Как сделать простой блок питания для паяльника на 24 вольта с регулировкой напряжения и цифровой индикацией выходного напряжения и тока

Настройка терморегулятора

Как уже говорилось, терморегулятор на базе датчика LM335 в настройке не нуждается. Достаточно знать напряжение, подаваемое потенциометром на прямой вход компаратора.

Измерить его можно при помощи вольтметра. Необходимое значение напряжения определяется по приведенной выше формуле.

Если нужно, к примеру, чтобы прибор срабатывал при температуре в 20 градусов, оно должно составлять 2,93 В.

Если в качестве термодатчика применяется какой-либо иной элемент, эталонное напряжение придется проверять опытным путем. Для этого необходимо воспользоваться цифровым термометром, например, ТМ-902С. Для точности настройки датчики термометра и терморегулятора можно соединить посредством изоленты, после чего их помещают в среду с различной температурой.


Терморегулятор из подручных материалов

Ручку потенциометра нужно плавно вращать, пока терморегулятор не сработает. В этот момент следует посмотреть на шкалу цифрового термометра и отображаемую на ней температуру нанести на шкалу терморегулятора. Можно определить крайние точки, например, для температуры в 8 и 40 градусов, а промежуточные значения отметить, разделив диапазон на равные части.

Если цифрового термометра под рукой не оказалось, крайние точки можно определять по воде с плавающим в ней льдом (0 градусов) или по кипящей воде (100 градусов).

Сталкиваясь с выбором обогревателя, люди обнаруживают, что типов приборов существует немало, но выбрать нужно один. Керамический обогреватель для дома – тонкости правильного выбора, обзор моделей и цен.

Нормы влажности воздуха и способы ее измерения представлены в этой теме.

Контроль в помещениях

Типовая схема терморегулятора для погреба.

Приборы обозначаются латинскими буквами и цифрами. Например, LM135. Чтобы не ошибиться в выборе, запомните: 1 — применение в военной технике, 2 — применение в производственных аппаратах и устройствах, 3 — применение в бытовых приборах. Российским аналогом является обозначение транзисторов — 2Т (военный) и КТ (массовый). Принцип действия такого датчика таков: при повышении температуры увеличивается напряжение стабилизации, то есть это стабилитрон. Удостовериться в правильности выбора можно, почитав технические характеристики прибора. Точка калибровки указана в кельвинах. Температурная шкала указана в градусах по Цельсию.

Вспоминая школьный курс физики, переводите 0С= 0+273=273К. Рабочий диапазон датчика от -40 до 100°C. Если используется такой датчик, нет нужды в сомнительных опытах. Достаточно рассчитать напряжение на выходе стабилитрона, а затем это значение указать задающим на входе компаратора (сравнивающего устройства). Температурный сенсор LM335 стоит недорого — порядка 35-40 рублей. Взяв за основу этот термодатчик, нарисуйте схему терморегулятора для погреба.

Принципиальная электрическая схема терморегулятора.

На практике она дополнится выходным устройством для включения нагревателя, блоком питания и индикатором работы.

Следующий важный элемент — компаратор, например LM311. Он имеет два входа — прямой (2), обозначенный «+», и инверсный (3), обозначенный «-», и один выход. На схеме выход компаратора обозначен цифрой 7. Работает это устройство так: напряжение на входе 2 больше, чем на входе 3, на выходе получаем высокий уровень. Транзистор открылся, подключил нагрузку. Потенциометр, подключенный к прямому входу, устанавливает температуру — задает порог срабатывания компаратора. При обратной ситуации (напряжение на входе 2 меньше, чем на входе 3), на выходе уровень понижается. Повышается температура, срабатывает термореле, компаратор переходит на низкий уровень, транзистор закрывается, ТЭН выключается. Этот цикл повторяется беспрерывно.

Привет всем любителям электронных самоделок. Недавно я по быстрому смастерил электронный терморегулятор своими руками, схема устройства очень проста. В качестве исполнительного устройства используется электромагнитное реле с мощными контактами, которые могут выдержать ток до 30 ампер. Поэтому рассматриваемая самоделка может использоваться для разных бытовых нужд.

По нижеприведенной схеме, терморегулятор можно использовать, например, для аквариума или для хранения овощей. Кому то он может пригодиться при использовании совместно с электрическим котлом, а кто-то его может приспособить и для холодильника.

Терморегулятор на тиристорах.

Достоинством этого терморегулятора является отсутствие электромагнитного реле, надежность контактов которого при больших токах коммутации достаточно низка Вместо этого используется бесконтактная коммутация нагревателя с помощью тиристоров Принципиальная схема терморегулятора приведена на рис 13

Устройство имеет две входные клеммы для присоединения к сети переменного тока напряжением 220 В и две выходные клеммы, к которым подключается нагревательный элемент В качестве чувствительного датчика используется

терморезистор R3, входящий в состав измерительного моста совместно с резисторами Rl, R2 и R4, R5 К одной диагонали моста подводится напряжение питания, а к другой подключен эмиттерный переход транзистора VT1 Коллектор VT1 непосредственно соединен с базой транзистора VT2 Поэтому отпирание или запирание VT1 приводят к отпиранию или запиранию VT2 Питание моста производится от сети с помощью гасящего резистора R6, выпрямительного диода VD1 и конденсатора С1, сглаживающего пульсации выпрямленного напряжения

Если температура окружающего воздуха меньше установленной переменным резистором R2, сопротивление терморезистора больше нормы, потенциал базы VT1 выше потенциала эмиттера и оба транзистора заперты При положительном полупериоде сетевого напряжения на верхней сетевой клемме происходит заряд конденсатора С2 током управляющего электрода тиристора VS1 через резистор R6 Поэтому тиристор VS1 открыт и протекает ток с верхней сетевой клеммы на верхнюю выходную клемму через нагреватель на нижнюю выходную клемму и далее через открытый тиристор VS1 на нижнюю сетевую клемму Одновременно заряжается конденсатор СЗ через элементы VD2, R7 и открытый тиристор VS1 В течение отрицательного полупериода напряжения сети тиристор VS1 запирается, a VS2 отпирается током разряда конденсатора СЗ через резистор R8 и управляющий электрод Ток протекает с нижней сетевой клеммы через тиристор VS2 на нижнюю выходную клемму, нагреватель, к верхней выходной клемме и верхней сетевой клемме В это время конденсатор С2 разряжается через диод VD3 и резистор R6

Так в течение обоих полупериодов сетевого напряжения к нагревателю поступает питание

Когда температура окружающего воздуха поднимется, сопротивление терморезистора уменьшится, и потенциал базы VT1 станет ниже потенциала эмиттера Транзистор VT1 откроется, что вызовет отпирание до насыщения транзистора VT2, который зашунтирует цепь управления тиристора VS1, и заряд конденсатора С2 будет происходить через транзистор VT2 При запертом тиристоре VS1 также будет заперт и тиристор VS2, поскольку конденсатор СЗ не может заряжаться

Редакция журнала «Радио» рекомендовала применить в качестве VT1 транзистор КТ349В, VT2 – КТ602, VD1, VD2- КД202С, VD3 – Д223 Тиристоры предлагалось заменить на КУ201К или КУ201Л Однако они допускают приложение обратного напряжения не более 300 В Поэтому лучше установить КУ202Н

Tweet Нравится

  • Предыдущая запись: Первая собранная схема – для новичков в радиоделе
  • Следующая запись: Простой карманный приемник. Серов В.

Тиристорный последовательный инвертор в индукционной плите (0)
Тиристорный инвертор, выдерживающий изменение нагрузки в широких пределах (0)
Возникновение шума в тиристорных цепях (0)
Снова тиристор с управляемым выключением (0)
Тиристор, управляемый МОП-транзистором: еще один удар по упрямцам (0)
Тестер для проверки тиристоров (0)
Базовая схема регулирования напряжения на нагрузке (0)

Отличие дорогих электронных термостатов от механических

Какие сверхзадачи решают умные терморегуляторы, начиненные электроникой и дисплеем? Казалось бы, зачем покупать дорогое изделие, если можно приобрести регулятор с механическим колесиком и точно также выставлять для себя нужную температуру?

А дело здесь в одной из принципиальных проблем комфортной работы систем отопления – инерционности.

Дело в том, что выставив на теплых полах приемлемую для себя температуру в районе 23-25С, после ее достижения, даже с отключенным отопительным прибором, система до определенного момента по инерции все равно будет продолжать набирать градусы.

То же самое касается и минимального параметра. Фактически такие колебания в помещении могут достигать от 19 до 27С.

Ни о каком поддержании комфортных условий с такими разбросами речи не идет. В умных электронных термостатах все это решается ШИМ регулированием.

Термин этот пришел из радиоэлектроники. Там ШИМ – это широтно-импульсная модуляция. В отоплении данный принцип заключается в изменении времени включения и работы греющих элементов.

Пока температура в комнате находится далеко от желаемых параметров (задано +25С, в комнате +18С), теплые полы все время включены (греют, греют и греют).

Однако по мере достижения заданной точки (+25С), тепло начинает подаваться как бы небольшими, короткими импульсами (вкл-выкл). За счет этого происходит точное поддержание температуры в районе комфортной.

Про инерционные процессы, связанные с перегревом или наоборот с чрезмерным охлаждением, в этом случае можете забыть. Ничего подобного от термостата с колесиком вы не добьетесь.

Схема модели для инкубатора «Золушка»

Сделать данного типа терморегуляторы для инкубатора своими руками можно при помощи обычной многоканальной микросхемы. Однако в первую очередь для сборки потребуется микроконтроллер кнопочного типа. После закрепления элемента следует приступить к пайке транзисторов. В данном случае их потребуется два. Показатель емкости у них должен составлять не менее 5 пФ.

Следующим шагом припаиваются конденсаторы

На этом этапе важно уделить внимание выходным контактам. Показатель входного напряжения в цепи не должен превышать 33 В. В свою очередь, параметр проводимости тока обязан находиться в районе 3 мк

В свою очередь, параметр проводимости тока обязан находиться в районе 3 мк

Датчик терморегулятора для инкубатора располагается за обкладкой

В конце работы важно изолировать выходные контакты. С этой целью придется воспользоваться паяльной лампой

В свою очередь, параметр проводимости тока обязан находиться в районе 3 мк. Датчик терморегулятора для инкубатора располагается за обкладкой

В конце работы важно изолировать выходные контакты. С этой целью придется воспользоваться паяльной лампой

Терморегулятор для погреба своими руками. Схема и описание

В данной статье рассматривается самодельный терморегулятор для погреба, который можно изготовить своими руками из доступных недорогих радиодеталей. Схема достаточно проста и состоит из двух блоков. Первый измерительный – собран на базе компаратора 554СА3, второй блок собран на регуляторе мощности КР1182ПМ1 выполняющий роль коммутатора нагрузки до 1000 Вт.

Описание работы терморегулятора

Как уже было сказано выше, измеритель температуры терморегулятора для погреба построен на основе компаратора DD1.

На один из его входов (3 прямой вход) подается постоянное напряжение с делителя напряжения состоящего из резисторов R3 и R4. На другой его вход (4 инверсный вход) также подается напряжение с делителя на резисторах R1 и R2.

Резистор R2 представляет собой терморезистор ММТ-4 и является измерительным элементом конструкции.

При температуре в погребе выше чем 3…6 градусов на выводах компаратора DD1 (выв. 3 и 4) находится равное напряжение, вследствие чего на выходе (9) присутствует лог.1. Поэтому на реле K1 нет напряжения и его контакты замкнуты. Это приводит к блокировке работы фазового регулятора КР1182ПМ1 и терморегулятора в целом.

Если же температура в погребе опустится ниже отметки  6…3 градусов, то это приведет к увеличению сопротивления терморезистора R2 и как следствие это приведет к разбалансировке напряжений на входах компаратора. Теперь на выходе DD1 появится лог.0 и включится реле. Реле, разомкнув свои контакты, разрешает работу DD2.

Медленный заряд конденсатора С1 приводит к постепенному нарастанию напряжения и из-за этого произойдет плавное (в течении 1-2 секунды) включение электрических ламп, служащих в качестве нагревательного элемента терморегулятора погреба.

Подобный  режим работы устройства сохраняет лампы от перегорания. Подстроечный резистор R4 необходим для более точной настройки требуемого уровня температурного режима. Откалибровать терморегулятор можно своими руками по термометру, установленному в погребе.

В качестве подстроечного резистора R4 использован резистор марки СП4-1. Его корпус водонепроницаем и защищен от пыли и грязи.

Терморезистор R2 типа ММТ-4 на 3,9 кОм. Так же возможно применить другой с сопротивлением в районе от 1 кОм до 10 кОм.

Отрицательный ТКС означает, что при нагреве термистора его сопротивление уменьшается, в отличие от позистора (положительный ТКС) сопротивление которого возрастает с увеличением температуры.

Терморезистор монтируется прямо на самодельную печатную плату. В случае если планируется применить выносной вариант датчика, то терморезистор подсоединяется к плате проводом в экранирующей оплеткой. И еще необходимо подпаять  неполярный конденсатор 1 мкФ между выводом (3) компаратора  и общим  проводом схемы.

Реле К1 — герконовое реле с небольшим током потребления. Другое более мощное реле использовать нельзя, поскольку оно подключено непосредственно к выходу компаратора, ток нагрузки которого должен быть не более   50 мА.

Тиристоры, возможно, заменить на КУ202К, КУ202Л, КУ202М. При использовании тиристоров  КУ202К, КУ202Л мощность нагревательного элемента должна быть не более 200 Вт. В роли нагревателя в погреб крайне удобно применить электролампы накаливания.

Четыре лампы по 100Вт, расположенные по углам погреба, гарантируют поддержание постоянной температуры в районе от 3 до 6 градусов при небольшом объеме погреба. Все постоянные резисторы типа МЛТ-0,25 или CF-0,25.

Следует отметить, что резисторы CF имеют цветовую маркировку.

Обогреватель для аквариума

Реже, такой терморегулятор применялся для поддержания заданной температуры в аквариумах с тропическими рыбками. Такая необходимость возникала из-за того, что большинство, выпускаемых для этих целей термообогревателей, имеет механический терморегулятор объединенный с тэном в одном корпусе. А следовательно, они поддерживают в заданных пределах свою, а не окружающую температуру. Это хорошо работает только в помещениях со стабильной, в пределах одного-двух градусов, своей температурой воздуха.

Особенности монтажа

  • из-за инертности воды, датчик и обогреватель должны быть разнесены, но в пределах прямой видимости (без перекрытия растениями и элементами декора) друг от друга;
  • из-за электропроводимости воды, датчик должен быть изолирован, либо средствами с хорошей теплопроводностью, либо тонким слоем обычного герметика;
  • допускается использование как обычных аквариумных обогревателей, так и регулируемых, с выставленной на максимум температурой.

Можно найти и другие сферы применения данному, несложному в изготовлении устройству. К примеру для рассадных парничков, сушильных шкафов, различных термованночек. На что вашей фантазии хватит. Только, если нагрузка допускает возможность короткого замыкания, необходимо добавить плавкий предохранитель на 1 А.

P.S. Как говорилось выше данный простой терморегулятор применялся в инкубаторах раньше, сейчас на его смену пришли терморегуляторы с микроконтроллерным управлением, способные в автоматическом режиме понижать температуру в течении цикла инкубации. Да и сами инкубаторы обзавелись функцией регулирования влажности и переворачивания яиц.

Наружный терморегулятор

Как сделать датчик наружной температуры своими руками? Данное устройство позволяет без ошибочно определить температуру воздуха в открытом пространстве. Такие изделия часто используются в устройстве автотранспорта.

  • Для работы понадобится следующий комплект деталей и инструментов:
  • Терморезистор марки 2,56 Ком;
  • Микросхема для сборки оборудования;
  • Паяльник;
  • Пинцет;
  • Термистор 5,6 Ком;
  • Защита очки;
  • Калибровщик. Он поможет измерять погрешность и в измерении и регулировать правильную работу конструкции.

На микросхеме припаеваем  терморезистор. Далее фиксируется калибровщик и термистор. Когда все элементы зафиксированы переходим к испытанию нашего изделия.

Для этого подключаем провода в область верхнего разъема бортового компьютера. Соединять оборудование рекомендуется в области контактов номер 6 и 7. В данном случае полярность не имеет никакого значения.

Если деталь не показывает температуру, то на экране компьютера будут появляться длинные прочерки. В этом случае рекомендуется поменять полярность проводов. После этого на дисплее появится точные измерения температурного режима за пределами закрытого пространства.

Обзор схем

В зависимости от типа элементов, входящих в состав терморегулятора, различают механические и цифровые терморегуляторы. Работа первых основана на срабатывании реле, вторые имеют электронный блок, управляющий процессами. Примеры работы нескольких схем рассмотрим далее.

На приведенной схеме измерение происходит за счет резисторов R1 и R2, при температурных колебаниях переменный резистор R2 изменит величину падения напряжения. После чего через усилитель терморегулятора, представленный парой транзисторов, начнется протекание электротока через катушку реле K1.

Когда величина тока в соленоиде создаст магнитный поток достаточной силы, сердечник притянется и переключит контакты в другое положение. Недостатком такого терморегулятора является наличие магнитопроводящих частей, которые из-за гистерезиса вносят дополнительную поправку на температуру помимо измерительного органа.

Данный терморегулятор, в отличии от механического термостата, не использует подключение реле, поэтому является более точным. Его применение оправдано в тех ситуациях, когда несколько градусов могут сыграть весомую роль, к примеру, при контроле температуры нагрева двигателя или в инкубаторе.

Здесь изменение температурного режима фиксируется резистором R5, благодаря которому терморегулятор изменяет электрические параметры работы. Для сравнения и усиления разницы поступающего с полуплеч электрического параметра применяется микросхема К140УД7.

Для контроля нагрузки в схеме устанавливается тиристор VS1, в данном примере терморегулятора ограничение составляет 150Вт, но при желании может подбираться и другой параметр. Но следует учитывать, что эксплуатация тиристора в качестве ключа приводит к его нагреванию, поэтому с увеличением мощности необходимо установить радиатор для лучшей теплоотдачи.

Общее понятие о температурных регуляторах

Приборы, фиксирующие и одновременно регулирующие заданное температурное значение, в большей степени встречаются на производстве. Но и в быту они также нашли своё место. Для поддержания необходимого микроклимата в доме часто используются терморегуляторы для воды. Своими руками делают такие аппараты для сушки овощей или отопления инкубатора. Где угодно может найти своё место подобная система.

В данном видео узнаем что из себя представляет регулятор температуры:

В действительности большинство терморегуляторов являются лишь частью общей схемы, которая состоит из таких составляющих:

  1. Датчик температуры, выполняющий замер и фиксацию, а также передачу к регулятору полученной информации. Происходит это за счёт преобразования тепловой энергии в электрические сигналы, распознаваемые прибором. В роли датчика может выступать термометр сопротивления или термопара, которые в своей конструкции имеют металл, реагирующий на изменение температуры и под её воздействием меняющий своё сопротивление.
  2. Аналитический блок – это и есть сам регулятор. Он принимает электронные сигналы и реагирует в зависимости от своих функций, после чего передаёт сигнал на исполнительное устройство.
  3. Исполнительный механизм – некое механическое или электронное устройство, которое при получении сигнала с блока ведёт себя определённым образом. К примеру, при достижении заданной температуры клапан перекроет подачу теплоносителя. И напротив, как только показания станут ниже заданных, аналитический блок даст команду на открытие клапана.

Проверка работоспособности

По какой бы схеме ни было изготовлено устройство своими руками, его работоспособность необходимо проверить. В рабочую цепь должен включаться сам паяльник. Он является нагрузкой.

В конструкциях терморегуляторов для паяльников, где в схемах задействован светодиод, это сделать просто. Изменение яркости свечения говорит о том, что созданная конструкция работает. Для остальных проверку необходимо осуществлять с подключенной к схеме лампой накаливания. При наличии в цепи последовательно расположенного светодиода с резистором проверку осуществляют с помощью индикатора. Если он не будет светиться, то необходимо осуществить регулировку, т.е. подобрать резистор.

Обратите внимание! Для паяльников мощностью 100 Вт и выше в схемах регулятора необходимо симисторы или тиристоры устанавливать на радиаторы. Регулятор мощности, сделанный собственными руками или купленный в торговой сети, позволит в процессе пайки использовать ту температуру нагрева жала, которая будет качественно соединять необходимые компоненты

Это позволит избежать таких неприятностей, как порча деталей или выход их из строя, улучшит процесс пайки и сэкономит потребление электроэнергии

Регулятор мощности, сделанный собственными руками или купленный в торговой сети, позволит в процессе пайки использовать ту температуру нагрева жала, которая будет качественно соединять необходимые компоненты. Это позволит избежать таких неприятностей, как порча деталей или выход их из строя, улучшит процесс пайки и сэкономит потребление электроэнергии.

Работа схемы

Подстроечным резистором R2 устанавливается некоторое напряжение на выводе 3, которому соответствует температура включения вентилятора.

Когда температура охлаждающей жидкости ниже заданной, сопротивление датчика температуры высоко, и напряжение на нем существенно выше напряжения на выводе 3 А1. Поэтому, на выходе операционного усилителя А1, работающего как компаратор, будет низкое напряжение. Транзистор VT1 будет закрыт, и ток через него на обмотку реле включения вентилятора поступать не будет.

Так как в качестве компаратора здесь используется обычный операционный усилитель типаКР140УД608, минимальное напряжение на его выходе несколько отлично от нуля, поэтому, чтобы улучшить закрывание транзистора VT1 в цепь его эмиттера включены два диода типа 1N4004. Если при налаживании этого окажется недостаточно, количество этих диодов нужно увеличить.

Когда температура охлаждающей жидкости достигает и превышает заданную, сопротивление датчика температуры низко, и напряжение на нем ниже напряжения на выводе 3 А1. Поэтому, на выходе операционного усилителя А1 высокое напряжение. Транзистор VT1 открывается и пускает ток на обмотку реле включения вентилятора. Подстроечный резистор R2 — многооборотный.

Схемы авторегуляторов

В настоящее время, у любителей самодельной электроники, популярностью пользуются две схемы автоматического управления:

  1. На основе регулируемого стабилитрона типа TL431 – принцип работы состоит в фиксации превышения порога напряжения в 2,5 вольт. Когда на управляющем электроде он будет пробит, стабилитрон приходит в открытое положение и через него проходит нагрузочный ток. В том случае, когда напряжение не пробивает порог в 2,5 вольт, схема приходит в закрытое положение и отключает нагрузку. Достоинство схемы в предельной простоте и высокой надежности, так как стабилитрон оснащается только одним входом, для подачи регулируемого напряжения.
  2. Тиристорная микросхема типа К561ЛА7, либо ее современный зарубежный аналог CD4011B – основным элементом является тиристор Т122 или КУ202, выполняющий роль мощного коммутирующего звена. Потребляемый схемой ток в нормальном режиме не превышает 5 мА, при температуре резистора от 60 до 70 градусов. Транзистор приходит в открытое положение при поступлении импульсов, что в свою очередь является сигналом для открытия тиристора. При отсутствии радиатора, последний приобретает пропускную способность до 200 Вт. Для увеличения этого порога, понадобится установка более мощного тиристора, либо оснащение уже имеющегося радиатором, что позволит довести коммутируемую способность до 1 кВт.

Необходимые материалы и инструменты

Сборка самостоятельно не займет много времени, однако обязательно потребуются некоторые знания в области электроники и электротехники, а также опыт работы с паяльником. Для работы необходимо следующее:

  • Паяльник импульсный или обычный с тонким нагревательным элементом.
  • Печатная плата.
  • Припой и флюс.
  • Кислота для вытравливания дорожек.
  • Электронные детали согласно выбранной схемы.

Схема терморегулятора

Пошаговое руководство

  1. Электронные элементы необходимо разместить на плате с таким расчетом, чтобы их легко было монтировать, не задевая паяльником соседние, возле деталей активно выделяющих тепло, расстояние делают несколько большим.
  2. Дорожки между элементами протравливаются согласно рисунку, если такого нет, то предварительно выполняется эскиз на бумаге.
  3. Обязательно проверяется работоспособность каждого элемента при помощи мультиметра и только после этого выполняется посадка на плату с последующим припаиванием к дорожкам.
  4. Необходимо проверять полярность диодов, триодов и других деталей в соответствии со схемой.
  5. Для пайки радиодеталей не рекомендуется использовать кислоту, поскольку она может закоротить близкорасположенные соседние дорожки, для изоляции, в пространство между ними добавляется канифоль.
  6. После сборки, выполняется регулировка устройства, путем подбора оптимального резистора для максимально точного порога открывания и закрывания тиристора.

Детали устройства

В принципе, в этом качестве может быть задействован любой полупроводниковый элемент, так как характеристики этих деталей всегда зависят от температуры.

Так, например, ток коллектора обычного биполярного транзистора при нагреве возрастает, что неминуемо отражается на работе усилительного каскада (транзистор перестает реагировать на входной сигнал из-за смещения рабочей точки).

Похожим образом реагируют на изменение температуры и кремниевые диоды. При температуре +25 градусов напряжение на контактах свободного диода составит около 700 мВ, а замеры на перманентном диоде покажут примерно 300 мВ. Если же температура будет повышаться, напряжение с каждым градусом будет падать примерно на 2 мВ.

Однако, у всех этих элементов есть существенный недостаток: собранные на их базе терморегуляторы с большим трудом приходится настраивать, иначе говоря, калибровать. Ведь нам только приблизительно известно, какую элемент демонстрирует характеристику при той или иной температуре и как именно он реагирует на ее колебания. Гораздо проще работать с выпускаемыми современной промышленностью термодатчиками, проходящими калибровку еще на стадии производственного процесса.

Сильного удорожания проекта покупка такой детали не вызовет. Так, например, аналоговый термодатчик марки LM-335 компании National Semiconductor стоит всего 1 доллар.

Можно использовать и его модификации – датчики LM-135 и LM-235, хотя они предназначены для применения, соответственно, в военной электронике и промышленности.

Только в данном случае все параметры досконально известны: на каждый градус по шкале абсолютных температур (Кельвина) приходится напряжение в 10 мВ или 0,01 В.

Таким образом, если мы хотим знать, каким будет напряжение стабилизации LM-335 при температуре 20 градусов Цельсия, нужно прибавить к этому значению 273 (перевод в градусы Кельвина), а затем результат умножить на 0,01 В. В данном случае получим 2,93 В. На производстве датчик калибруется по температуре 25 градусов Цельсия. Рабочий диапазон температур, в пределах которого напряжение меняется линейно и по указанному закону (10 мВ/градус) лежит в пределах от -40 до +100 градусов Цельсия.

Итак, зная точное напряжение стабилизации LM-335 при той или иной температуре, нам остается выставить соответствующее напряжение на втором входе компаратора – и настройка терморегулятора будет завершена.

  1. Схему на базе термодатчика LM-335 следует компоновать таким образом, чтобы через него протекал ток величиной от 0,45 до 5 мА. Отметим, что напряжение питания терморегулятора не обязательно должно составлять 12 В. Это значение было предложено только потому, что оно позволяет применить вместо самодельного блока питания (понижающий трансформатор + выпрямитель + стабилизатор) обычный адаптер, который можно недорого купить в магазине. Если же все делать самостоятельно, то понижающий трансформатор можно собрать в расчете на выходное напряжение в пределах 3 – 15 В. Главное, чтобы на такое же напряжение было рассчитано используемое в схеме реле.
  2. Далее подбирают сопротивление резисторов делителя напряжения и переменного резистора таким образом, чтобы при имеющемся напряжении сила протекающего через термодатчик тока находилась в указанных пределах. В принципе, датчик останется работоспособным и при силе тока свыше 5 мА, но тогда он будет сильно греться, из-за чего терморегулятор будет работать некорректно.
  3. В качестве компаратора можно применить микросхему того же производителя, выпускаемую под маркой LM-311 (модификации для «военки» и промышленности – соответственно, LM-111 и LM-211).

Используемое в схеме реле является многоконтактным (типа МКУ). В упрощенном исполнении (без аккумулятора) можно воспользоваться автомобильным реле

Важно удостовериться, что допустимая для данного реле величина силы тока соответствует мощности нагревателя

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector