Синхронизация дгу по мертвой шине

Особенности применения

Оптроны выпускаются в пластмассовых корпусах с шестью выводами. Вывод 1 помечен точкой на корпусе.

Производитель рекомендует включать последовательно с фототиристором в схемах управления силовыми тиристорами резистор 360 Ом для удержания тока через высоковольтную часть оптрона на безопасном уровне. Но эта рекомендация представляется странной, так как оптрон может открываться только, если напряжение вблизи нулевого значения (меньше 20 В или около того). Чтобы обеспечить безопасное значение силы тока потребуется резистор всего в 20 Ом при условии, что время открывания силового тиристора меньше 100 мкс. Ведь после открывания силового тиристора напряжение на оптотиристоре оптрона падает до минимального значения. Для распространенных силовых тиристоров, например, КУ201, КУ202, время открывания составляет 10 — 20 мкс.

Последнее замечание представляется важным, так как позволяет использовать эти оптопары с распространенными силовыми тиристорами, для которых 360 Ом — слишком большое сопротивление, не позволяющее обеспечить открывание силового тиристора в самом начале полуволны с минимальной задержкой. Для силовых тиристоров имеет смысл выбирать этот резистор равным резистору, соединяющему управляющий электрод и катод, который в свою очередь обычно выбирается 50 — 100 Ом.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Тиристорное переключение нагрузки, коммутация (включение / выключение). Применение тиристоров в качестве реле (переключателей) напряжения переменного то.

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида. Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при.

Преобразователь однофазного напряжения в трехфазное. Принцип действия. Принцип действия, сборка и наладка преобразователя однофазного напряжения в трех.

Тиристорный выключатель, переключатель, коммутатор. Тиристор (тринисто. Тиристор в переключательных схемах переменного тока. Схема твердотельного реле. .

Мобильное управление освещением. Звуковое реле. Включение / выключение. Звуковое реле и схемы для включения освещения с помощью звонка на мобильный теле.

При автоматизации дома или квартиры необходимо управлять электрическими приборами работающими от напряжения 220 вольт. К сожалению контроллер arduino не может коммутировать такое большое напряжение на прямую. Необходим посредник. Первое что приходит на ум — РЕЛЕ.

У данного способа есть и плюсы и минусы. К плюсам можно отнести гальваническую развязку, возможность коммутировать все, что душе угодно (постоянный или переменный ток, любое напряжение до 250 вольт)

Минусы — дребезг контактов и щёлкает. Не такой большой минус, но он есть.

Как я не раз уже говорил: “Главное — это семья!” и если кому-то из близких не комфортно, необходимо постараться исправить.

После заявления родных о том, что “что-то там щёлкает и пугает…” решил собрать полупроводниковый ключ переменного напряжения. На просторах интернета не составило труда найти подробное описание и схему данного устройства.

Главные действующие герои ключа переменного напряжения — симистор и оптопара.

Симистор сам по себе уже является ключом переменного напряжения, но для управления симистором мы будем использовать оптопару, для того что бы обеспечить гальваническую развязку.

Рассматривая различные варианты я решил взять оптопару MOC3063. Дело в том, что она с детектором перехода нуля коммутируемого напряжения. Другими словами симистор будет открываться и закрываться в тот момент когда синусоида проходит через ноль. Данное свойство позволит продлить жизнь коммутируемым приборам…

Но хватит ходить вокруг да около.

Исходя из своих потребностей решил делать двух канальный ключ.

скачать PDF или в формате SprintLayout6 скачать

скачать программу для редактирования печатных плат SprintLayout6

Изготовил плату старым добрым способом «лазерного утюга» (ЛУТ). Только вместо утюга был использован ламинатор.

Стоимость деталей:

  1. оптопара MOC3063 — 38 руб. х2 шт.
  2. симистор BT138-600 — 30 руб. х2 шт.
  3. резисторы 6 шт. по рублю.
  4. кусок стеклотекстолита фольгированного — бесплатно (ориентировочно 10-15 руб.)
  5. клемники — можно считать бесплатными т.к. уже давно купил их 100500 штук.
  6. хлорное железо, припой и паяльник не считаем.

Итого около 150 руб.

Плюсы:

  1. полезно для коммутируемых устройств
  2. гальваническая развязка
  3. БЕСШУМНО!

Минусы:

  1. только переменное напряжение

Фото того, что получилось:

Схема детектора сгоревшей лампы

Детектор состоит из двух транзисторов по схеме Дарлингтона, батареи 3,6 В, светодиода, корпуса и датчика, в дальнейшем именуемого антенной — нескольких сантиметров изолированного провода.

Схема работает по принципу емкостной связи с электрической сетью, усиливая ток улавливаемый антенной и управляя светодиодом.

Входная цепь усилителя замыкается через емкость между элементами, подключенными к эмиттеру оконечного транзистора — (плоская поверхность или батарея от телефона имеет достаточную поверхность) и человеком, держащим корпус детектора, который обычно расположен на потенциале сети ноль.

Таким образом принцип проверки такой же, как и при использовании обычной неоновой лампы, но не нужно контактировать с изолированными компонентами схемы, что значительно ускоряет работу

Обратите внимание, что детектор будет работать только для линий переменного тока

Транзисторы берите практически любые, только проверьте являются ли они транзисторами NPN и обеспечивают ли усиление HFE выше 100.

Даже используя транзисторы с в = 100, можете получить усиление в 10000. Однако с таким большим усилением конечно можно будет обнаружить сетевые кабели через стену в большую глубину, но и помехи пойдут (ложные срабатывания).

Простейший индикатор

Первый вариант представляет собой самый простой индикатор скрытых проводов. Необходимые материалы для его изготовления своими руками:

  • магнитопровод (металлический стержень, свернутый в круг, но с разрывом);
  • провод для намотки на трансформатор сопротивлением около 500 Ом;
  • кабель от микрофона с разъемом;
  • радиоприемник с микрофонным входом.

Наматываем провод на магнитопровод, концы припаиваем к кабелю, изолируем, разъем вставляем в микрофонный вход и искатель скрытой проводки своими руками сделан за каких-то полчаса. Включаем максимальную громкость, водим катушкой по поверхности поиска. По изменению звука находим место прокладки скрытого кабеля.

Малогабаритный металлодетектор

Детектор предназначен для поиска скрытой проводки, арматуры и других металлических предметов.

Основное отличие от предыдущих моделей, не требуется самому наматывать катушки индуктивности. Вместо них используется обмотка реле. В основе работы искателя лежит задача выделения разностной частоты двух генераторов, когда при приближении к металлическому предмету один генератор для поиска (LC) изменяет свою частоту колебаний.

В состав металлоискателя входят LC и RC-генераторы, буферный каскад, смеситель, компаратор и выходной каскад.

Частоты RC и LC-генераторов подбираются примерно одинаковыми, тогда, пройдя через смеситель, на выходе будет уже три частоты. Третья равна разности частот RC и LC-контуров.

С выходного элемента меандр через емкость С5 поступает на телефон, у которого сопротивление должно быть примерно 0,1 КОм. Так как емкость и активное сопротивление телефона образуют диффенцирующую RC цепочку, то на подъеме и спаде меандра будет образовываться импульс. В результате человек услышит щелчки с частотой в два раза превышающую разностную.

Обнаружение скрытой проводки будет выявляться по изменению частоты звука. Катушка берется из реле РЭС 9, при этом подвижные элементы удаляются. Так как реле содержит 2 катушки с различными сердечниками, общие выводы обмоток надо соединить с емкостью С1, а сердечник и корпус переменного сопротивления, — с общей шиной.

В качестве печатной платы используется двусторонний фольгированный гетинакс или стеклотекстолит. Детали искателя следует размещать на одной стороне, вторую сторону вытравливать не надо, ее нужно соединить с общей шиной прибора.

На второй стороне закрепляется батарея, катушка индуктивности из реле.

Плата устанавливается в любой неметаллический корпус, где крепится разъем для телефона. Наладка металлоискателя начинается с подгонки частоты LC-генератора подбором емкости С1. Частота должна находиться в диапазоне 60-90 кГц.

Затем меняем емкость конденсатора С2 до тех пор, пока в телефоне не появится звук. При регулировке сопротивления в разные стороны звук должен изменяться.

Защита от помех DC

Раздельное питание

Один из лучших способов защититься от помех по питанию – питать силовую и логическую части от отдельных источников питания: хороший малошумящий источник питания на микроконтроллер и модули/сенсоры, и отдельный на силовую часть. В автономных устройствах иногда ставят отдельный аккумулятор на питание логики, и отдельный мощный – на силовую часть, потому что стабильность и надёжность работы очень важна.

Искрогасящие цепи DC

При размыкании контактов в цепи питания индуктивной нагрузки происходит так называемый индуктивный выброс, который резко подбрасывает напряжение в цепи вплоть до того, что между контактами реле или выключателя может проскочить электрическая дуга (искра). В дуге нет ничего хорошего – она выжигает частички металла контактов, из за чего они изнашиваются и со временем приходят в негодность. Также такой скачок в цепи провоцирует электромагнитный выброс, который может навести в электронном устройстве сильные помехи и привести к сбоям или даже поломке! Самое опасное, что индуктивной нагрузкой может являться сам провод: вы наверняка видели, как искрит обычный выключатель света в комнате. Лампочка – не индуктивная нагрузка, но идущий к ней провод имеет индуктивность. Для защиты от выбросов ЭДС самоиндукции в цепи постоянного тока используют обыкновенный диод, установленный встречно-параллельно нагрузке и максимально близко к ней. Диод просто закоротит на себя выброс, и все дела:

Где VD – защитный диод, U1 – выключатель (транзистор, реле), а R и L схематично олицетворяют индуктивную нагрузку. Диод нужно ОБЯЗАТЕЛЬНО ставить при управлении индуктивной нагрузкой (электромотор, соленоид, клапан, электромагнит, катушка реле) при помощи транзистора, то есть вот так:

При управлении ШИМ сигналом рекомендуется ставить быстродействующие диоды (например серии 1N49xx) или диоды Шоттки (например серии 1N58xx), максимальный ток диода должен быть больше или равен максимальному току нагрузки.

Фильтры

Если силовая часть питается от одного источника с микроконтроллером, то помехи по питанию неизбежны. Простейший способ защитить МК от таких помех – конденсаторы по питанию как можно ближе к МК: электролит 6.3V 470 uF (мкФ) и керамический на 0.1-1 мкФ, они сгладят короткие просадки напряжения. Кстати, электролит с низким ESR справится с такой задачей максимально качественно.

Ещё лучше с фильтрацией помех справится LC фильтр, состоящий из индуктивности и конденсатора. Индуктивность нужно брать с номиналом в районе 100-300 мкГн и с током насыщения больше, чем ток нагрузки после фильтра. Конденсатор – электролит с ёмкостью 100-1000 uF в зависимости опять же от тока потребления нагрузки после фильтра. Подключается вот так, чем ближе к нагрузке – тем лучше:

Подробнее о расчёте фильтров можно почитать здесь.

“Универсальное” электромагнитное реле

Электромагнитное реле является по сути управляемым механическим выключателем: подали на него ток – оно замкнуло контакты, сняли ток – разомкнуло. Контакты являются именно контактами: металлическими “пятаками”, которые прижимаются друг к другу. Именно поэтому такое реле может управлять как нагрузкой постоянного, так и переменного тока.

Сама катушка реле является неслабой индуктивной нагрузкой, что приводит к дополнительным проблемам (читай ниже), поэтому для управления “голым” реле нам понадобится дополнительная силовая и защитная цепь.

После изучения данного урока вы сами сможете её составить (транзистор и диод), а сейчас мы поговорим о модулях реле: готовая плата, на которой стоит само реле, а также цепи коммутации, защиты и даже оптическая развязка. Такие модули бывают “семейными” – с несколькими реле на борту. Спасибо китайцам за это! Смотрите варианты у меня в каталоге ссылок на Али.

Такое реле сделано специально для удобного управления с микроконтроллера: пины питания VCC (Vin, 5V) и GND подключаются к питанию, а далее реле управляется логическим сигналом, поданным на пин IN. С другой стороны стоит клеммник для подключения проводов, обычно контакты подписаны как NO, NC и COM. Это общепринятые названия пинов кнопок, переключателей и реле:

  • COM – Common, общий. Реле является переключающим, и пин COM является общим.
  • NO – Normal Open, нормально открытый. При неактивном реле данный контакт не соединён с COM. При активации реле он замыкается с COM.
  • NC – Normal Closed, нормально закрытый. При неактивном реле данный контакт соединён с COM. При активации реле он размыкается с COM.

Подключение нагрузки через реле думаю для всех является очевидным:

Важный момент: катушка реле в активном режиме потребляет около 60 мА, то есть подключать больше одного модуля реле при питании платы от USB не рекомендуется – уже появятся просадки по напряжению и помехи:

Такие модули реле бывают двух типов: низкого и высокого уровня. Реле низкого уровня переключается при наличии низкого сигнала (GND) на управляющем пине digitalWrite(pin, LOW) . Реле высокого уровня соответственно срабатывает от высокого уровня digitalWrite(pin, HIGH) . Какого типа вам досталось реле можно определить экспериментально, а можно прочитать на странице товара или на самой плате. Также существуют модули с выбором уровня:

На плате, справа от надписи High/Low trigger есть перемычка, при помощи которой происходит переключение уровня. Электромагнитное реле имеет ряд недостатков перед остальными рассмотренными ниже способами, вы должны их знать и учитывать:

  • Ограниченное количество переключений: механический контакт изнашивается, особенно при большой и/или индуктивной нагрузке.
  • Противно щёлкает!
  • При большой нагрузке реле может “залипнуть”, поэтому для больших токов нужно использовать более мощные реле, которые придётся включать при помощи… маленьких реле. Или транзисторов.
  • Необходимы дополнительные цепи для управления реле, так как катушка является индуктивной нагрузкой, и нагрузкой самой по себе слишком большой для пина МК (решается использованием китайского модуля реле).
  • Очень большие наводки на всю линию питания при коммутации индуктивной нагрузки.
  • Относительно долгое переключение (невозможно поставить детектор нуля, читай ниже), при управлении индуктивными цепями переменного тока можно попасть на большой индуктивный выброс, необходимо ставить искрогасящие цепи.

Важный момент связан с коммутацией светодиодных светильников и ламп, особенно дешёвых: у них прямо на входе стоит конденсатор, который при резком подключении в цепь становится очень мощным потребителем и приводит к скачку тока. Скачок может быть настолько большим, что 15-20 Ваттная светодиодная лампа буквально сваривает контакты реле и оно “залипает”! Данный эффект сильнее выражен на дешёвых лампах, будьте с ними аккуратнее (за инфу спасибо DAK). При помощи реле можно плавно управлять сильно инерционной нагрузкой, такой как большой обогреватель. Для этого нужно использовать сверхнизкочастотный ШИМ сигнал, у меня есть готовая библиотека. Не забываем, что реле противно щёлкает и изнашивается, поэтому для таких целей лучше подходит твердотельное реле, о котором мы поговорим ниже.

Универсальный детектор электропроводки

Самодельная версия комбинированного устройства. Состоит из 2 модулей:

  • металлоискателя;
  • электростатического детектора.

Такое исполнение усложняет конструкцию прибора, но расширяет спектр его возможностей. Он способен найти:

  • обесточенную линию;
  • провод под напряжением внутри металлического профиля;
  • арматуру, гвозди и т.д.

Индуктивные катушки металлоискателя выполняют из провода марки ПЭВТЛ сечением 0,35 кв. мм, наматывая их на ферритовый сердечник диаметром 8 мм.

Количество витков:

  • L1 – 120;
  • L2 – 45.

В схеме задействованы 2 усилителя марки КР140УД1208. Транзистор КТ315 (VT1) выступает генератором высоких частот (100 кГц). Он переходит в режим возбуждения благодаря переменному резистору R6.

Диод КД522 выпрямляет выходной сигнал VT1.

Микросхема К561ЛЕ5 выступает генератором звука. Выходной сигнал с VT1 посредством компаратора на базе усилителя КР140УД1208ОУ переводит ее в режим ожидания, что сопровождается затуханием светодиода.

Порядок настройки металлоискателя:

  1. Разместить прибор на удалении от металлических предметов.
  2. С помощью подстроечных резисторов R3 и R5 добиться, чтобы генерация стала минимальной (диод светится слабо и неравномерно).
  3. Вращая R3, погасить диод.
  4. Поднести металлический предмет, например монету, и с помощью подстроечных резисторов настроить чувствительность.

При попадании металлического предмета в поле действия антенны из катушек L1 и L2 происходит срыв генерации с последующим запуском компаратора и свечением диода. Одновременно пьезоизлучатель издает звук частотой 1000 Гц.

Примеры симисторов

Примеры симисторов приведены в таблице ниже. Здесь \(I_H\) — ток удержания,
\(\max\ I_{T(RMS)}\) — максимальный ток, \(\max\ V_{DRM}\) — максимальное напряжение,
\(I_{GT}\) — отпирающий ток.

Модель \(I_H\) \(\max\ I_{T(RMS)}\) \(\max\ V_{DRM}\) \(I_{GT}\)
BT134-600D 10 мА 4 А 600 В 5 мА
MAC97A8 10 мА 0,6 А 600 В 5 мА
Z0607 5 мА 0,8 А 600 В 5 мА
BTA06-600C 25 мА 6 А 600 В 50 мА

Реле

С точки зрения микроконтроллера, реле само является мощной нагрузкой,
причём индуктивной. Поэтому для включения или выключения реле нужно
использовать, например, транзисторный ключ. Схема подключения и также
улучшение этой схемы было рассмотрено ранее.

Реле подкупают своей простотой и эффективностью. Например, реле
HLS8-22F-5VDC — управляется напряжением 5 В и способно коммутировать
нагрузку, потребляющую ток до 15 А.

Главное преимущество реле — простота использования — омрачается
несколькими недостатками:

  • это механический прибор и контакты могу загрязниться или даже привариться друг к другу,
  • меньшая скорость переключения,
  • сравнительно большие токи для переключения,
  • контакты щёлкают.

Часть этих недостатков устранена в так называемых твердотельных
реле. Это,
фактически, полупроводниковые приборы с гальванической развязкой,
содержащие внутри полноценную схему мощного ключа.

Заключение

Таким образом, в арсенале у нас достаточно способов управления
нагрузкой, чтобы решить практически любую задачу, которая может
возникнуть перед радиолюбителем.

Полезные источники

  1. Хоровиц П., Хилл У. Искусство схемотехники. Том 1. — М.: Мир, 1993.
  2. Управление мощной нагрузкой переменного тока
  3. Управление мощной нагрузкой постоянного тока. Часть 1
  4. Управление мощной нагрузкой постоянного тока. Часть 2
  5. Управление мощной нагрузкой постоянного тока. Часть 3
  6. Щелкаем реле правильно: коммутация мощных нагрузок
  7. Управление мощной нагрузкой переменного тока
  8. Управление MOSFET-ами #1
  9. Современные высоковольтные драйверы MOSFET- и IGBT-транзисторов
  10. Ключ на плечо! – особенности применения высоковольтных драйверов производства IR

Схема детектора обрыва проводки

Данный прототип обнаруживает изолированный кабель под напряжением на расстоянии около 4 см. Использовалась пара bc547b. Эта схема может питаться от батареи CR2032 3 В или от 2 ААА 1,5 В, так что должно работать в широком диапазоне.

Принцип работы тот же — светодиод загорается при приближении к источнику переменного напряжения. Чтоб снизить чувствительность, надо:

  1. уменьшить напряжение питания батареи;
  2. соединить базу с эмиттером второго транзистора (который со светодиодом в эмиттере) с помощью экспериментально выбранного резистора (десятки, сотни кило или мега Ом).
  3. сделать антенну из кабеля экранированного — подключить экран к минусу батареи, обрезать экран до такой длины, чтобы чувствительность не была слишком низкой или высокой.

Детектор на одном транзисторе

Следующая схема разработана В. Огневым из Перми. В искателе используется особенность полевого транзистора, он очень чувствителен к малейшим помехам. При наводке на его затвор, сопротивление канала меняется. Это приводит к сильному изменению протекающего через телефон тока, что приводит к изменению звука. Телефон должен быть высокоомным с сопротивлением 1600-2200 Ом, батарейка напряжением 1,5 – 4,5 вольта, полярность ее подключения значения не имеет.

При поиске скрытой проводки устройством водят по стене и по мощности звука находят место расположения провода. Вместо телефона можно использовать омметр со встроенным источником питания, тогда батарейка не нужна.

Синхронизирующее напряжение

При отсутствии синхронизирующего напряжения устанавливается режим колебаний с периодом, при котором условия самовозбуждения вьшолняютса лучшим образом.

В качестве синхронизирующего напряжения используются исследуемые напряжения, напряжение питающей сети и напряжения от любых внешних источников. Наиболее распространенной является так называемая внутренняя синхронизация, при которой напряжение исследуемого сигнала подается в переключающую цепь генератора развертки с выхода первого каскада усилителя вертикального отклонения. При этом создаются наилучшие условия наблюдения, так как исследуемый сигнал даже при его нестабильности ведет за собой частоту развертки и изображение остается неподвижным. Синхронизация от сети переменного тока используется в тех случаях, когда исследуются процессы, частота которых кратна 50 гц. Напряжение синхронизации снимается с понижающей обмотки трансформатора питания осциллографа.

При воздействии синхронизирующего напряжения на автоколебательную систему возможны режимы, при которых частота генерируемого напряжения I оказывается равной частоте воздействующего напряжения или находится с ней в строго постоянном отношении. Если при этом сохраняется равенство частоты генерируемых колебаний частоте I воздействующего напряжения, то такой режим называют синхронизацией.

Пусть источник синхронизирующего напряжения включен в разрыв сеточной цепи релаксатора и ( длительность импульсов синхронизации бесконечна мала.

Во всех случаях синхронизирующее напряжение должно изменяться синхронно с исследуемым напряжением. Принцип синхронизации частоты генератора развертки будет рассмотрен несколько позже.

Для определенности считаем синхронизирующее напряжение ес гармоническим.

Схема деления и умножения частоты при помощи мультивибратора.

В данной схеме синхронизирующее напряжение образцовой частоты вводится в анодную цепь мультивибратора.

В момент подачи синхронизирующего напряжения соотношение фаз между синхросигналом и синхронизируемым напряжением случайное. На длительность этого процесса существенно влияет амплитуда синхронизирующего напряжения.

График, поясняющий действие синхронизирующего напряжения.

Реактивное электрическое фазо-сдвигающее устройство вертикального управления с диодным коммутатором.

Для получения точного соответствия фазы синхронизирующего напряжения фазе напряжения сети, питающей вентильный преобразователь, влияние меняющегося падения напряжения, создаваемого токами других потребителей, должно быть минимальным. В противном случае фаза фазо-управляемых импульсов будет меняться при неизменном сигнале управления, что может привести к невозможности нормальной работы вентильного преобразователя.

Ручка АМПЛИТУДА СИНХРОНИЗАЦИИ регулирует амплитуду синхронизирующего напряжения, которая должна быть тем больше, чем значительнее частота генератора развертки отличается от частоты исследуемого напряжения. Эта регулировка позволяет получить неподвижную осциллограмму на экране осциллографа.

Для ограничения диапазона регулирования фазы преобразованному синхронизирующему напряжению придается форма, показанная на рис. 2 — 115 6, с помощью до — полнительного ограничивающего трансформатора ТО ( рис. 2 — 115, а), имеющего сердечник с прямоугольной характеристикой намагничивания.

На сетку тиратрона через трансформатор подается синхронизирующее напряжение, обеспечивающее генерацию пилообразного напряжения, синхронного с входными импульсами синхронизирующего источника. Выходное напряжение снимается с конденсаторов С1 — С3 либо с анода лампы. Схемы такого рода позволяют получать частоту не выше 50 кгц в связи с тем, что процессы деионизации тиратрона на больших частотах не успевают заканчиваться к моменту следующего зажигания дуги.

Пример расчёта простой схемы

Пусть, например, требуется включать и выключать светодиод с помощью
микроконтроллера. Тогда схема управления будет выглядеть следующим
образом.

Пусть напряжение питания равно 5 В.

Характеристики (рабочий ток и падение напряжения) типичных светодиодов
диаметром 5 мм можно приблизительно оценить по таблице.

Цвет \(I_{LED}\) \(V_{LED}\)
Красный 20 мА 1,9 В
Зеленый 20 мА 2,3 В
Желтый 20 мА 2,1 В
Синий (яркий) 75 мА 3,6 В
Белый (яркий) 75 мА 3,6 В

Пусть используется белый светодиод. В качестве транзисторного ключа
используем КТ315Г — он подходит по максимальному току (100 мА) и
напряжению (35 В). Будем считать, что его коэффициент передачи тока
равен \(\beta = 50\) (наименьшее значение).

Итак, если падение напряжения на диоде равно \(V_{LED} = 3{,}6\,\textrm{В}\), а
напряжение насыщения транзистора \(V_{CE} = 0{,}4\,\textrm{В}\) то напряжение на
резисторе R2 будет равно \(V_{R2} = 5{,}0 — 3{,}6 — 0{,}4 = 1\,\textrm{В}\). Для
рабочего тока светодиода \(I_{LED} = 0{,}075\,\textrm{А}\) получаем

Значение сопротивление было округлено, чтобы попасть в ряд
E12.

Для тока \(I_{LED} = 0{,}075\,\textrm{А}\) управляющий ток должен быть в \(\beta =
50\) раз меньше:

Падение напряжения на переходе эмиттер — база примем равным \(V_{EB} =
0{,}7\,\textrm{В}\).

Отсюда

Сопротивление округлялось в меньшую сторону, чтобы обеспечить запас по
току.

Таким образом, мы нашли значения сопротивлений R1 и R2.

Нестандартные способы

Напоследок, стоит описать пару необычных приборов для поиска скрытой проводки, которые могут сделать даже люди, не обладающие знаниями в электронике. Если в доме имеется обычный компас, то это уже готовый индикатор проводки. Перед употреблением проводку следует хорошенько нагрузить, и по отклонению стрелки компаса ищите местонахождение провода.

Второй способ более эффективный, тоже используется сила магнита. На кусок нитки привязывается постоянный магнит, лучше из неодима, и медленно проводится вдоль стены. Там где будет проходить кабель или арматура, магнит отклонится. Происходит это по причине генерации электрическим током магнитного тока. Так элементарные знания физики магнитных явлений помогают найти спрятанные провода.

Драйвер полевого транзистора

Если всё же требуется подключать нагрузку к n-канальному транзистору
между стоком и землёй, то решение есть. Можно использовать готовую
микросхему — драйвер верхнего плеча. Верхнего — потому что транзистор
сверху.

Выпускаются и драйверы сразу верхнего и нижнего плеч (например,
IR2151) для построения двухтактной схемы, но для простого включения
нагрузки это не требуется. Это нужно, если нагрузку нельзя оставлять
«висеть в воздухе», а требуется обязательно подтягивать к земле.

Рассмотрим схему драйвера верхнего плеча на примере IR2117.

Схема не сильно сложная, а использование драйвера позволяет наиболее
эффективно использовать транзистор.

Схема детектора скрытой проводки

Эта небольшая схема поможет также отследить линию провода под напряжением 220 В в стене. Транзистор FET подключен к емкостному датчику (который обычно представляет собой простую металлическую пластину). Когда держите датчик близко к стене, светодиод будет показывать поток электронов вокруг того места, где он обнаруживает провод. Работает от 9 В.

Аналогичная схема работает уже лет 10 — установлена в корпусе пластикового фонарика, который еще имеет два кабеля и выполняет функцию адаптера. Она позволяет определить, подключено ли данное устройство к защитному проводнику, если поднесете антенну, например, к корпусу стиральной машины, загорится светодиод.

На сплошном кабеле, например от удлинителя (длина не имеет значения), можно с точностью до 1 см определить разрыв отдельных проводов — только кабель должен быть сухим!

Конечно на поиск скрытой проводки в стене влияет толщина штукатурки, тип, влажность и краска также имеют значение. Под плиткой в ​​ванной детектор слегка светится над кабелем. У компьютера светодиод горит примерно на расстоянии 15 см от корпуса ПК, монитора. Если весь комплект — компьютер, монитор подключен к защитному заземляемому проводнику, можете прижать даже антенну в контакт к этим устройствам и ничего не загорится.

Схема ускоренного включения

Как уже было сказано, если напряжение на затворе относительно истока
превышает пороговое напряжение, то транзистор открывается и
сопротивление сток — исток мало. Однако, напряжение при включении не
может резко скакнуть до порогового. А при меньших значениях транзистор
работает как сопротивление, рассеивая тепло. Если нагрузку приходится
включать часто (например, в ШИМ-контроллере), то желательно как можно
быстрее переводить транзистор из закрытого состояния в открытое и
обратно.

Относительная медленность переключения транзистора связана опять же с
паразитной ёмкостью затвора. Чтобы паразитный конденсатор зарядился
как можно быстрее, нужно направить в него как можно больший ток. А так
как у микроконтроллера есть ограничение на максимальный ток выходов,
то направить этот ток можно с помощью вспомогательного биполярного
транзистора.

Кроме заряда, паразитный конденсатор нужно ещё и разряжать. Поэтому
оптимальной представляется двухтактная схема на комплементарных
биполярных транзисторах (можно взять, например, КТ3102 и КТ3107).

Ещё раз обратите внимание на расположение нагрузки для n-канального
транзистора — она расположена «сверху». Если расположить её между
транзистором и землёй, из-за падения напряжения на нагрузке напряжение
затвор — исток может оказаться меньше порогового, транзистор откроется
не полностью и может перегреться и выйти из строя

Схема детектора скрытой проводки

Эта небольшая схема поможет также отследить линию провода под напряжением 220 В в стене. Транзистор FET подключен к емкостному датчику (который обычно представляет собой простую металлическую пластину). Когда держите датчик близко к стене, светодиод будет показывать поток электронов вокруг того места, где он обнаруживает провод. Работает от 9 В.

Аналогичная схема работает уже лет 10 — установлена в корпусе пластикового фонарика, который еще имеет два кабеля и выполняет функцию адаптера. Она позволяет определить, подключено ли данное устройство к защитному проводнику, если поднесете антенну, например, к корпусу стиральной машины, загорится светодиод.

На сплошном кабеле, например от удлинителя (длина не имеет значения), можно с точностью до 1 см определить разрыв отдельных проводов — только кабель должен быть сухим!

Конечно на поиск скрытой проводки в стене влияет толщина штукатурки, тип, влажность и краска также имеют значение. Под плиткой в ​​ванной детектор слегка светится над кабелем. У компьютера светодиод горит примерно на расстоянии 15 см от корпуса ПК, монитора. Если весь комплект — компьютер, монитор подключен к защитному заземляемому проводнику, можете прижать даже антенну в контакт к этим устройствам и ничего не загорится.

Создание платы

Мы рассмотрим самый бюджетный вариант – вытравку платы в соляном растворе, но прежде на неё необходимо будет наклеить проект, который вы можете создать в программе по желанию. Дальнейшая сборка не несёт никаких трудностей и секретов, необходимо будет воспользоваться панельками под оптроны и мостовые выпрямители. Также, при написании текста, для разметки элемента, его стоит делать зеркальным, так как при ЛУТе, отпечатавшийся рисунок примет правильный вид на меде, и перенесется так, что вы без проблем прочитаете все необходимые данные.

Хорошим выбором станет TIC206, который выдаст добротных 6 ампер. Но здесь стоит учесть, что те проводники, которые установлены на плате, просто не выдержат такую силу тока, поэтому дополнительно стоит припаять провод на проводник симистора у разъемов, а вторую часть – к другим разъемам.

Также, при наличии оптрона H11AA11, мостовой выпрямитель можно не использовать, ведь в нем уже имеются два не параллельных диода, а также возможность работы с переменными токами. Совместимость с выводами 4N25 позволяет просто вставить его к припою с двумя перемычками, находящимися между 5 и 7 резистором, на нашей схеме.

Во втором варианте схема будет выглядеть так:

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: