Блок питания

Принципиальная схема

Схема частично заимствована из Л.1, вернее, сама идея, сделать нестабилизированный импульсный источник питания по схеме блокинг-генератора на основе трансформатора блока питания телевизора.

Рис. 1. Схема простого импульсного источника питания для шуруповерта, выполнена на транзисторе КТ872.

Напряжение от сети поступает на мост на диодах VD1-VD4. На конденсаторе С1 выделяется постоянное напряжение около 300V. Этим напряжением питается импульсный генератор на транзисторе VТ1 с трансформатором Т1 на выходе.

Схема на VТ1 — типичный блокинг-генератор. В коллекторной цепи транзистора включена первичная обмотка трансформатора Т1 (1-19). На неё поступает напряжение 300V с выхода выпрямителя на диодах VD1-VD4.

Для запуска блокинг-генератора и обеспечения его стабильной работы на базу транзистора VТ1 поступает напряжение смещения от цепи R1-R2-R3-VD6. Положительная обратная связь, необходимая для работы блокинг-генератора обеспечивается одной из вторичных катушек импульсного трансформатора Т1 (7-11).

Переменное напряжение с неё через конденсатор С4 поступает в базовую цепь транзистора. Диоды VD6 и VD9 служат для формирования импульсов на базе транзистора.

Диод VD5 совместно с цепью C3-R6 ограничивает выбросы положительного напряжения на коллекторе транзистора величиной напряжения питания. Диод VD8 совместно с цепью R5-R4-C2 ограничивает выбросы отрицательного напряжения на коллекторе транзистора VT1. Вторичное напряжение 14V (на холостом ходу 15V, под полной нагрузкой 11V) берется с обмотки 14-18.

Выпрямляется диодом VD7 и сглаживается конденсатором С5. Режим работы выставляется подстроечным резистором R3. Его регулировкой можно не только достигнуть уверенной работы блока питания, но в некоторых пределах отрегулировать выходное напряжение.

Утилиты и справочники.

cables.zip — Разводка кабелей — Справочник в формате .chm. Автор данного файла — Кучерявенко Павел Андреевич. Большинство исходных документов были взяты с сайта pinouts.ru — краткие описания и распиновки более 1000 коннекторов, кабелей, адаптеров. Описания шин, слотов, интерфейсов. Не только компьютерная техника, но и сотовые телефоны, GPS-приемники, аудио, фото и видео аппаратура, игровые приставки и др. техника.

Конденсатор 1.0 — Программа предназначена для определения ёмкости конденсатора по цветовой маркировке (12 типов конденсаторов).

Transistors.rar — База данных по транзисторам в формате Access.

Зарядное устройство из блока Delta dps-400sb-b

Для использования компьютерного блока питания в качестве зарядного устройства автомобильного аккумулятора достаточно поднять выходное напряжение по шине +12 В до 14,2−14,4 В. Зарядка будет производиться постоянным напряжением, меняться будет лишь сила тока по мере заряда аккумулятора, абсолютно так же как и в борт сети работающего автомобиля.

Выходное напряжение в блоке Delta dps-400sb-b можно корректировать с помощью резистора VR501, который находится на отдельной плате модуля управления.

Без дополнительных изменений, напряжение блока по шине +12 В регулируется лишь в небольших пределах 11,34 — 13,5 В. При попытке поднять напряжение выше 13,5 В — срабатывает защита от превышения напряжения и блок останавливается.

Для отключения супервизора (мониторинга выходных напряжений и тока) необходимо провести все лишь парочку простых манипуляций:

1. Перекусываем 15-ю ножку, идущую от основной платы к модулю управления.

2. Ставим перемычку на основной плате блока от 15-го вывода (который шел на модуль) к первому (или второму) выводу.

Таким образом, 15-й вывод мы отключили от модуля управления и посадили на минус. После таких манипуляций блок будет включаться сразу при включении в сеть. Можно проверить диапазон регулировки напряжения, сейчас он составляет 11,33 — 13,84 В.

Для небольшого сдвига диапазона регулировки напряжения необходимо уменьшить сопротивления резистора R503 (имеет маркировку 2321 — сопротивление 2,23 кОм), меняем его на резистор сопротивлением 2 кОм. Этот резистор находится на модуле управления, надо учесть, что существуют разные ревизии модулей, которые немного отличаются расположением элементов. Нужный резистор выделен желтой рамкой.

Что бы далеко не бегать и не искать в закромах новый cmd резистор на 2 кОм, можно снять его с обвязки супервизора, который уже отключен. (R613; маркировка 202). Но тут кроется нюанс, в некоторых версиях платы модуля, этот резистор имеет сопротивление всего 1 кОм. В общем, если резистор подходит — ставим, нет — покупаем новый на 2 кОм и заменяем R503.

После уменьшения резистора R503 до 2 кОм, мы имеем на выходе уже немного другие значения напряжения, доступный диапазон регулировки 12,06 — 15,30 В.

Выставляем выходное напряжение на уровне 14,4 В

Зарядное готово! Важно помнить, что блок после переделок боится короткого замыкания и переполюсовки!

Для дальнейшего использования такой зарядки лучше всего снабдить ее защитой от переполюсовки и короткого замыкания на полевике.

Как включить блок питания (БП) от компьютера без компьютера

Итак, у нас в руках блок питания ATX компьютера. Прежде всего попробуем его включить. Но для этого нужно знать некоторые тонкости работы этого устройства. Предположим, перед нами компьютер. Включаем его в сеть, но внешне ничего не происходит. Это, казалось бы, понятно – машина отключена, а чтобы ее включить, нужно нажать кнопку питания на лицевой панели системного блока.

На самом деле это не совсем так. Как только мы вставили вилку в розетку, в блоке питания заработала небольшая часть схемы, вырабатывающая дежурное напряжение +5 В. Называется эта часть модулем дежурного питания. Напряжение поступает на материнскую плату и питает ее отдельные узлы, один из которых предназначен для включения компьютера.


Для подачи напряжения на этот БП служит механический выключатель

Нажимая кнопку на лицевой панели системного блока, мы тем самым подаем команду материнской плате (точнее, ее узлу включения) запустить блок питания. Узел подает на БП сигнал Power on, и БП, а значит, и сам компьютер включаются.

Поскольку компьютера у нас нет, этот сигнал нам придется подать самостоятельно. Сделать это несложно. Для этого достаточно найти разъем на блоке питания, который питает материнскую плату, и установить перемычку между зеленым и любым из черных проводов. Итак, устанавливаем перемычку, подключаем блок питания к сети, и он сразу же запускается – это слышно даже по шуму вентилятора.

Сфера применения импульсного блока питания

Импульсные преобразователи напряжения применяются в большинстве случаев вместо традиционных трансформаторных с полупроводниковыми стабилизаторами. При одинаковой мощности инверторы отличаются меньшими габаритными размерами и массой, высокой надежностью, а главное — более высоким КПД и возможностью работать в широком диапазоне входного напряжения. А при сравнимых габаритах максимальная мощность инвертора в несколько раз выше.

В такой области, как преобразование постоянного напряжения, импульсные источники практически не имеют альтернативной замены и способны работать не только по понижению напряжения, но и вырабатывать повышенное, организовывать смену полярности. Высокая частота преобразования существенно облегчает фильтрацию и стабилизацию выходных параметров.

Малогабаритные инверторы на специализированных интегральных микросхемах используются в качестве зарядных устройств всевозможных гаджетов, а их надежность такова, что срок службы зарядного блока может превосходить время работоспособности мобильного устройства в несколько раз.

Драйверы питания на 12 Вольт для включения светодиодных источников освещения также построены по импульсной схеме.

Как сделать импульсный блок питания своими руками

Смотрите это видео на YouTube

Инверторы, особенно мощные, имеют сложную схемотехнику и доступны для повторения только опытным радиолюбителям. Для самостоятельной сборки сетевых источников питания можно рекомендовать несложные маломощные схемы с использованием специализированных микросхем ШИМ-контроллеров. Такие ИМС имеют малое количество элементов обвязки и имеют отработанные типовые схемы включения, которые практически не требуют регулировки и настройки.

При работе с самодельными конструкциями или ремонте промышленных устройств необходимо помнить, что часть схемы всегда будет находиться под потенциалом сети, поэтому требуется соблюдать меры безопасности.

Преобразователи напряжения с 12 на 220 вольт

Как подобрать блок питания для светодиодной ленты по техническим характеристикам, расчёт мощности

Что такое диодный мост, принцип его работы и схема подключения

Что такое ШИМ — широтно-импульсная модуляция

Что такое оптрон, как работает, основные характеристики и где применяется

Что такое частотный преобразователь, основные виды и какой принцип работы

Где находится БП в системном блоке и как его разобрать

Чтобы получить доступ к БП компьютера необходимо сначала снять с системного блока левую боковую стенку, открутив два винта на задней стенке со стороны расположения разъемов.

Для извлечения блока питания из корпуса системного блока необходимо открутить четыре винта, помеченных на фото. Для проведения внешнего осмотра БП достаточно отсоединить от блоков компьютера только те провода, которые мешают для установки БП на край корпуса системного блока.

Расположив блок питания на углу системного блока, нужно открутить четыре винта, находящиеся сверху, на фото розового цвета. Часто один или два винта спрятаны под наклейкой, и чтобы найти винт, ее нужно отклеить или проткнуть жалом отвертки. По бокам тоже бывают наклейки, мешающие снять крышку, их нужно прорезать по линии сопряжения деталей корпуса БП.

После того, как крышка с БП снята обязательно удаляется пылесосом вся пыль. Она является одной из главных причин отказа радиодеталей, так как, покрывая их толстым слоем, снижает теплоотдачу от деталей, они перегреваются и, работая в тяжелых условиях, быстрее выходят из строя.

Для надежной работы компьютера удалять пыль из системного блока и БП, а также проверять работу кулеров необходимо не реже одного раза в год.

Описание элементов схемы

Почти все элементы можно найти в блоке питания ATX. Диоды D26-D29 с напряжением пробоя 400 В, но лучше взять немного выше, по меньшей мере 600 В. Готовый выпрямитель можно найти в блоке питания ATX. Диодные мосты для питания контроллера также целесообразно применять не менее 600 В. Но они могут быть дешевыми и популярными 1N4007 или похожими.

Стабилитрон, ограничивающий напряжение питания контроллера, должен выдерживать мощность 0,7 Вт, поэтому его номинальная мощность должна составлять 1 Вт или более.

Конденсаторы C18 и C19 могут использоваться с другой емкостью, но не менее 220 мкФ. Емкость более 470 мкФ также не должна использоваться из-за излишне увеличенного тока при включении инвертора в сеть и больших размеров — они могут просто не влезть на плату. Конденсаторы C18 и C19 также находятся в каждом блоке питания ATX.

Силовые транзисторы Q8 и Q9 — очень популярные IRF840, доступные в большинстве электронных магазинов по 30 рублей. В принципе, вы можете использовать другие МОП-транзисторы на 500 В, но это повлечет изменение резисторов R12 и R13. Установленные на 75 Ом обеспечивают время открытия / закрытия затвора около 1 мкс. В качестве альтернативы, их можно заменить либо на 68 — 82 Ома.

Буферы перед входами MOSFET и управляющим трансформатором I, на транзисторах BD135 / 136. Здесь могут использоваться любые другие транзисторы с напряжением пробоя выше 40 В, такие как BC639 / BC640 или 2SC945 / 2SA1015. Последний может быть выдран из блоков питания ATX, мониторов и т. д. Очень важным элементом инвертора является конденсатор C10. Это должен быть полипропиленовый конденсатор, адаптированный к большим импульсным токам. Такой конденсатор находится в блоках питания ATX. К сожалению, иногда он является причиной отказа источника питания, поэтому нужно тщательно его проверить прежде чем паять в схему.

Диоды D22-D25, которые выпрямляют напряжение +/- 35 В, использованы UF5408, подключенные параллельно, но лучшим решением было бы использовать одиночные диоды BY500 / 600, которые имеют более низкое напряжение падения и более высокий номинальный ток. Если возможно, эти диоды должны быть спаяны на длинных проводах — это улучшит их охлаждение.

Дроссели L3 и L4 намотаны на тороидальные порошковые сердечники из источников питания ATX — они характеризуются преобладающим желтым цветом и белой окраской. Достаточны сердечники диаметром 23 мм, 15-20 витков на каждом из них. Однако испытания показали, что они не нужны — инвертор работает и без них, достигает своей мощности, но транзисторы, диоды и конденсатор C10 становятся более горячие из-за импульсных токов. Дроссели L3 и L4 повышают эффективность инвертора и снижают частоту отказов.

Ограничители напряжения R22 и R23 могут состоять из серии силовых резисторов, соединенных последовательно или параллельно, чтобы получить один резистор с более высокой мощностью и соответствующее сопротивление.

Преобразователь импульсного напряжения: объяснение простыми словами с поясняющими картинками

Правило №4: выпрямленный сигнал подвергается широтно-импульсной модуляции на силовом ключе под управлением ШИМ контроллера.

Силовой ключ выполняется первичной обмоткой высокочастотного трансформатора. Для эффективной трансформации в/ч импульсов до 100 килогерц конструкцию магнитопровода делают из альсифера или ферритов.

На обмотку трансформатора от цепей управления через в/ч транзистор поступают импульсы сигналов в несколько десятков килогерц.

Прямоугольные импульсы тока подаются по времени, чередуются с паузами, обозначаются единицей (1) и нулем (0).

Продолжительность протекания импульса или его ширина в каждый момент низкочастотного синусоидального напряжения соответствует его амплитуде: чем она больше, тем шире ШИМ. И наоборот.

ШИМ контроллер отслеживает величину подключенной нагрузки на выходе импульсного блока питания. По ее значению он вырабатывает импульсы, кратковременно открывающие силовой транзистор.

Если подключенная к ИБП мощность начинает возрастать, то схема управления увеличивает длительность импульсов управления, а когда она снижается, то — уменьшает.

За счет работы этой конструкции производится стабилизация напряжения на выходе блока в строго определенном диапазоне.

Самодельный регулированный блок на одном транзисторе

Какой можно сделать самому самый простой регулированный блок питания? Это получится сделать на микросхеме lm317. Она уже сама с собой представляет почти блок питания. На ней можно изготовить как регулируемый по напряжению блок питания, так и потоку. В этом видео уроке показано устройство с регулировкой напряжения. Мастер нашёл несложную схему. Входное напряжение максимальное 40 вольт. Выходное от 1,2 до 37 вольта. Максимальный выходной ток 1,5 ампер.

Без теплоотвода, без радиатора максимальная мощность может быть всего 1 ватт. А с радиатором 10 ватт. Список радиодеталей.
Приступаем к сборке

Подключим на выход устройства электронную нагрузку. Посмотрим, насколько хорошо держит ток. Выставляем на минимум. 7,7 вольта, 30 миллиампер.

Всё регулируется. Выставим 3 вольта и добавим ток. На блоке питания выставим ограничения только побольше. Переводим тумблер в верхнее положение. Сейчас 0,5 ампера. Микросхема начал разогреваться. Без теплоотвода делать нечего. Нашёл какую-то пластину, ненадолго, но хватит. Попробуем еще раз. Есть просадка. Но блок работает. Регулировка напряжения идёт. Можем вставить этой схеме зачёт.

Видео Radioblogful. Видеоблог паяльщика.

Структурная схема БП компьютера АТХ

Блок питания компьютера является довольно сложным электронным устройством и для его ремонта требуются глубокие знания по радиотехнике и наличие дорогостоящих приборов, но, тем не менее, 80% отказов можно устранить самостоятельно, владея навыками пайки, работы с отверткой и зная структурную схему источника питания.

Практически все БП компьютеров изготовлены по ниже приведенной структурной схеме. Электронные компоненты на схеме я привел только те, которые чаще всего выходят из строя, и доступны для самостоятельной замены непрофессионалам. При ремонте блока питания АТХ обязательно понадобится цветовая маркировка выходящих из него проводов.

Питающее напряжение с помощью подается через разъемное соединение на плату блока питания. Первым элементом защиты является предохранитель Пр1 обычно стоит на 5 А. Но в зависимости от мощности источника может быть и другого номинала. Конденсаторы С1-С4 и дроссель L1 образуют фильтр, который служит для подавления синфазных и дифференциальных помех, которые возникают в результате работы самого блока питания и могут приходить из сети.

Сетевые фильтры, собранные по такой схеме, устанавливают в обязательном порядке во всех изделиях, в которых блок питания выполнен без силового трансформатора, в телевизорах, видеомагнитофонах, принтерах, сканерах и др. Максимальная эффективность работы фильтра возможна только при подключении к сети с заземляющим проводом. К сожалению, в дешевых китайских источниках питания компьютеров элементы фильтра зачастую отсутствуют.

Вот тому пример, конденсаторы не установлены, а вместо дросселя запаяны перемычки. Если Вы будете ремонтировать блок питания и обнаружите отсутствие элементов фильтра, то желательно их установить.

Вот фотография качественного БП компьютера, как видно, на плате установлены фильтрующие конденсаторы и помехоподавляющий дроссель.

Для защиты схемы БП от скачков питающего напряжения в дорогих моделях устанавливаются варисторы (Z1-Z3), на фото с правой стороны синего цвета. Принцип работы их простой. При нормальном напряжении в сети, сопротивление варистора очень большое и не влияет на работу схемы. В случае повышении напряжения в сети выше допустимого уровня, сопротивление варистора резко уменьшается, что ведет к перегоранию предохранителя, а не к выходу из строя дорогостоящей электроники.

Чтобы отремонтировать отказавший блок по причине перенапряжения, достаточно будет просто заменить варистор и предохранитель. Если варистора под руками нет, то можно обойтись только заменой предохранителя, компьютер будет работать нормально. Но при первой возможности, чтобы не рисковать, нужно в плату установить варистор.

В некоторых моделях блоков питания предусмотрена возможность переключения для работы при напряжении питающей сети 115 В, в этом случае контакты переключателя SW1 должны быть замкнуты.

Для плавного заряда электролитических конденсаторов С5-С6, включенных сразу после выпрямительного моста VD1-VD4, иногда устанавливают термистор RT с отрицательным ТКС. В холодном состоянии сопротивление термистора составляет единицы Ом, при прохождении через него тока, термистор разогревается, и сопротивление его уменьшается в 20-50 раз.

Для возможности включения компьютера дистанционно, в блоке питания имеется самостоятельный, дополнительный маломощный источник питания, который всегда включен, даже если компьютер выключен, но электрическая вилка не вынута из розетки. Он формирует напряжение +5 B_SB и построен по схеме трансформаторного автоколебательного блокинг-генератора на одном транзисторе, запитанного от выпрямленного напряжения диодами VD1-VD4. Это один из самых ненадежных узлов блока питания и ремонтировать его сложно.

Необходимые для работы материнской платы и других устройств системного блока напряжения при выходе из блока выработки напряжений фильтруются от помех дросселями и электролитическими конденсаторами и затем посредством подаются к источникам потребления. Кулер, который охлаждает сам блок питания, запитывается, в старых моделях БП от напряжения минус 12 В, в современных от напряжения +12 В.

Блок питания мощностью 100 Ватт.

Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2. Кроме этого, я увеличил ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.

Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.

Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.

Мне не повезло, в моём электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, видимо, рассчитана на крепление к радиатору при помощи фасонных пружин. Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже. Я их заменил транзисторами 13007 поз.2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами. Кроме того, 13007 имеют в несколько раз бо’льшие предельно-допустимые токи.

Если пожелаете, можете смело прикручивать оба транзистора на один радиатор. Я проверил, это работает.

Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.

Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.

Внимание! Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!

На чертеже изображено соединение транзистора с радиатором охлаждения в разрезе.

  1. Винт М2,5.
  2. Шайба М2,5.
  3. Шайба изоляционная М2,5 – стеклотекстолит, текстолит, гетинакс.
  4. Корпус транзистора.
  5. Прокладка – отрезок трубки (кембрика).
  6. Прокладка – слюда, керамика, фторопласт и т.д.
  7. Радиатор охлаждения.

А это действующий стоваттный импульсный блок питания.

Резисторы эквивалента нагрузки помещены в воду, так как их мощность недостаточна.

Мощность, выделяемая на нагрузке – 100 Ватт.

Частота автоколебаний при максимальной нагрузке – 90 кГц.

Частота автоколебаний без нагрузки – 28,5 кГц.

Температура транзисторов – 75ºC.

Площадь радиаторов каждого транзистора – 27см².

Температура дросселя TV1 – 45ºC.

TV2 – 2000НМ (Ø28 х Ø16 х 9мм)

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Комментарии: 1
  1. Аватар
    Аноним

    Хорошо! :idea:

Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: