Дифференциальный усилитель для измерения тока

Выходное сопротивление

Яркий пример выходного сопротивления — это закон Ома для полной цепи, в котором есть так называемое «внутреннее сопротивление». Кому лень читать про этот закон, вкратце рассмотрим его здесь.

Что мы имели? У нас был автомобильный аккумулятор, с помощью которого мы поджигали галогенную лампочку. Перед тем, как цеплять лампочку, мы замеряли напряжение на клеммах аккумулятора:

И как только  подсоединяли лампочку, у нас напряжение на аккумуляторе становилось меньше.

Разница напряжения,  то есть 0,3 Вольта (12,09-11,79) у нас падало на так называемом внутреннем сопротивлении r ;-) Оно же и есть ВЫХОДНОЕ СОПРОТИВЛЕНИЕ. Его также называют еще сопротивлением источника или эквивалентным сопротивлением.

У всех аккумуляторов есть это внутреннее сопротивление r, и «цепляется» оно последовательно с источником ЭДС (Е).

Но только ли аккумуляторы и различные батарейки обладают выходным сопротивлением? Не только. Выходным сопротивлением обладают все источники питания. Это может быть блок питания, генератор частоты, либо вообще какой-нибудь усилитель.

В теореме Тевенина (короче, умный мужик такой был)  говорилось, что любую цепь, которая имеет две клеммы и содержит в себе туеву кучу различных источников ЭДС и резисторов разного номинала можно привести тупо к источнику ЭДС с каким-то значением напряжения (Eэквивалентное) и с каким-то внутренним сопротивлением (Rэквивалентное).

Eэкв  — эквивалентный источник ЭДС

Rэкв  — эквивалентное сопротивление

То есть получается, если какой-либо источник напряжения питает нагрузку, значит, в источнике напряжения есть ЭДС и эквивалентное сопротивление, оно же выходное сопротивление.

В режиме холостого хода (то есть, когда к выходным клеммам не подцеплена нагрузка) с помощью мультиметра мы можем замерить ЭДС (E). С замером ЭДС вроде бы понятно, но вот как замерить Rвых ?

В принципе, можно устроить короткое замыкание. То есть замкнуть выходные клеммы толстым медным проводом, по которому у нас будет течь ток короткого замыкания Iкз.

В результате у нас получается замкнутая цепь с одним резистором. Из закона Ома получаем, что

Но есть небольшая загвоздка. Теоретически  — формула верна. Но на практике я бы не рекомендовал использовать этот способ. В этом случае сила тока достигает бешеного значения, да вообще, вся схема ведет себя неадекватно.

Чем опасен АС ток для человека

Как уже упоминалось, особенность АС напряжения заключается в равномерном протекании частиц от одного полюса к другому. В сравнении с DC током он считается менее опасным так как в большинстве случаев оказывает на человеческий организм спазматическое воздействие. Спазм проходит сразу после снятия напряжения, что снижает вероятность критических результатов.

Однако отсутствие опасности для организма наблюдается только в случае малого значения постоянного тока. Чем больше его значение, тем возрастает вероятность критических последствий. Например, при контакте с напряжением, превышающем 500 В, ток может оказаться опаснее чем переменный. Однако в быту такие значения отсутствуют и используются в трансформаторах или подстанциях, доступ куда открыт только специально обученным людям.

Что опаснее для человека

Для человеческого организма большую опасность представляет переменный АС. Под его воздействием происходит резкая фибрилляция сердечных желудочков. Но это не означает, что постоянный ток может считаться безопасным. Люди, попавшие под такое напряжение, получают тяжёлые травмы в результате отброса и механического удара.

Мост – база модуля

При установленных требованиях современности к показателям на сигнальном выходе прибора, размещающихся в границах 0…20 мА, отклонения данных сопоставимы со сведениями питательных блоков контролирующего аппарата. Частотные колебания движения измеряется в частях Герца.

Эксплуатация простых оптических приборов затруднено, благодаря тому что между изобилием устройства встраиваются разделяющие конденсаторные компоненты, которые не пускают регулярный поступающий толчок. Помимо этого, теплообменники могут приносить неточности в выходной толчок.

Для решения аналогичной проблемы допускается выбирать усилительные приборы, сделанные на принципе динамических схем. Действие таких чертежей построены на мосту, имеющей идентичные рычаги.

Схема моста с идентичными рычагами плечами.

Осуществление его вычисляется следующей формулой:

Как итог, при соблюдении необходимых требований, в период смены интенсивности в электрической сети, токовая сила будет по прежнему нейтральной.

Система функций оборудования

Оптимальное воздействие устройства можно получить при поддержке однозначного равенства разработанной диаграммы. Тогда ток спокойного состояния в 2-х приборах, а также колебания будут иметь равномерные параметры, как и сосредоточенность на существующих транзисторных и коллекторных устройствах VT1 и VT2. Следовательно, во время влияния наружных факторов на транзисторные элементы, устойчивость мостового элемента сохраняется, а сосредоточение на выводе сохраняется в первоначальном положении.

При влиянии напряженности на входе на 1 или 2 вх. диаграммы, возникает колебание внутреннего противодействия 1 или 2-х транзисторных устройств и начинается разбалансированность мостового элемента, колебания сосредоточенности на выводе.

В существующих диаграммах довольно сложно создать точное схематичное соответствие, следовательно, чтобы отрегулировать токи в состоянии спокойствия транзисторных устройств применяют микрорезисторы R4’ и R4’’, часто соединенные в единый подстрочный резисторный элемент, имеющий противодействия, которые вычисляются по формуле:

Каскады дифференциальных усилителей способны функционировать с равноценными, с неравноценными выходными и входными концами.

Неравноценным входным элементом считается сигнальный толчок, приходящий на 1 из Вх.1 или Вх.2 и единым выходом.

В случае, когда с выходным концом случается подобное действие – неравноценный выходной элемент – 1 из выходных концов (Вых.1 или Вых.2) и единый выход, одинаковый выходной конец между Вых.1 и Вых.2. выходными концами.

Неодинаковые дифференциальные каскады, как правило, применяются для того, чтобы перейти от неравноценных вариантов к равноценным моделям и обратно.

Классическая схема дифференциального усилителя на ОУ

Коэффициент усиления такой схемы равен К=R2/R1. Для обеспечения высокого значения КОСС необходимо обеспечить точное согласование резисторов. Для этого желательно применение резисторов точностью 0.01%.

Резисторы такой точности достаточно дороги, и не всегда их можно найти в продаже. Поэтому при первой возможности лучше закупить 100 кОм резисторы указанной точности для применения в подобных схемах.

Если все резисторы будут одного номинала, что вполне допустимо, то коэффициент усиления дифференциального усилителя будет равен 1. Дальнейшее усиление при необходимости можно произвести дополнительными каскадами, зато наличие синфазной помехи было уже устранено.

Режимы работы тестера

Работа мультиметра и его режимов регулируется с помощью переключателя. Его верхнее вертикальное положение говорит о том, что устройство выключено. Поворот в любую другую сторону говорит о смене режима и обозначается следующим образом:

  • DCV либо V с прямой линией отображает показатель постоянного напряжения;

    ACV либо V с волной указывает, что измеряется переменное напряжение;

  • Ω — символы такого рода обозначают сопротивление;
  • А с прямой линией либо сочетание букв DCA – это показатель постоянного тока (амперы);
  • А с волной указывает на то, что мультиметр измеряет силу переменного тока, есть не у всех приборов;
  • знак, обозначающий диод, говорит о том, что можно прозвонить диоды;
  • hFE показывает, что можно измерить характеристики транзисторов.

Все результаты отображаются на экране тестера за считанные секунды, с точностью до сотых сообщая о величине выбранного показателя.

Обозначение переменного тока на любом мультиметре может быть изображено в виде символов АС (alternating current). Соответственно, АСА – сила переменного тока, ACV – напряжение переменного тока. Это ток, который изменяет направление движения огромное, но постоянное количество раз за 1 секунду. В домашних сетях частота изменений составляет 50 Гц.

Предисловие

Ладно, начнем издалека… Как вы знаете, все электронные устройства состоят из блоков. Их еще часто называют каскады, модули, узлы и тд. В нашей статье будем использовать понятие «блок». Например, источник питания, собранный по этой схеме:

состоит из двух блоков. Я их пометил в красном и зеленом прямоугольниках.

В красном блоке мы получаем постоянное напряжение, а в зеленом блоке мы его стабилизируем. То есть блочная схема будет такой:

Блочная схема — это условное деление. В этом примере мы могли бы даже взять трансформатор, как отдельный блок, который понижает переменное напряжение одного номинала к другому. Как нам удобнее, так и делим на блоки нашу электронную безделушку. Метод «от простого к сложному» полностью работает в нашем мире. На низшем уровне находятся радиоэлементы, на высшем — готовое устройство, например, телевизор.

Ладно, что-то отвлеклись. Как вы поняли, любое устройство состоит из блоков, которые выполняют определенную функцию.

— Ага! Так что же получается? Я могу просто тупо взять готовые блоки и изобрести любое электронное устройство, которое мне придет в голову?

Да! Именно на это нацелена сейчас современная электроника ;-) Микроконтроллеры  и конструкторы, типа Arduino, добавляют еще больше гибкости в творческие начинания молодых изобретателей.

На словах все выходит прекрасно, но всегда есть подводные камни, которые следует изучить, чтобы начать проектировать электронные устройства. Некоторые из этих камушков называются входным и выходным сопротивлением.

Думаю, все помнят, что такое сопротивление и что такое резистор. Резистор хоть и обладает сопротивлением, но это активное сопротивление. Катушка индуктивности и конденсатор будут уже обладать, так называемым, реактивным сопротивлением. Но что такое входное и выходное сопротивление? Это уже что-то новенькое. Если прислушаться к этим фразам, то входное сопротивление — это сопротивление какого-то входа, а выходное — сопротивление какого-либо выхода. Ну да, все почти так и есть. И где же нам найти в схеме эти входные и выходные сопротивления?  А вот «прячутся» они в самих блоках радиоэлектронных устройств.

Что такое дифференциальный усилитель

Дифференциальный усилитель — это электронное снаряжение, имеющее 2 входящих компонента, сигнальный толчок на выходном конце, учитывающий разницу указателя напряжения на входной детали, умноженного на константную величину. Используется в вариантах, если требуется показать маленькую разницу показателя в зоне существенного диамагнитного компонента.

Сигнал на выходном конце такого агрегата бывает с 1 фазой и различительной. Это устанавливается схемой каскадного начала на выходе.

Транзисторные детали машины бывают:

  • биполярными;
  • полевыми;
  • баллистическими.

Самые высокочастотные усилители идут на интегральной паре с баллистическими транзисторными элементами.

Отличие переменного от постоянного

Прежде всего постоянное напряжение должно генерироваться на подстанциях с относительно низким напряжением для предоставления потребителю (220В). Однако, при одновременном подключении нескольких приборов, суммарное значение возрастает. В этой ситуации, для передачи напряжения на большие расстояния, необходимо использовать толстый и дорогостоящий кабель. Только так можно получить возможность транспортировки тока на большие расстояния с минимальными потерями мощности.

В примере с переменным, генерируемое электричество способно преодолевать большое расстояние с наименьшими потерями. С 1980 г. появилась возможность выпрямления трёхфазного электрического тока и его обратное преобразование.

Основным отличием AC напряжения от DC тока заключается в том, что последний показывает сравнительную стабильность. Под этим подразумевается, что он не изменяет частоту направления движения.

Из-за того, что движение постоянного тока течёт равномернее, направление протекания электронов осуществляется строго в одном направлении. Причем источник в данной ситуации имеет, как положительный, так и отрицательный полюс. Таким образом, постоянный ток преимущественно используют в высоковольтных линиях (для транспортировки на значительные расстояния). После преобразования в переменный, он передаётся в наши розетки.

Параметры дифференциального усилителя

Как известно из предыдущей статьи дифференциальный усилитель имеет ряд специфических параметров:

  • дифференциальный коэффициент усиления
  • коэффициент усиления синфазного сигнала, который возникает из-за несогласованности резисторов
  • коэффициент усиления синфазного сигнала, который обусловлен значением коэффициента ослабления синфазного сигнала операционного усилителя (КОСС.ОУ)

Тогда общий КОСС всей схемы будет иметь вид

Входное сопротивление дифференциального усилителя состоит из суммы сопротивлений по двум входным каналам. Для входа UBX1, составит

Для входа UBX2, входное сопротивление составит

Выходное сопротивление дифференциального усилителя рассчитывается так же как и выходные сопротивления инвертирующего и неинвертирующего усилителя

где RBbIX.ОУ – выходное сопротивление ОУ,

КОУ – коэффициент усиления ОУ.

Таким образом, простейший дифференциальный усилитель на ОУ имеет очень простое схемное решение однако и его параметры, в частности, входное сопротивление, очень мало (порядка единиц – десятков кОм), поэтому данная схема находит применение в схемах где точность и влияние выходного сопротивления не играют большой роли. Большее распространение получили дифференциальные усилители, состоящие из нескольких ОУ, которые за свои высокие параметры называют инструментальными или измерительные усилители.

Работа ОУ от двухполярного источника питания

Как указывалось в одной из предыдущих статей, в основе операционного усилителя лежит дифференциальный каскад на транзисторах, для питания которого требуется источник питания с двумя напряжениями – положительным и отрицательным. Причем оба эти напряжения должны быт одинаковы: например, +5 и -5 В, +12 и -12 В. Типовая схема подключения ОУ к источнику питания приведена ниже


Типовая схема питания ОУ.

Типовая схема питания ОУ состоит из следующих элементов: конденсаторов С1, С2, защитный диодов VD1, VD2 и двухполярного источника питания +Uпит, -Uпит. Защитные диоды VD1 и VD2 являются необязательными элементами схемы, но рекомендуются для всех источников питания, где есть возможность случайно перепутать выводы питания.

Конденсаторы С1 и С2 обеспечивают развязку шин питания по переменному току и должны подключаться как можно ближе к выводам микросхемы. Данные конденсаторы должны иметь ёмкость порядка 0,001 – 0,1 мкФ.

Так как современные ОУ имеют достаточно большое усиление на высоких частотах, то довольно часто возникает паразитная обратная связь по цепям питания усилителя. Поэтому довольно часто в дополнение к развязывающим конденсаторам С1 и С2 в цепях питания ОУ часто подключают конденсаторы непосредственно к шинам питания, что улучшает стабильность усилителей.

Схемы питания операционных усилителей

Схем включения ОУ существует большое количество, и они не ограничиваются представленными в статье.

Данной схеме присуще высокое входное сопротивление, и напротив, низкий показатель на входе.

Напряжение попадает на инвертирующий вход, а прямой вход, в свою очередь, заземлён.

Работа от однополярного источника питания

Двухполярное питание в настоящее время задействуется в работе крайне редко, поэтому на замену пришёл другой способ – работа от однополярного источника питания. В цепь вводится дополнительная деталь – цепь дополнительного смещения.

Работа от двухполярного источника питания

Основополагающей составляющей ОУ выступает дифференциальный каскад, поддерживающийся при помощи транзисторов. Для снабжения прибора питанием необходим источник с отрицательным и положительным напряжением. Единицы измерения должны совпадать по обоим показателям.

В стандартную схему подключения операционных усилителей входит несколько составляющих: два конденсатора, двухполярный источник питания, а также защитные диоды.

Последние из перечисленных составляющих являются необязательными, но для того чтобы понять, как работает операционный усилитель, лучше учесть это в схеме.

При подключении конденсаторов следует учитывать, что оно должно быть максимально близко к выходам схемы. Составляющие отвечают за развязку шин.

Как измерить входное сопротивление

Как мы знаем, на каждый блок подается какой-либо сигнал от предыдущего блока или это может быть даже питание от сети или батареи. Что нам остается сделать?

1)Замерить напряжение Uвх, подаваемое на этот блок

2)Замерить силу тока Iвх, которую потребляет наш блок

3) По закону Ома найти входное сопротивление Rвх.

Если у вас входное сопротивление получается очень большое, чтобы замерить его как можно точнее, используют вот такую схему.

Мы  с вами знаем, что если входное сопротивление у нас большое, то входная сила тока в цепи у нас будет очень маленькая (из закона Ома).

Падение напряжения на резисторе R обозначим, как UR

Из всего этого получаем…

Когда мы проводим эти измерения, имейте ввиду, что напряжение на выходе генератора не должно меняться!

Итак, давайте посчитаем, какой же резистор нам необходимо подобрать, чтобы как можно точнее замерять это входное сопротивление. Допустим, что у нас входное сопротивление Rвх=1 МегаОм, а резистор взяли  R=1 КилоОм. Пусть генератор выдает постоянное напряжение U=10 Вольт. В результате, у нас получается цепь с двумя сопротивлениями. Правило делителя напряжения гласит: сумма падений напряжений на всех сопротивлениях в цепи равняется ЭДС генератора.

В результате получается цепь:

 Высчитываем силу тока в цепи в Амперах

Получается, что падение напряжения на сопротивлении R в Вольтах будет:

Грубо говоря 0,01 Вольт. Вряд ли вы сможете точно замерить такое маленькое напряжение на своем китайском мультиметре.

Какой отсюда вывод? Для более точного измерения высокого входного сопротивления надо брать добавочное сопротивление также  очень большого номинала.  В этом случае работает правило шунта: на бОльшем сопротивлении падает бОльшее напряжение, и наоборот, на меньшем сопротивлении падает меньшее напряжение.

Сравнительная таблица

Сравнительный график переменного тока и постоянного тока

Переменный ток Постоянный ток
Количество энергии, которое можно нести Безопасно переносить на большие расстояния по городу и может обеспечить большую мощность. Напряжение постоянного тока не может перемещаться очень далеко, пока оно не начнет терять энергию.
Причина направления потока электронов Вращающийся магнит вдоль провода. Устойчивый магнетизм вдоль провода.
частота Частота переменного тока составляет 50 Гц или 60 Гц в зависимости от страны. Частота постоянного тока равна нулю.
направление Он меняет свое направление, пока течет по кругу. Он течет в одном направлении в цепи.
ток Это величина, изменяющаяся во времени Это ток постоянной величины.
Поток электронов Электроны продолжают переключать направления – вперед и назад. Электроны неуклонно движутся в одном направлении или «вперед».
Получен из Генератор переменного тока и сеть. Ячейка или батарея.
Пассивные параметры Сопротивление. Только сопротивление
Фактор силы Лежит между 0 и 1. это всегда 1.
Типы Синусоидальный, Трапециевидный, Треугольный, Квадратный. Чистый и пульсирующий.

Переменный и постоянный ток. Горизонтальная ось – это время, а вертикальная ось представляет напряжение.

Постоянный ток

Международный символ этого напряжения DC — Direct Current (постоянный ток), а условное обозначение на электросхемах «—» или «=». Величина и полярность этого вида напряжения являются неизменными, а сила тока изменяется только при изменениях нагрузки. Этот вид электрического тока производится аккумуляторами, батарейками и элементами солнечных электростанций.

От сети постоянного тока работают двигатели трамваев, троллейбусов и другого электротранспорта. Эти электродвигатели имеют лучшие тяговые характеристики, чем двигатели переменного тока.

Информация! От постоянного напряжения работает бОльшая часть электронных схем, но они получают питание от сети переменного тока через встроенный или внешний блок питания с выпрямителем.

Переменный ток

Международное обозначение этого напряжения AC — Alternating Current (переменный ток), а условное обозначение на электросхемах «~» или «≈».

Величина и полярность переменного тока в сети всё время меняется. Частота этих изменений составляет 50Гц в Европе и некоторых других странах и 60Гц в США. Большинство бытовых и промышленных электроприборов изготавливаются для питания переменным напряжением.

Практически вся электроэнергия, используемая в быту и промышленности, является переменной. Для передачи на большие расстояния его повышают при помощи трансформаторов, а в конечной точке линии понижают до необходимой величины. Это позволяет уменьшить стоимость ЛЭП и потери. Для того, чтобы исключить колебания напряжения, для особоважных приборов устанавливаются стабилизаторы.

При увеличении напряжения и неизменной передаваемой мощности сила тока и сечение проводов пропорционально уменьшается. Если напряжение не повышать, то для подачи электроэнергии к потребителю необходимо использовать кабеля большого сечения, а передача на большие расстояния окажется невозможной. Вот почему в розетке переменный ток.

В домашней розетке два контакта — фазный и нулевой. В некоторых случаях к ним добавляется заземляющий. Это однофазное напряжение является частью трёхфазной системы. Она включает в себя три одинаковых сети. Напряжение в этих сетях сдвинуто по фазе на 120° друг относительно друга.

Вначале эта система была шестипроводной. В таком виде её изобрёл Никола Тесла. Позже М. О. Доливо-Добровольский усовершенствовал эту схему и предложил передавать трёхфазное напряжение по трём или чётырём проводам (L1, L2, L3, N). Он также показал преимущества трёхфазной системы электроснабжения перед схемами с другим числом фаз.

Питание операционных усилителей

Если выводы питания не указаны, то считается, что на ОУ идет двухполярное питание +E и -E Вольт. Его также помечают как +U и -U, VCC и VEE, Vc и VE. Чаще всего это +15 и -15 Вольт. Двухполярное питание также называют биполярным питанием. Как это понять – двухполярное питание?

Давайте представим себе батарейку

Думаю, все вы в курсе, что у батарейки есть “плюс” и есть “минус”. В этом случае “минус” батарейки принимают за ноль, и уже относительно нуля считают напряжение батарейки. В нашем случае напряжение батарейки равняется 1,5 Вольт.

А давайте возьмем еще одну такую батарейку и соединим их последовательно:

Итак, общее напряжение у нас будет 3 Вольта, если брать за ноль минус первой батарейки.

А что если взять на ноль минус второй батарейки и относительно него уже замерять все напряжения?

Вот здесь мы как раз и получили двухполярное питание.

Что такое операционный усилитель

ОУ — интегральная микросхема (ИМС), основным предназначением которой является усиление значения постоянного тока. Она имеет только один выход, который называется дифференциальным. Этот выход обладает высоким коэффициентом, усиливающим сигнал (Kу). ОУ в основном применяются при построении схем с отрицательной обратной связью (ООС), которая при основной ТХ по усилению и определяет Kу исходной схемы. ОУ применяются не только в виде отдельных ИМС, но и в разных блоках сложных устройств.

У ОУ 2 входа и 1 выход, а также есть выводы для подключения источника питания (ИП). Принцип действия операционного усилителя прост. Существует 2 правила, взятых за основу. Правила описывают простые процессы работы ИМС, происходящие в ОУ, и как работает ИМС, понятно даже чайникам. На выходе разность напряжений (U) равна 0, а входы ОУ почти не потребляют ток (I). Один вход называется неинвертирующим (V+), а другой является инвертирующим (V-). Кроме того, входы ОУ обладают высоким сопротивлением (R) и практически не потребляют I.

Чип сравнивает значения U на входах и выдает сигнал, предварительно усиливая его. Kу ОУ имеет высокое значение, достигающее 1000000. Если произойдет подача низкого U на вход, то на выходе возможно получить величину, равную U источника питания (Uип). Если U на входе V+ больше, чем на V-, то на выходе получится максимальное положительное значение. При запитывании положительным U инвертирующего входа на выходе будет максимальная величина отрицательного напряжения.

Смотрите это видео на YouTube

Основным требованием для работы ОУ является применение двухполярного ИП. Возможно применение однополярного ИП, но при этом возможности ОУ сильно ограничиваются. Если использовать батарейку и принять за 0 ее плюсовую сторону, то при измерении значений получится 1,5 В. Если взять 2 батарейки и соединить их последовательно, то произойдет сложение U, т.е. прибор покажет 3 В.

Если принять за ноль минусовой вывод батарейки, то прибор покажет 3 В. В другом случае, если принять за 0 плюсовой вывод, то получается -3 В. При использовании в качестве нуля точки между двумя батарейками получится примитивный двухполярный ИП. Проверить исправность ОУ можно только при подключении его в схему.

Схемы включения операционных усилителей

Режим, в котором будет работать ОУ, можно определить по типу обратной связи, соответствующий той или иной ситуации.

Неинвертирующий

Охарактеризовать работу усилителя можно следующим образом: сигнал со входа поступает прямиком на неинвертирующий вход. Он у такого прибора заземлён, а точнее имеет доступ к общему выходу питания.

Инвертирующий

В отличие от неинвертирующего усилителя на ОУ, разница напряжений в операционном усилителе составляет ноль.

Именно поэтому необходимо, чтобы величина на входе также равнялась нулю.

Интегратор

При помощи данного способа представляется возможность реализовать работу так, чтобы изменение его напряжения на выходе было пропорциональным сигналу, который поступает на входе.

Дифференциатор

В свою очередь, выполняет действия, которые полностью пропорциональны интегратору. Точнее, сигнал на выходе прямо пропорционален скорости изменения напряжения вначале.

Дифференциальный усилитель на ОУ имеет ряд преимуществ, так как сигналы, поступающие на входе, не ослабляются и прибор будет иметь намного меньшее сопротивление на выходе.

Преобразователь логарифмирующий

В такой схеме эксплуатируются некоторые из характеристик диодов, а также биполярного транзистора. Применяется в ходе математических вычислений различного типа, повышения диапазона динамики.

Имеет множество недостатков, которые не позволяют постоянно использовать данную схему, а именно:

  • чувствителен к перепадам температур;
  • преобразование будет неточным, так как диод не способен обеспечить зависимость падения сигнала и током.

Преобразователь экспоненциальный

Проделав несколько дополнительных действий, можно получить из логарифмирующего экспоненциальный преобразователь. Осуществляется это за счёт перемены мест резистора и диода в схеме.

Преобразователь не сыскал применения в широких кругах, потому что имеет схожие недостатки с логарифмирующим.

Что такое дифференциальный усилитель

Дифференциальный усилитель — это электронное снаряжение, имеющее 2 входящих компонента, сигнальный толчок на выходном конце, учитывающий разницу указателя напряжения на входной детали, умноженного на константную величину. Используется в вариантах, если требуется показать маленькую разницу показателя в зоне существенного диамагнитного компонента.

Сигнал на выходном конце такого агрегата бывает с 1 фазой и различительной. Это устанавливается схемой каскадного начала на выходе.

Транзисторные детали машины бывают:

  • биполярными;
  • полевыми;
  • баллистическими.

Самые высокочастотные усилители идут на интегральной паре с баллистическими транзисторными элементами.

LM358 цоколевка

Очень малое сопротивление Rвых позволяет подключить к выходу ОУ низкоомную нагрузку, при этом потери мощности на выходном сопротивлении ОУ будут незначительны.


Как такое может быть? Так как, благодаря обратной связи, в точке А сохраняется приблизительно нулевой потенциал, входное сопротивление схемы инвертирующего усилителя равно R Это приводит также что коэффициент усиления для каждого входа будет равен 1.


Чем глубже отрицательная обратная связь, тем меньше внешние характеристики усилителя зависят от характеристик усилителя с разомкнутой обратной связью без ОС , и в конечном счете оказывается, что они зависят только от свойств самой схемы ОС.


Очевидно, что если U2 на рис. Здесь напряжение смещения равно половине напряжения питания. А такое быть может! Причем напряжения могут быть как положительными так и отрицательными.


Как следует из схемы на рис. Диод не обеспечивает достаточной точности преобразования, так как зависимость между падением напряжения и током диода не совсем логарифмическая. Например, сдвоенный ОУ ОР как нельзя лучше подходит для этой схемы.


Однако в этой схеме могут применяться только ОУ с полным размахом входных и выходных напряжений Rail-to-Rail. Если источник входного сигнала не соединен с общей шиной рис. Что из этого получилось, показано на рисунке 7. Для этого нужно уменьшать напряжение на выходе. Направление стрелок на графике указывает направление перемещения гистерезиса.

Неспроста ОУ делятся на ОУ общего применения и высокоточные, прецизионные. Трансформатор понижает ток до 30 вольт. Мобильные электронные системы с питанием от батарей получают все большее распространение. Это может привести к нарушению работы оборудования.

В этой схеме инвертирующий повторитель на ОУ2 создает на нижнем полюсе нагрузки RL потенциал, противофазный по отношению к потенциалу верхнего ее полюса. С входным сопротивлением все, вроде, ясно: он получается равным сопротивлению резистора R1, а вот выходное сопротивление придется посчитать, по формуле, показанной на рисунке Недостаток этой схемы состоит в том, что она обладает малым входным импедансом, особенно для усилителей с большим коэффициентом усиления по напряжению при замкнутой цепи ОС , в которых резистор R1, как правило, бывает небольшим. Для вычисления усиления применяют формулу: Отсюда видно, что усиление операционника не зависит от сопротивления R3, поэтому можно обойтись без него. Причем коэффициент усиления мы можем задать любой. Управление нагревом

Схема цепей смещения в усилителях типа UBbIX = – kUBX + b

Третий случай питания ОУ от однополярного источника имеет передаточную характеристику вида UBbIX = – kUBX + b. Схемное решение для данного случая представлено ниже


Схема усилителя с передаточной характеристикой вида UBbIX = – kUBX + b.

Данная схема состоит из ОУ DA1, развязывающих конденсаторов C1 и C2, резисторов R1, R2, R3, R4 и представляет собой дифференциальный или разностный усилитель.

С учётом элементов схемы можно передаточная характеристика будет иметь вид

Тогда коэффициенты k и b можно представить следующими выражениями

Расчёт усилителя с характеристикой вида UBbIX = – kUBX + b

В качестве примера рассчитаем усилитель, который должен иметь следующие параметры: диапазон входного напряжения UBX = -0,1 … -1 В, диапазон выходного напряжения UBЫX = 1 … 5 В, напряжение смещение берётся от напряжения питания UCM = UПИТ = 6 В.

  1. Определим коэффициенты передаточной характеристики k и b, для этого составим и решим систему линейных уравнений

    Решив данную систему, получаем k = — 4,44 и b = 0,556, тогда переходная характеристика данной схемы усилителя будет иметь вид

  2. Определим сопротивление резисторов R1 и R4

    Примем R1 = 10 кОм, тогда R4 = 4,44 * 10 = 44,4 кОм. Примем R4 = 43 кОм

  3. Рассчитаем сопротивление резисторов и R3

    Примем R3 = 1кОм, тогда R2 = 56,19 * 1 = 56,19 кОм. Примем R2 = 56 кОм.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: