок 4, 5.Центрирующий механизм. При намотке катушки, провод с бобины воздействует на шторку «5», выполненной виде “вилки” и шаговый двигатель «3», через редуктор с делением 6 и зубчатый ремень, по роликовым направляющим «4», автоматически сдвигает бобину в нужном направлении. Таким образом, провод всегда находится по центру см. рис 4, рис 5:

Рисунок 6.Датчики, вид сзади.Состав и устройство датчиков.

19. Оптические датчики механизма центровки бобины. 5. Шторка перекрывающая датчики механизма центровки бобины. 20. Шторки перекрывающие датчики переключения направления позиционера. 21. Оптические датчики переключения направления позиционера.

Позиционер.

Шторками «20» рис. 6 — выставляется граница намотки. Шаговый двигатель, перемещает механизм укладчика, пока шторка не перекроет один из датчиков «21» рис. 6, после чего меняется направление укладки. В любой момент можно изменить направление укладки кнопками «1» рис. 7.

Рисунок 7.Укладчик. Скорость вращения шагового двигателя «9» рис. 7, синхронизирована с помощью датчика «10», «11» рис 8, с вращением наматываемой катушки и зависит от диаметра провода установленного в меню. Диаметр провода, может быть выставлен 0.02 — 0.4мм. С помощью ручки «8» рис. 7, можно передвинуть весь позиционер в сторону, не изменяя границы намотки. Таким образом, можно намотать другую секцию в многосекционных каркасах.

Рисунок 8.Оптодатчик.Состав позиционера и оптодатчика (рис. 7-8).

1. Кнопки ручного переключения направления укладки. 2. Светодиоды направления укладки. 3. Шторки перекрывающие датчики переключения направления позиционера. 4. Линейный подшипник. 5. Капролоновая гайка. 6. Ведущий винт. Диаметр 8мм, шаг резьбы 1,25мм. 7. Шариковые мебельные направляющие. 8. Ручка перемещения позиционера на другую секцию при намотке секционных обмоток. 9. Шаговый двигатель. 10. Оптический датчик синхронизации. 11. Диск, перекрывающий датчик синхронизации. 18 прорезей.

Приёмный узел.

Рисунок 9.Приёмный узел.Рисунок 10, 11.Приёмный узел. 1. Счётчик витков. 2. Коллекторный высокоскоростной двигатель. 3. Шестерня редуктора. 4. Кнопка «сброс счётчика». 5. Регулировка скорости. 6. Включатель «Старт намотки». 7. Крепёж наматываемой катушки.

Вращение наматываемой катушки, производит коллекторный высокооборотный двигатель через редуктор. Редуктор состоит из трёх шестерён с общим делением 18. Это обеспечивает необходимый вращающий момент на малых оборотах. Регулировка скорости двигателя, производится изменением питающего напряжения.

Рисунок 12, 13.Крепление каркаса имеющего отверстие. Конструкция приёмного узла позволяет закреплять, как каркасы имеющие центральное отверстие, так и каркасы, таких отверстий не имеющие, что хорошо видно на рисунках.

Рисунок 14, 15.Крепление каркаса не имеющего отверстие.

Устройство укладчика проволоки

Укладка и намотка проволоки осуществляются за счет трех пластин, скрепленных между собой винтами диаметром 20 мм. В верхней части делают небольшое отверстие 6 мм, куда вставляют винт регулировки натяжения:

  • В верхнюю и нижнюю часть внутренней пластины монтируют фторопластовую и стальную втулки диаметром и длиной по 20 мм.
  • Между наружными элементами вклеивают кожаный желобок толщиной до 2-х мм, необходимый для выравнивания и натягивания проволоки катушки.
  • Вверху укладчика монтируют специальный стержень с резьбой или мини-струбцину, которая скрепляет внешние пластины и регулирует натяжение. Расстояние крепления зависит от диаметра провода.
  • Для удобства работы конструкцию дополнительно оснащают откидным кронштейном для катушки.

Принцип работы на станке

Трудиться на сконструированном станке несложно. Технологический процесс требует выполнения определенных действий:

  1. Верхний вал подготавливают к работе: снимают шкив, задают нужную длину каркаса катушки, устанавливают правый и левый диски.
  2. В отверстие верхнего вала вставляют крепежное изделие, центрируют и зажимают каркас специальной гайкой.
  3. На подающий вал монтируют нужный шкив для первичной обмотки.
  4. Напротив каркаса катушки устанавливается укладчик.
  5. Пассик одевают на шкивы кольцом или восьмеркой, в зависимости от вида укладки.
  6. Металлический провод заводят под дополнительный вал, укладывают в желобок, закрепляют.
  7. Натяжение проволоки регулируют при помощи зажимов, расположенных вверху укладчика.
  8. Провод должен плотно наматываться на основу катушки.
  9. На калькуляторе фиксируют числовое значение «1+1».
  10. Каждый оборот вала прибавляет заданный счет.
  11. Если витки нужно отмотать назад, на вычислительном устройстве нажимают «–1».
  12. Когда провод достигнет противоположной части каркаса, с помощью цангового зажима меняют положение пассика.

Под разную толщину металлического провода соотносят шкив с шагом намотки.

Принцип работы на станке

Трудиться на сконструированном станке несложно. Технологический процесс требует выполнения определенных действий:

  1. Верхний вал подготавливают к работе: снимают шкив, задают нужную длину каркаса катушки, устанавливают правый и левый диски.
  2. В отверстие верхнего вала вставляют крепежное изделие, центрируют и зажимают каркас специальной гайкой.
  3. На подающий вал монтируют нужный шкив для первичной обмотки.
  4. Напротив каркаса катушки устанавливается укладчик.
  5. Пассик одевают на шкивы кольцом или восьмеркой, в зависимости от вида укладки.
  6. Металлический провод заводят под дополнительный вал, укладывают в желобок, закрепляют.
  7. Натяжение проволоки регулируют при помощи зажимов, расположенных вверху укладчика.
  8. Провод должен плотно наматываться на основу катушки.
  9. На калькуляторе фиксируют числовое значение «1+1».
  10. Каждый оборот вала прибавляет заданный счет.
  11. Если витки нужно отмотать назад, на вычислительном устройстве нажимают «–1».
  12. Когда провод достигнет противоположной части каркаса, с помощью цангового зажима меняют положение пассика.

Под разную толщину металлического провода соотносят шкив с шагом намотки.

Необходимые материалы и комплектация для изготовления

Чтобы собственноручно сделать станок для намотки проволоки на круглый каркас, понадобится несколько деталей.

Станина из листового материала, скрепленного сварочным методом. Оптимальная толщина основания – 15 мм, боковых частей – 6 мм. Устойчивость конструкции обеспечивается ее тяжестью:

Схема станины станка

  • Боковые части прикладывают друг к другу, одновременно просверливают в них отверстия.
  • Подготовленные элементы приваривают к основанию.
  • В высоко расположенные пробоины монтируют втулки, в нижние – подшипники, которые можно взять из использованного дисковода.
  • Крепежные детали с внешней стороны боковин надежно фиксируют крышками.

Важные составляющие конструкции станка – валы:

  • Верхний вал диаметром 12 мм держит каркас катушки. Его роль может исполнять аналогичная конструктивная деталь вышедшего из строя матричного принтера.
  • На средний вал такого же диаметра опирается устройство подачи длинномерного материала. Перед вводом в эксплуатацию его желательно отполировать.
  • Нижний вал является подающим элементом. Его размеры зависят от шага резьбы.

Самодельный намоточный станок — схема устройства

Втулка укладчика диаметром и длиной по 20 мм. Ее внутренняя резьба совпадает с резьбой нижнего вала.

Шкивы – трехступенчатые, выточенные из стали, общей толщиной не более 20 мм. В противном случае придется увеличить хвостовики верхнего и нижнего валов. Каждый блок содержит три канавки с разным диаметром, в зависимости от сечения проволоки. Их ширина определяется пассиками. Такая комбинация обеспечивает большое разнообразие шагов намотки провода.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: