Yx8018 микросхема принцип работы

Положительные и отрицательные стороны светильников

Прежде чем приступать к изучению вопроса, как самому сделать светильник на солнечной батарее, необходимо изучить все за и против этого устройства.

Плюсы солнечных светильников таковы:

  1. Возможность быстрой установки освещения, а также отсутствие необходимости знаний электропроводки, так как она не используется;
  2. Свет от светильников не такой ярки и не бьет по глазам;
  3. Существенная экономия материальных средств на электроэнергии;
  4. Фонари на солнечных батареях полностью автоматические, что очень удобно. В отсутствие хозяев на даче могут быть определенной защитой от злоумышленников;
  5. Устройства на солнечной энергии полностью безопасны для окружения, так как не требуют заземления;
  6. Простой процесс ухода за фонарями;
  7. Очень длительный срок эксплуатации солнечных светильников;
  8. Обладают высокой защитой от неблагоприятных погодных условий.

Но есть у солнечных фонарей и минусы. В их числе:

  1. Встроенного аккумулятора хватит не более чем на 8 часов освещения с условием того, что целый день было ясно. К тому же свет от фонарей слегка тусклый, поэтому некоторые участки все же придется освещать при помощи электричества.
  2. Приобрести хорошее и мощное устройство будет недешево.
  3. Некоторые покупатели жаловались на то, что во время дождя устройства не работали или работали с перебоями. В пасмурную погоду зарядка замедляется почти вдвое, а значит, светильников хватит не более чем на 4 часа работы ночью.

Пример использования

Перейдем к практическому использованию батареи. Проверяем напряжение холостого хода – 5 В, как и заявлено. Попробуем подключить к батарее светодиод (рис. 2).

Рисунок 2.

Мощность естественно зависит от освещенности. Ток КЗ на окне при ярком солнце 50-70 мА.

Проверим, насколько эффективно можно использовать данные солнечные батареи, точнее нескольких батарей, соединенных параллельно, для зарядки Li-ion аккумулятора 18650.

Список деталей:

  • солнечная батарея 5 В, 1.2 Вт — 4 шт;
  • Li-ion аккумулятор 18650 — 1 шт;
  • Модуль для зарядки Li-ion батарей на микросхеме TP4056 — 1 шт;

По документации рабочий ток 200 мА на одну батарею. Соединим 4 данных солнечных батареи параллельно и проверим ток кз. На окне при ярком солнце 150-220 мА. Для зарядки аккумулятора 18650 будем использовать модуль для зарядки Li-ion батарей на микросхеме TP4056 (рис. 3).

Рисунок 3.

Контроллер заряда TP4056 отключается от аккумулятора при достижении на аккумуляторе заряда в 4.2 В, при заряде сила тока постепенно понижается.

Схема подключения показана на рисунке 4.

Рисунок 4

Собираем схему (рис. 5) и приступаем к испытаниям.

Рисунок 5,6,7.

Выставляем устройство на солнце. Пошел процесс зарядки. Об окончании зарядки сигнализирует синий светодиод. Скорость зарядки очень сильно зависит от освещения.

Рисунок 8,9.

Контакты OUT+ и OUT- выводим на USB-разъем и можем использовать заряженный аккумулятор, например для зарядки телефона.

Как можно улучшить готовую модель

Схема садового светильника на солнечной батарее довольно проста. Однако для того чтобы в ней разобраться, будет необходимо минимальное понимание обозначений электрических устройств. Вопрос улучшения уже приобретенного устройства стоит очень остро у тех, кто купил светильники китайского производителя.

Улучшение светильника на солнечной батарее

Как починить фонарик на солнечной батарее? Провести ремонт или множество улучшений здесь не особо получится, так как самих составляющих элементов очень мало. Весь процесс модернизации сводится к тому, чтобы заменить некоторые детали такие, как аккумулятор, чтобы увеличить время работы светильника ночью. Можно заменить диод на более мощный, если есть необходимость.

Улучшение фонаря «башня»

Одна из распространенных разновидностей фонаря на солнечной батарее. Схема садового фонаря на солнечной батарее этого типа стандартной сборки включает в себя изначально слабоватый дроссель. Если заменить эту деталь на более мощную, то можно добиться большей яркости от фонаря в целом.

Подсветка на солнечной батарее светодиод своими руками также может быть модернизирована за счет манипуляций с дросселем. Однако при замене этих деталей возрастет потребление энергии от аккумулятора и его придется менять на более мощный. Если этого не сделать, фонарь либо будет работать небольшой промежуток времени, либо сгорит от перенапряжения.

Устройство с тремя светодиодами

Для того чтобы получить более яркое и равномерное освещение можно вмонтировать вместо одного стандартного диода, три. Однако при их установке следует следить за минимальным разбросом напряжения, иначе ярко освещаться участок будет лишь один, а еще два будут издавать тусклый свет.

Карманный фонарь из газонного светильника

Рейтинг:  5 / 5

Подробности
Категория: Схемы начинающим
Опубликовано: 07.04.2017 16:40
Просмотров: 4473

И. НЕЧАЕВ, г. Москва Автономные светодиодные газонные светильники становятся всё более популярными. Этому способствуют их невысокая стоимость и простота эксплуатации. В состав таких светильников, кроме осветительных светодиодов (или светодиода), как правило, входят солнечная батарея, аккумулятор, который от неё заряжается, и повышающий преобразователь напряжения. Яркость свечения светильников зависит от их размеров. Обусловлено это тем, что с увеличением размера оказывается возможным применение солнечной батареи большей площади, и поэтому она обеспечит больший зарядный ток. Это, в свою очередь, позволяет применить аккумулятор большей ёмкости, а значит, увеличить яркость свечения светодиодов.

Поэтому малогабаритный светильник в большинстве случаев имеет меньшую яркость. Однако малые габариты позволяют сделать из него карманный фонарь, но для этого потребуется небольшая доработка. Несомненным преимуществом такого фонаря будет возможность подзарядки аккумулятора от солнечной батареи. Такой доработке подвергся светильник торговой марки Wolta Solar. Он имеет форму цилиндра диаметром 45 и высотой 28 мм. Размеры солнечной батареи — 25×25 мм, ёмкость Ni-Cd аккумулятора — 300 мА-ч (типоразмер 2/3 ААА). Преобразователь напряжения собран на микросхеме YX8018. Все элементы, кроме аккумулятора и солнечной батареи, установлены на печатной плате. Поскольку светильник рассчитан на непрерывное свечение в течение нескольких часов, то чтобы энергии аккумулятора на это хватило, через осветительный светодиод протекает небольшой ток (2…3 мА). Это достигается установкой в преобразователе напряжения накопительного дросселя с большой индуктивностью (0,5… 1 мГн). В этом светильнике в качестве выключателя применён малогабаритный переключатель на одно направление и два положения. Это упростило доработку, поскольку он используется как выключатель фонаря. Основная цель доработки — установка дополнительных светодиодов и повышение яркости их свечения. Схема доработанного светильника представлена на рис. 1.    Все изменения выделены красным цветом. «Штатный» светодиод удалён, и взамен него установлены три светодиода белого цвета свечения диаметром 5 мм от светодиодного фонаря. Для этого в корпусе светильника нужно увеличить размер отверстия для них. С целью повышения яркости применен дроссель с меньшей индуктивностью (20…30 мкГн), он намотан на ферритовом кольцевом магнитопроводе с внешним диаметром 6 и высотой 3 мм от трансформатора электронного балласта компактной люминесцентной лампы и содержит четыре витка провода ПЭВ-2 0,4. Дроссель можно разместить в любом месте внутри корпуса и закрепить термоклеем. Солнечная батарея подключена к аккумулятору через диод VD1. Этот диод необходим, поскольку он не позволяет аккумулятору разряжаться через солнечную батарею. Хотя ток разрядки невелик, через одну-две недели аккумулятор может существенно разрядиться. В то же время этот диод практически не влияет на процесс зарядки, поскольку номинальное напряжение солнечной батареи около 2,5 В. Зарядка аккумулятора возможна при выключенном фонаре. Для этого необходимо осветить солнечную батарею источником света — чем ярче освещение, тем больше зарядный ток. При среднем освещении ток зарядки не превысит нескольких миллиампер, поэтому перезарядки аккумулятора не произойдёт. Внешний вид фонаря показан на рис. 2.    Его можно использовать и как брелок для связки ключей. Радио №2/2014

Оставлять комментарии могут только зарегистрированные пользователи

Материалы по теме

Импульсные преобразователи постоянного тока (DC/DC) DC DC CONVERTER CONTROL CIRCUITS

  • Супер!!! Освещать днем, затемнять ночью!!! Все гениальное просто!!!
    Теперь я наконец понял, что такое «лампа дневного света»!!!
  • Упомянутое — не наш путь! Наши люди — значительно экономнее!
    Наш, отечественный юный техник, ученик 5-го класса. покупает динамо-фонарик за 19 грн. (40-45 р. РФ) и… просто кладет его в карман. Экономия — 20 долларов на приобретении у зарубежных капиталистов солнечной панели и всяких диодов-резисторов. http://www.leroymerlin.ua/p/%D0%9B%D…4-307ee51a3035 .
    Скажете — неудобно?
    Под руководством пенсионера — бывшего учителя физики из школьного кружка «Очумелые ручки» ученик, выучив таки к 5-му классу таблицу умножения, подсчитывает работу, которую совершает его бабушка, открывая дверь в темную кладовую: 2 кгс усилия он умножает на 1 метр перемещения края двери и получает 20 джоулей.
    Заглянув в школьный физический кабинет, ученик узнает, что 2 светодиода упомянутого фонарика при напряжении 2 вольта и силе тока 10 миллиампер имеют потребляемую мощность всего 20 мВт!
    Открыв дверь всего 1 раз можно освещать кладовую целых 50 секунд — энергия в фонарике ведь не пропадает, а заряжает встроенный в китайский фонарик аккумулятор!
    Теперь вся семья юного дарования во время утренней зарядки открывает и закрывает дверь в кладовую — папа ученика в перерыве футбольного матча пристроил таки динамо-фонарик к двери в кладовую!
    А младший братик нашего школьника пристроил к этой же двери выключатель от дверки старого холодильника — при закрытой кладовой света в кладовке нету — аккумулятор фонарика не разряжается.
    Сейчас уже собирают подписи под петициями в Правительство. Если каждый из 100 млн. жителей сэкономит всего по 100 ватт электричества, можно будет навсегда закрыть все электростанции страны!
    Подробности и дальнейшие действия — https://www.youtube.com/watch?v=WVMolYlx-h8 .
  • А.Райкин хотел привязать к балерине динамомашину…
  • нафига козе баян а попу гармонь?
    приемник можно питать свободной энергией и нафиг та солнечная панель
  • Приведите рабочий пример…детекторный приёмник,чур,не предлагать.

Контроллеры заряда и схемы защиты — в чем разница?

Важно понимать, что модуль защиты и контроллеры заряда — это не одно и то же. Да, их функции в некоторой степени пересекаются, но называть встроенный в аккумулятор модуль защиты контроллером заряда было бы ошибкой

Сейчас поясню в чем разница.

Важнейшая роль любого контроллера заряда заключается в реализации правильного профиля заряда (как правило, это CC/CV — постоянный ток/постоянное напряжение). То есть контроллер заряда должен уметь ограничивать ток зарядки на заданном уровне, тем самым контролируя количество «заливаемой» в батарею энергии в единицу времени. Избыток энергии выделяется в виде тепла, поэтому любой контроллер заряда в процессе работы достаточно сильно разогревается.

По этой причине контроллеры заряда никогда не встраивают в аккумулятор (в отличие от плат защиты). Контроллеры просто являются частью правильного зарядного устройства и не более.

Кроме того, ни одна плата защиты (или модуль защиты, называйте как хотите) не способен ограничивать ток заряда. Плата всего лишь контролирует напряжение на самой банке и в случае выхода его за заранее установленные пределы, размыкает выходные ключи, отключая тем самым банку от внешнего мира. Кстати, защита от КЗ тоже работает по такому же принципу — при коротком замыкании напряжение на банке резко просаживается и срабатывает схема защиты от глубокого разряда.

Путаница между схемами защиты литиевых аккумуляторов и контроллеров заряда возникла из-за схожести порога срабатывания (~4.2В). Только в случае с модулем защиты происходит полное отключение банки от внешних клемм, а в случае с контроллером заряда происходит переключение в режим стабилизации напряжения и постепенного снижения зарядного тока.

Принципиальная схема простого для повторения светильника

Приведенная ниже принципиальная схема светильника, работающего от энергии солнечного света весьма проста, и многократно опробована многочисленными любителями, специализирующихся на изготовлении полезных устройств своими руками.

Как она работает:

  • В дневное время солнечная панель (S) преобразует энергию световых лучей в электрическую.
  • Вырабатываемый ею ток через диод D1 заряжает аккумуляторную батарею (А).
  • Положительный потенциал, приложенный к базе через резистор R1, «удерживает» транзистор Т1 в закрытом состоянии и светодиод D2 не горит.
  • При значительном снижении освещенности солнечной панели транзистор открывается (из-за уменьшения положительного потенциала, приложенного к базе) и подключает светодиод D2 к аккумуляторной батарее. Светодиод начинает гореть.
  • Диод D1 препятствует разряду аккумулятора через солнечную панель.
  • С наступлением рассвета положительное напряжение, поступающее с «+» вывода солнечной панели на базу «закрывает» транзистор Т1 и светодиод D2 перестает гореть, а аккумуляторная батарея снова начинает заряжаться.

Китай ic транзисторов

Акб — 1 банка Ni-Cd. Илья Николаич. Солнечные элементы в них действительно имеются, типа тех что в калькуляторы тыкали раньше. Какие аккумы стоят не в курсе, да и тема была недавно про схему их зарядки. EvgeniS Участник. Регист 8 Авг Сообщения 2. Илья Николаич сказал а :. ADS Участник. Регист 25 Май Сообщения 1. Работают уже третий сезон. Зарядки в течении солнечного дня, хватает на всю ночь и более. Банка одна — Ni-Cd.

Светодиод один. Светимости в ночное время более чем достаточно. Фонарь сад. HJ-P 5х Покупались в году за р. Сейчас в продаже — пара за 90 р.. Регист 27 Фев Сообщения Вчера такие ремонтировал. При освещении светодиод гаснет и включается зарядка аккумуляторов. Регист 30 Май Сообщения 3. Sander , фонарик на солнечных батареях это мое изобретение еще в летнем фозрасте, по дефецитности батареек в совке. Явный прогресс на лицо, ты модернизировал идею китайскими АКБ.

Вот только нарисовал как всегда небркжно. Cейчас могут начаться международные дебаты между подписаным 1. Твой соратник куйню написал, а ты не смог по написанному немного паралельную схему нарисовать. Никель металлогидриды, никель-кадмий давно не в моде. Нужно в ногу со временем на литий-ионных, где 3. Как здоровье? CYB Команда форума. Регист 13 Апр Сообщения 7. Captain Игорь Команда форума. Регист 10 Янв Сообщения Sander , явно не ходил в кружок детского творчества.

Будет под рукой — сфотаю потроха, но там и в самом деле смотреть не на что. Captain сказал а :. Sander, явно не ходил в кружок детского творчества. Не спорьте. Сам не разбирал пока, но микс прислал фотку с микрой, которая там вроде разруливает заряд с разрядом.

Шот фотка не грузица — попробую попаздя. Не факт что в твоей то же что и «микс» прислал. Если микра,то схема такая. Angei Участник. Регист 24 Май Сообщения Angei , Всё правильно включено. Кнопка -выключатель. Отключает полностью устройство. Положение ON-Свет есть-светодиод не светит,идёт зарядка. Света нет- светодиод светит от акку. OFF всё отключено. Нет зарядки не светит светодиод. При свете не горит совсем.

В темноте- до утра,от одного акку на 1. Если весь день зарядка шла. Sander сказал а :. Ток зарядки аккумулятора перебъёт ток свечения светодиода? Sander писал: Ток зарядки аккумулятора перебъёт ток свечения светодиода? Там на самом деле никакой более электроники нет. Captain , В дневное время зарядка аккумулятора будет идти А дальше не догоняю. В ночное время аккумулятор будет разряжаться через Солнечную батареЮ Сопротивление солнечного элемента в темноте Аккумулятор на 1.

Да ещё и большим сопротивлением солнечной батареи. Sander , надуманное тобой фотосопротивление — кусок полупроводника с зависимым от освещения сопротивлением и фотодиод солнечная батарея пусть из страрых как ты диодов Д — с p-n переходом при фотовольтическом эффекте круто различаются по свойствам и назначению так же как ПТ c p-n и ОПТ. Что касаемо напряжения АКБ и напряжения при котором нормально светится светодиод. Связано с потенциальным барьером p-n перехода светодиода и излучаетельной рекомбинацией, как чем больше напряжение тем выше частота или короче длина волны излучения.

Добавлено Когда темно напряжение АКБ превышает напряжение батареи и светодиод становится прямосмещенным. Вот только там АКБ последовательно шт должно быть или какая одна хитрая банка. Регист 30 Июн Сообщения 4. У китайцев все проще!

Одна из базовых схем. Выше импульсный ток, выше отдача. Меньше нагрев и деградация кристалла. Вам необходимо войти или зарегистрироваться, чтобы здесь отвечать.

Критерии выбора деталей и цены

Выбор деталей зависит от того, насколько мощный светильник вы намереваетесь изготовить. Приводим конкретные номиналы для самодельного осветительного прибора мощностью 1 Вт и интенсивностью светового потока 110 Лм.

Так как в вышеприведенной схеме отсутствуют элементы контроля уровня заряда аккумуляторной батареи, то, прежде всего, необходимо обратить внимание на выбор солнечной батареи. Если выбрать панель со слишком маленьким током, то за световой день она просто не успеет зарядить аккумулятор до нужной емкости

И наоборот слишком мощная световая панель может перезарядить батарею за время светового дня и привести ее в негодность. Вывод: ток, вырабатываемый панелью, и емкость аккумулятора должны соответствовать друг другу. Для грубого расчета можно воспользоваться соотношением 1:10. В нашем конкретном изделии мы используем солнечную панель с напряжением 5 В и вырабатываемым током 150 мА (120-150 рублей) и аккумуляторную батарею форм-фактора 18650 (напряжением 3,7 В; емкостью 1500 мАч; стоимостью 100-120 рублей).

Также для изготовления нам понадобятся:

  • Диод Шоттки 1N5818 с максимальным допустимым прямым током 1 А – 6-7 рублей. Выбор именно этой разновидности выпрямительной детали обусловлен низким падением напряжения на нем (около 0,5 В). Это позволит использовать солнечную панель наиболее эффективно.
  • Транзистор 2N2907 с максимальным током коллектор-эмиттер до 600 мА – 4-5 рублей.
  • Мощный белый светодиод TDS-P001L4U15 (интенсивность светового потока – 110 Лм; мощность – 1 Вт; рабочее напряжение – 3,7 В; потребляемый ток – 350 мА) – 70-75 рублей.

Важно! Рабочий ток светодиода D2 (или суммарный общий ток при использовании нескольких излучателей) должен быть меньше максимального допустимого тока коллектор-эмиттер транзистора T1. Это условие с запасом выполняется для примененных в схеме деталей: I(D2)=350 мА

Батарейный отсек KLS5-18650-L (FC1-5216) – 45-50 рублей. Если при монтаже устройства аккуратно припаять провода к выводам аккумулятора, от покупки этого элемента конструкции можно отказаться.

  • Резистор R1 номиналом 39-51 кОм – 2-3 рубля.
  • Добавочный резистор R2 рассчитываем в соответствии с характеристиками применяемого светодиода.

Монтаж

Схема состоит из минимального количества элементов, поэтому монтаж можно без труда осуществить навесным способом. Длины «ножек» деталей будет вполне достаточно, чтобы произвести пайку без применения дополнительных проводов. После окончания монтажа и проверки работоспособности изготовленного светильника все места соединений следует заизолировать с помощью теплового карандаша или соответствующего герметика.

Для тех, кто предпочитает монтировать компоненты на печатной плате, могут сделать это, используя универсальную монтажную плату подходящих размеров или изготовленную самостоятельно.

Топ 10 электронных модулей (DC-преобразователи, BMS-платы, контроллеры заряда и многое другое)

10 электронных модулей (DC-преобразователи, BMS-платы, контроллеры заряда и многое другое). В топике представлены самые востребованные платы и модуля для питания DIY-проектов и устройств, которые отличаются качеством и невысокой стоимостью…

Платы TP4056 для заряда Li-Ion аккумуляторов:

Ссылка на товар — ЗДЕСЬ

Народные платки заряда литиевых (Li-Ion и Li-Pol) аккумуляторов. Имеют настраиваемый ток заряда до 1А, корректный алгоритм CC/CV (ограничение тока и отсечка), небольшие размеры 22мм*17мм и два индикатора зарядки. Пригодятся для заряда аккумуляторов в различных DIY-проектах, автономных устройствах и прочих девайсах. При необходимости можно убрать обвязку, что еще уменьшит габариты.

Есть вариант этой платы с защитой от переразряда и рабочего тока ЗДЕСЬ

Основное достоинство — защита от переразряда, что идеально подойдет для приборов и РУ-моделей.

Платы TP5000/5100 для заряда Li-Ion аккумуляторов:

Ссылка на товар — ЗДЕСЬ

Обновленные платы для зарядки литиевых аккумуляторов. Имеют настраиваемый ток заряда до 2А, корректный алгоритм CC/CV (ограничение тока и отсечка), небольшие размеры и индикаторы степени заряда. Являются продолжение линейки плат TP, которые зарекомендовали себя сугубо с положительной стороны. На выбор три различных варианта под любые нужды.

Понижающий DC-DC модуль XL4015:

Ссылка на товар — ЗДЕСЬ

Также являются «народными» понижающими платами. Заявлен рабочий ток до 5А, но использовать лучше с радиатором. До 3А выдерживают спокойно. На выходе всегда чуть меньше, чем на входе. Применение самое разнообразное: питание самоделок, различных устройств, постройка простенького блока питания, зарядка батареи шуруповерта и многое другое. Присутствует режим ограничения тока (СС).

Мощный понижающий DC-DC модуль XL4015:

Ссылка на товар — ЗДЕСЬ

Мощный аналог с максимальной мощностью в 300 ватт. Заявлен выходной ток до 8А, но использовать лучше с активным охлаждением, например, простеньким вентилятором. Используется для питания мощных самоделок, различных устройств, для постройки блока питания с режим ограничения тока (СС). Многие используют для питания ноутбуков и прочей техники.

Понижающий регулируемый DC-DC преобразователь:

Ссылка на товар — ЗДЕСЬ

Еще одни «народные» платки. Благодаря хорошей схемотехнике, греются несильно, имеют высокий КПД. Многие покупают их для питания гаджетов в автомобиле (12V->5V), например, регистраторы, навигаторы, модуляторы и прочие. Удобны тем, что благодаря маленьким размерам можно встроить куда угодно, а также подстроить напряжение для компенсации потерь в кабеле.

Понижающие DC-DC преобразователи с USB выходом:

Ссылка на товар — ЗДЕСЬ

Очень удобные платки для различных DIY-проектов. Могут использоваться для питания гаджетов в автомобиле. Входное напряжение варьируется от 6 до 24 вольт, на выходе 5 вольт с максимальным током не более 3А. Платки хорошо себя зарекомендовали. Можно собрать свою зарядку и не бояться выхода ее из строя, в отличие от китайских зарядок. на нее также есть обзоры.

Повышающий DC-DC преобразователь MT3608:

Ссылка на товар — ЗДЕСЬ

Также не менее популярный преобразователь, только в отличие от предыдущих, уже повышает напряжение. К примеру, имеется источник с выходом 5V (внешний аккумулятор или зарядка), а необходимо получить 12V. Этот модуль поможет решить эту задачу легко и просто. Применение самое разнообразное, одни из немногих удачных платок. На них есть куча обзоров, кому интересно.

Мощный повышающий DC-DC преобразователь 150W:

Ссылка на товар — ЗДЕСЬ

Более мощный аналог предыдущего, который может повышать напряжение до 35 вольт. Рабочие токи составляют до 6 ампер на выходе. Из-за особенностей схемотехники повышающих преобразователей, подъем напряжения осуществляется за счет тока, поэтому на входе ток всегда больше. Здесь он ограничен 10А, но желательно уже активное охлаждение. В общем, плата хорошая.

Плата XH-M229 для запуска блока питания:

Ссылка на товар — ЗДЕСЬ

Если у вас завалялся старенький блок питания, не спешите выбрасывать его. С помощью этой платки можно легко превратить его в полезное устройства для питания различных приборов. Если требуется отличное от 5V и 12V напряжение, используйте платы выше. Грубо говоря, за копейки можно собрать простой регулируемый БП. Подойдет также и для проверки и тестирования блоков питания.

На этом заканчиваю. Если тема будет интересной, сделаю вторую часть, где присутствуют новые и более интересные модули. Кое-какие уже получил, будет время проверю в работе…

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: