Описание ne555

СУТОЧНЫЙ ТАЙМЕР ВКЛЮЧЕНИЯ/ОТКЛЮЧЕНИЯ

В современном мире автоматизация проникла буквально во все области жизни человека. Всем нам порой хочется, чтобы бездушная автоматика сделала за нас какую-нибудь скучную рутинную работу – полила цветы, проветрила помещение, покормила кошку, напоила собаку… Не с проста говорят, что лень – двигатель прогресса, ведь ленивый человек готов потрудиться и создать такое электронное устройство, которое сделает за него всё, что потребуется. А уж если ленивый человек дружит с паяльником, то дело остаётся за малым, лишь создать эту самую автоматику.

В этой статье рассмотрим процесс создания электронного таймера, который в заданное время включит и выключит нагрузку. Такому таймеру можно найти множество применений – например, раз в сутки с его помощью поливать цветы, или грядки в огороде. Автоматически включать свет ночью и выключать днём, когда светло, или же раз в сутки наливать воду в поилку домашнему питомцу. В общем, устройство получается абсолютно универсальным, область применения ничем не ограничивается.

Схема суточного таймера ON/OFF

На схеме имеются две управляющие кнопки, пронумерованные цифрами «1» и «2». Кнопка «1» устанавливается время включения нагрузки, а кнопка «2», соответственно, время выключения. Для лучшего понимания принципа работы рассмотрим такой пример: имеется ёлочная гирлянда, которую нужно каждый день включать в 13:00 и выключать в 15:00. Значит, для установки временных интервалов работы таймера нужно в 13:00 нажать кнопку «1», при этом реле включится примерно на минуту, затем дождаться 15:00 и нажать кнопку «2», реле опять-таки включится примерно на минуту, сигнализируя об успешной установке времени. В дальнейшем реле будет автоматически включать гирлянду в 13:00 и выключать в 15:00 каждый день. Мигающий светодиод свидетельствует о работоспособности устройства.

Схема содержит в себе две микросхемы – микроконтроллер Attiny13 и часовую микросхему DS1307. Напряжение питания всей схемы – 12 вольт. Благодаря линейному стабилизатору 78l05 на плате микросхемы получают нужное им питание 5 вольт, а обмотка реле питается от 12-ти вольт. Параллельно обмотке реле следует поставить маломощный диод, например, 1N4148. Транзистор SS8050, управляющий реле можно заменить на любой другой маломощный NPN транзистор. Кнопки в обвязке микроконтроллера следует взять без фиксации.

Особенность часовой микросхемы DS1307 состоит в том, что она может работать от резервного питания, если вдруг пропадёт основное. Для этого к её выводам 3 и 4 нужно подключить источник питания на 3 вольта, например, батарейку CR2032. В этом случае при пропадании питания отсчёт времени будет продолжаться, как только основное питание появиться вновь, устройство продолжит работать в прежнем режиме, включая и выключая реле в заданные часы. Не следует забыть ставить параллельно питанию как основному, так и резервному конденсаторы электролитические и керамические, для подавления помех любого рода. Резистор светодиода, идущий от 7-й ноги часовой микросхемы, можно уменьшить до 0,5 – 1 кОм, тогда его яркость заметно увеличится.

Перед установкой на плату микроконтроллера его необходимо прошить, файлы прошивки к статье прилагаются. Удобнее всего это делать с помощью USBASP программатора. При использовании нового, ранее не используемого микроконтроллера фьюзы менять не нужно. С завода микроконтроллеры Attiny13 тактируются от внутреннего генератора с частотой 9,6 МГц, делитель на 8 включен.

Описание и область применения

NE555 является разработкой американской компании Signetics, специалисты которой в условиях экономического кризиса не сдались и смогли воплотить в жизнь труды Ганса Камензинда

Именно он в 1970 году сумел доказать важность своего изобретения, которое на тот момент не имело аналогов. ИМС NE555 имела высокую плотность монтажа при низкой себестоимости, чем заслужила особый статус

Впоследствии её стали копировать конкурирующие производители из разных стран мира. Так появилась отечественная КР1006ВИ1, которая так и осталась уникальной в данном семействе. Дело в том, что в КР1006ВИ1 вход останова (6) имеет приоритет над входом запуска (2). В импортных аналогах других фирм такая особенность отсутствует. Данный факт следует учитывать при разработке схем с активным использованием двух входов.

Однако в большинстве случаев приоритеты не влияют на работу устройства. С целью снижения мощности потребления, ещё в 70-х годах прошлого века был налажен выпуск таймера КМОП-серии. В России микросхема на полевых транзисторах получила название КР1441ВИ1.

Наибольшее применение 555 таймер нашёл в построении схем генераторов и реле времени с возможностью задержки от микросекунд до нескольких часов. В более сложных устройствах он выполняет функции по исключению дребезга контактов, ШИМ, восстановлению цифрового сигнала и так далее.

Пример №12 — Генератор, управляемый напряжением (ГУН) на NE555

Данный генератор иногда называют преобразователь частоты напряжением, так как частота может быть изменена путем изменения входного напряжения.

Как известно вывод 5 таймера 555 предназначен для управления длительностью импульсов на выходе путем подачи на него напряжения, которое должно составлять 2/3 от Uпит. При увеличении управляющего напряжения, увеличивается время заряда/разряда конденсатора и как следствие уменьшается частота на выходе генератора.

555 — аналоговая интегральная микросхема, универсальный таймер — устройство для формирования (генерации) одиночных и повторяющихся импульсов со стабильными временными характеристиками. Применяется для построения различных генераторов, модуляторов, реле времени, пороговых устройств и прочих узлов электронной аппаратуры. В качестве примеров применения микросхемы-таймера можно указать функции восстановления цифрового сигнала, искаженного в линиях связи, фильтры дребезга, двухпозиционные регуляторы в системах автоматического регулирования, импульсные преобразователи электроэнергии, устройства широтно-импульсного регулирования, таймеры и др.

В данной статье расскажу о построении генератора на этой микросхеме. Как написано выше мы уже знаем что микросхема формирует повторяющиеся импульсы со стабильными временными характеристиками, нам это и нужно.

Схема включения в астабильном режиме. На рисунке ниже это показано.

Так как у нас генератор импульсов, то мы должны знать их примерную частоту. Которую мы рассчитываем по формуле.

Значения R1 и R2 подставляются в Омах, C – в фарадах, частота получается в Герцах. Время между началом каждого следующего импульса называется периодом и обозначается буковкой t. Оно складывается из длительности самого импульса – t1 и промежутком между импульсами – t2. t = t1+t2.

Частота и период – понятия обратные друг другу и зависимость между ними следующая: f = 1/t. t1 и t2 разумеется тоже можно и нужно посчитать. Вот так: t1 = 0.693(R1+R2)C; t2 = 0.693R2C;

С теорией закончили так что приступим к практике.

Разработал простенькую схему с доступными всем деталями.

Расскажу о ее особенностях. Как уже многие поняли, переключатель S2 используется для переключения рабочей частоты. Транзистор КТ805 используется для усиления сигнала (установить на небольшой радиатор). Резистор R4 служит для регулировки тока выходного сигнала. Сама микросхема служит генератором

Скважность и частоту рабочих импульсов изменяем резисторами R3 и R2. Диод служит для увеличения скважности(можно вообще исключить)

Также присутствует шунт и индикатор работы, для него используется светодиод со встроенным ограничителем тока(можно использовать обычный светодиод ограничив ток резистором в 1 кОм). Собственно это все, далее покажу как выглядит рабочее устройство.

Вид сверху, видны переключатели рабочей частоты.

Снизу прикрепил памятку.

Данными подстроечными резисторами регулируется скважность и частота (на памятке видно их обозначение)

Режимы работы устройства

Микросхема 555 обладает тремя режимами работы:

  1. Моностабильный режим микросхемы 555. Он работает как одноразовый односторонний. Во время функционирования выбрасывается импульс заданной длины как ответ на вход триггера при нажимании кнопки. Выход пребывает в низком напряжении до включения триггера. Отсюда он и получил название ждущий (моностабильный). Такой принцип функционирования сохраняет устройство в бездействии до включения. Режим обеспечивает включение таймеров, переключателей, сенсорных переключателей, делителей частоты и др.
  2. Нестабильный режим является автономной функцией устройства. Он позволяет схеме пребывать в генераторном режиме. Напряжение в выходе изменчиво: то низкое, то высокое. Эта схема применима при надобности задавания устройству толчков прерывистого характера (при недолговременном включении и выключении агрегата). Режим используется при включении ламп на светодиодах, функционирует в логической схеме часов и др.
  3. Бистабильный режим, или же триггер Шмидта. Понятно, что он работает по системе триггера при отсутствии конденсатора и обладает двумя устойчивыми состояниями, высоким и низким. Низкий показатель триггера переходит в высокий. При сбрасывании низкого напряжения система устремляется к низкому состоянию. Эта схема применима в сфере железнодорожного строительства.

Характеристики микросхемы

Функциональная схема представленной микросхемы достаточно проста и состоит из следующих блоков:

  • делителя напряжения, который сравнивает сигнал на входе с двумя опорными уровнями;
  • 2 высокоточных компараторов на высокий и на низкий уровень сигналов;
  • триггера со встроенными RS -входами и дополнительным сбросом, выходной транзистор средней мощности биполярный или полевой в зависимости от технологии.

Также, аппаратно в конструкции микросхемы предусмотрен усилитель мощности, повышающий нагрузочную способность устройства и ее качество работы.

Микросхема является универсальной, как ни посмотри, со всех сторон. Например, базовая версия NE 555 рассчитана на напряжение питания
в пределах от 4,5 до 16,5 В, что весьма упрощает процесс конструирования многих схем, так как отпадает необходимость придерживаться конкретной величины питания.

Но если необходимо запитать генератор импульсов от пониженного уровня порядка 2–3 В, то лучше использовать схемы на КМОП-логике. Они не только могут свободно функционировать
на низком напряжении, но и обладают повышенными показателями устойчивости к помехам и нестабильности питания.

Также, выпускаются модификации устройств с повышенным порогом питающего напряжения, который может достигать 18 В. Эти МС могут применяться в импульсных устройствах и генераторах.

Согласно информации, которую предоставляет западный на ne555 datasheet потребляемый ток устройством зависит от величины входного импульса. Если она лежит на номинальном уровне порядка 5 В, то величина тока
составляет не более 6 мА. Но если напряжение вырастет до 15В, то ток также растет до 15мА. Обычно устройства разрабатывают своими руками на средний показатель тока, который оставляет порядка 10 мА, что говорит о напряжении питания в пределах от 9 до 12 В. Но это характерно для ТТЛ-логики.

Микросхемы, сконструированные на основе КМОП-транзисторов, потребляют еще меньше – 100-200 мкА, что их делает еще более экономичными. Но максимальное значение потребляемого тока не превышает 100 мА. Если у вас она берет больше этого значения, это означает что устройство неисправно и требует замены.

ГЕНЕРАТОР НА ТАЙМЕРЕ 555

В широком доступе в магазинах имеется таймер 555, продаётся за сущие копейки – микросхема в SMD исполнении, как правило, стоит порядка 5 рублей, в дипе — 7-10 рублей. Радиолюбителю, как в частности и мне, рано или поздно требуется относительно точный регулируемый и простой генератор для различных конструкций. Мне понадобился таковой для ознакомления с работой осциллографа. Нашел интересную схему в статье, которая описана как тестер для таймера, дабы проверить его исправность.

Принципиальная схема генератора импульсов на таймере

Генератор вырабатывает прямоугольные импульсы. Период колебаний связан с номиналами резисторов R1, R2 и конденсатора С1. Чуть доработал схему, нарисовал свою печатку, правда рисовал под SMD, но решил в конечном итоге поставить Dip.

Вместо постоянных резисторов установлено два регулирующих резистора на 100 кОм для подстройки, новеньких, с хорошей регулировкой.

Выход таймера (вывод 3) разделен конденсатором на 100 нанофарад, обычным керамическим, чтобы исключить замыкание выхода или слишком завышенный уровень сигнала. По входу питания микросхемы установлен стеклянный диод который защищает схему от переполюсовки батареи – чтобы не сгорела, если подключишь полярность неправильно. Для индикации установлен светодиод с токоограничительным резистором – так видно когда устройство включено и работает. Большинство резисторов в схеме применены в планарном исполнении, чтоб снизить размеры и упростить монтаж без сверловки, типоразмер применен 1206.

Схема генератора хорошо регулируется в широких пределах, подстройка, благодаря большим номиналам регуляторов, хорошая. Питается устройство во время тестов от аккумулятора в 6 вольт, ток потребления 15-25 мА, в зависимости от режима роботы которые выводятся движками регуляторов. Крайнее положение ставить не рекомендую, желательно последовательно с резисторами регулировки в схему поставить еще и дополнительно по несколько килоОм резисторы для надежности, но эта несложная платка сделанная на скорую руку для простейших тестов, поэтому устраивает и так.

На таймере 555 можно построить также генератор пилообразных колебаний.

Схема генератора пилообразного сигнала

Когда на выходе таймера присутствует напряжение высокого уровня, конденсатор С1 заряжается медленно от источника тока на полевом транзисторе. Как только напряжение на конденсаторе достигнет уровня 2Uпит / 3, высокий уровень напряжения на выходе таймера сменится на низкий и конденсатор быстро разрядится через открытый внутренний транзистор микросхемы.

Видео работы схемы

Частоту генерации определяют уровень источника постоянного тока на полевом транзисторе и емкость конденсатора С1. Период колебаний генератора равен Т=C1.Uпит/(3I). Схему собрал и проверил redmoon.

Originally posted 2019-01-14 09:11:18. Republished by Blog Post Promoter

Схемы включения ne555

Сама по себе данная микросхема это как бы «незавершенное» изделие с возможностью реализации на нем двух режимов эксплуатации — таймера запуска (моностабильный) и генератора одиночных импульсов (мультивибратора). Чтобы заставить её функционировать в одном из них, необходима небольшая доработка. Для этого межу контактами 1 и 8 добавляется RC-цепочка (она же времязадающая), для которой заранее подбираются резистор и конденсатор. Их значения будут задавать необходимую частоту и периодичность прямоугольных сигналов «включения/выключения» на выходе микросхемы после подачи на неё питания. Для повышения точности в работе и избегания влияния внешних помех 5 пин (контроль) рекомендовано шунтировать ёмкостью, величина которой должна быть не более 0,1 мкФ.

Моностабильный режим

Рассмотрим принцип работы в режиме таймера.  Для его реализации необходимы дополнительные элементы — один резистор Rt и пара ёмкостей. После подачи питания, на третьей ножке относительно земли будет около 0В. Времязадающий конденсатор Сt полностью разряжен и в таком состоянии схема может находиться достаточно долго, пока на контакт 2 (запуск) не поступит положительный сигнал. Его величина должна быть в три раза меньшей питающего напряжения (Ucc/3).

После подачи сигнала на контакт 2 (запуск), на выходе микросхемы появляется напряжение аналогичное питающему (высокий уровень). Его длительность зависит от времени заряда Сt до уровня 2/3 от Ucc через резистор Rt. Как только это произойдет, выходное напряжение снизится практически до 0В и Сt разрядится.

Важным моментом в этой схеме является то, что после её включения, любые воздействия на контакт 2 (запуск) больше не будут вилять на высокий уровень на выходе. Но его все же можно сбросить, если подать сигнал на четвертую ножку (сброс). Временной интервал выходного импульса (Т) рассчитывается по формуле T=1.1*Rt*Ct.

Режим мультивибратора

В режиме мультивибратора микросхема ne555 выдает серию прямоугольных сигналов, периодичность которых также определяются значениями времязадающей RC-цепочки. Как видно из рисунка ниже, конструкция немного изменена и в неё добавлено еще одно сопротивление. Контакт 7 (разряд) физически соединен между резисторами Ra и Rb, но логически он отключен внутри универсального таймера.

После подачи питания на микросхему, на 3 пине (выходе) появится высокий уровень относительно земли, а конденсатор Сt начинает заряжается через Ra и Rb. Как только Сt достигнет заряда 2/3 от величины питающего напряжения, схема переключится и на её выходе будет около 0В. При этом включится контакт 7 (разряд) и через резистор Rb будет разряжаться Сt.

После того как конденсатор Ct разрядится на 1/3 схема снова переключится, и на её выходе появится высокий уровень. Разъединится контакт 7 (разряд) и Ct начнет опять заряжаться через Ra и Rb. Результатом такой работы станет серия прямоугольных импульсов, длительность которых будет определяться величинами элементов Ra, Rb и Сt. Промежуток между началом каждого из импульсов называют общим периодом ТП. Его можно увеличивать до 30 секунд путем повышения ёмкости Ct. Частоту колебаний определяют по формуле F = 1/ТП.

Q

1
1

1

1

x
x
сброс

1

x
x

1

Автоколебательный мультивибратор

вырабатывает непрерывную последовательность импульсов, следующих с некоторой частотой. Простейшую схему такого рода можно построить на одном элементе 2И-НЕ с триггером Шмидта на входе. Период следования импульсов на выходе определяется величиной логического перепада Vп, шириной гистерезиса на входе элемента и постоянной времени RC. Период импульсов для ТТЛ элементов можно рассчитать по формуле: . Стабильность частоты генератора зависит от стабильности времязадающих элементов R, C, а также от стабильности порогов переключения логических элементов и обычно не лучше нескольких процентов.

Недостатки NE555 — или ложка дегтя в …

У таймера ne555 есть маленькая особенность. Делитель напряжения которые находятся внутри микросхемы. Он же и задаёт фиксированный верхний и нижний порог срабатывания для двух компараторов. И в связи с тем что делитель напряжения нельзя исключить, а пороговым напряжением нельзя управлять. Это немного сужает область применения этого таймера так как нельзя подключить внешнее управление.

Но более существенная проблема в том что Таймер ne555 выполнен на биполярных транзисторах. Этот недостаток проявляется в момент перехода таймера. А точнее выходного каскада из одного состояния в другое. Каждое переключение сопровождается паразитным сквозным током, который в пике может достигать 400 мА. Что приводит к повышенному энергопотребления микросхемой. А также к увеличению выделения тепла. Проблема частично решается установкой полярного конденсатора ёмкостью до 0,1 мкФ между общим проводом и выводом управления (5). Это повышается стабильность работы таймера. И способствует при запуске устройства.

Так же, для повышения помехоустойчивости. Желательно в цепь питания установить неполярный конденсатор 1 мкФ.

Видео — Секреты и Тонкости поиска неисправных конденсаторов

Использование вывода 5 таймера NE555

Всем известен и широко применяет­ся в радиолюбительских конструк­циях таймер NE555 и его аналоги, на­пример, отечественный КР1006ВИ1. В подавляющем большинстве случаев вывод 5 таймера NE555 оставляют сво­бодным или соединяют с общим прово­дом через блокировочный конденсатор, что в условиях отсутствия помех по питанию не очень нужно. В зарубежных описаниях таймера этот вывод называ­ют по-разному — Cont. Control. Control Voltage, а в отечественных — «Контроль делителя», хотя уместнее было бы пере­вести слово control как «управление».

Внутри таймера NE555 вывод 5 соединен с точкой соединения «верхне­го» и «среднего» резисторов делителя напряжения питания, формирующего пороги срабатывания компараторов и задающего таким образом пределы из­менения напряжения на времязадающем конденсаторе Поэтому, когда вы­вод 5 оставлен свободным, напряжение на нем — 2/3 напряжения питания. Точка соединения «среднего» и «нижнего» резисторов, где напряжение равно 1/3 напряжения питания, внешнего вывода не имеет. Исходя именно из таких поро­гов, в справочниках приведены форму­лы расчёта длительности импульсов и частоты их следования на выходе гене­ратора, собранного на таймере. Однако длительностью и частотой можно управлять, не изменяя ёмкость и сопротивление времязадающих эле­ментов, а лишь подавая внешнее напря­жение на вывод 5 таймера, сдвигая тем самым пороги срабатывания компара­торов. О такой возможности написано в справочных данных таймера, но никаких зависимостей или рекомендаций на эту тому там не приведено. Чтобы воспол­нить этот пробел, были проведены экс­перименты, с результатами которых хочу ознакомить читателей.

На таймере NE555 был собран гене­ратор непрерывных колебаний по схеме, изображенной на рис. 1.

Рис. 1

Если вывод 5 таймера никуда не подключён, коэффи­циент заполнения генерируемых им­пульсов (отношение длительности им­пульсов Т+ к периоду их следования Т) равен 0.5, а частота их следования

При указанных на схеме номиналах элементов F0≈1 кГц.

Внешнее напряжение, поданное на вывод 5, влияет на оба порога Причём верхний порог становится равным это­му напряжению, а нижний — его поло­вине. Если подать на вывод 5 напряже­ние Uупр равное 8 В (2/3 от 12 В), часто­та и коэффициент заполнения останут­ся прежними. Но при других значениях Uупр они изменяются, как показано на рис. 2 (частота) и рис. 3 (коэффициент заполнения).

Рис. 2

Рис. 3

Причём частота, увеличи­ваясь в 3,7 раза при изменении Uупр от 11,5 до 1 В, с дальнейшим его уменьше­нием резко падает. Коэффициент заполнения растёт с 0,06 (Uупр = 1 В) до 0,77 (Uупр = 11,5 В) практически линей­но.

Рис. 4

Другой способ управления состоит в подключении к выводу 5 резистора второй вывод которого соединён с одним из других выводов таймера. Варианты его подключения показаны на рис. 4 а зависимости частоты и коэф­фициента заполнения от — соответ­ственно на рис. 5 и рис. 6. Буквы у кри­вых на этих рисунках совпадают с теми, которыми обозначены варианты под­ключения резистора на рис.4.

Рис. 5

Рис. 6

Как видим, при соединении резисто­ра Rупр с общим проводом и уменьше­нии его сопротивления от 100 кОм до 470 Ом частота растёт в 1,7 раза, а коэффициент заполнения падает в восемь раз. Если соединить резистор с плюсо­вой линией питания, при изменении его сопротивления в тех же пределах часто та уменьшается в 2,2 раза, а коэффици­ент заполнения растёт в 1,5 раза, Наи­большее изменение частоты — в четыре раза достигнуто при соединении рези­стора Rупр с выходом OUT (выводом 3) таймера, При этом коэффициент запол­нения импульсов практически не изме­няется, оставаясь приблизительно рав­ным 0,5. Если подключить резистор Rупр к выходу с открытым коллектором DISCH (выводу 7), кривые зависимос­тей изменения частоты и коэффициента заполнения от сопротивления резисто­ра занимают промежуточные положения между кривыми при его соедине­нии с плюсом питания и с выходом OUT.

Полученные результаты можно рас­пространить и на КМОП-версии тайме­ра — микросхемы LMC555, TS555, ICM7555, КР1441ВИ1. Но следует иметь в виду, что пороговые напряжения в них заданы с помощью делителей напряже­ния из резисторов сопротивлением 100 кОм, а не 5 кОм, как в таймерах NE555. Поэтому для них значения со­противления резистора указанные на рис. 5 и рис. 6, нужно увеличить в 20 раз.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: