Расчет параметров
Для предотвращения пробоя деталей бестрансформаторных схем их необходимо правильно рассчитать. Для каждого устройства существует свой метод.
Транзисторный блок считают по закону Ома: U=I×R. Необходимо рассчитать сопротивления R1, R2, R3 исходя из величины, напряжения и тока, которые выдерживает каждый стабилитрон.
R=U макс/I мин.
Расчет балластного конденсатора для блоков с RC-цепочкой производится по следующей формуле C = I эфф/2*3,14*f *√(Uп²-Uв²), где:
- С — емкость балласта (фарад);
- Uп и Uв — питающее и выходное напряжения (вольт);
- I эфф — ток нагрузки;
- f — частота сигнала на входе устройства (герц).
Так как 1 фарад = 1 млн микрофарад, то формулу можно упростить:
C = 3200*I эфф/√(Uп²-Uв²).
Сопротивление R1 (кОм) примерно равняется 0,025 от величины балластного конденсатора. Его мощность не должна быть ниже 1 Вт (оптимально 2-5 Вт).
Если ручной подсчет неудобен, найдите и используйте калькулятор в режиме онлайн.
Стабилизатор на К142ЕН5 — с регулируемым выходным напряжением
В заметке С. Савина «Вариант включения стабилизатора К142ЕН5», опубликованной в «Радио» 1989, № 12, с, 66, речь шла о том, что если вывод 8 этой микросхемы подключить к общему проводу через стабилитрон, то напряжение на выходе стабилизатора увеличится на напряжение стабилизации включенного стабилитрона. Подобный совет повторил А. Гвоздак в статье «Доработка радиоконструктора «Юниор-1», помещенной в «Радио» № 6, с. 81—83 за 1991 г. Опыт показывает, что подборкой соответствующего стабилитрона можно в необходимой мере повысить выходное напряжение стабилизатора, но оно, как и при традиционном включении стабилизатора К142ВН5, фиксированное. Вместе с тем читатели нашего журнала сообщают, что аналогичный способ включения микросхемных стабилизаторов К142ЕН5 позволяет получить на выходе стабилизатора повышенное регулируемое напряжение. Об этом, в частности, рассказывают в своих письмах радиолюбители А. Чумаков из г. Йошкар-Ола и А. Черкасов из Караганды.
Подключение драйвера
Драйвер довольно просто подключается к светодиодам. На его корпусе имеется вся необходимая маркировка. На входные клеммы (INPUT) подается входное напряжение, на выходные (OUTPUT) – подключают гирлянду из светодиодов. Главное – соблюсти полярность.
Полярность входа
Если драйвер питается постоянным напряжением, к его выводу «+» подключают положительный полюс источника питания
При переменном напряжении обратите внимание на маркировку входных клемм
Варианты маркировки:
- «L» и «N». На вывод «L» подайте фазу. Найти её можно с помощью специальной электротехнической отвёртки. На клемму «N» подайте нулевой провод.
- «~», «АС» или нет маркировки. В этом случае полярность не важна, можете не соблюдать её.
Полярность выхода
Здесь всегда приходится соблюдать полярность. Провод «плюс» подключают к аноду первого полупроводникового элемента, «минус» соединяют с катодом последнего диода.
Подключение драйвера:
Схема драйвера светодиодной лампы на 220/12 В (входное/выходное напряжение):
Расчеты основных параметров
Для того чтобы устройство было работоспособным и надежно функционировало, необходимо выполнить предварительный расчет бестрансформаторного блока питания. С этой целью потребуется рассчитать основные параметры:
- Емкостное сопротивление. При включении конденсатора в цепь переменного тока, он начинает оказывать влияние на силу тока, протекающего по этой цепи, то есть на определенном этапе он становится сопротивлением. Чем больше емкость конденсатора и частота переменного тока, тем меньше величина емкостного сопротивления и наоборот. Для расчетов используется формула XC = 1 /(2πƒC), где ХС – емкостное сопротивление, f – частота, С – емкость. Ускорить расчеты и получить точные данные поможет онлайн-калькулятор, в который достаточно лишь ввести исходные данные.
- Сопротивление нагрузки (Rн). Его расчет позволяет выяснить, до какого значения Rн может быть уменьшено, чтобы Напряжение нагрузки стало равным напряжению стабилизации. Когда необходимо изготовить блок питания своими руками, рекомендуется воспользоваться справочной таблицей, поскольку формулы слишком сложные и не дают точных результатов.
- Напряжение гасящего конденсатора. Этот показатель обычно составляет не менее 400 В, при сетевом напряжении 220 вольт. В некоторых случаях используется более мощный элемент, с номинальным напряжением 500 или 600 В. Для бестрансформаторных блоков подходят не все типы конденсаторов. Например, устройства МБПО, МБГП, МБМ, МБГЦ-1 и МБГЦ-2 не могут работать в цепях переменного тока, в которых амплитудное значение напряжения более 150 В.
Понадобился мне блок питания для самодельной мини-дрели, сделанной из моторчика на 17 Вольт. Пересмотрел много схем различных БП, но во всех использовался трансформатор, которого у меня нету, а покупать как-то неохота. Тогда решил поступить проще и собрать бестрансформаторный блок питания на данное напряжение – 17 Вольт. Схема довольно простая, на такой готовый блок питания нужно подавать 220 вольт переменного напряжения, короче питать схему от розетки, а на выходе мы получаем 17 вольт постоянного напряжения. Обычно источники питания такого типа применяют во всяких небольших бытовых вещах, например в фонарике с аккумулятором, в качестве зарядного, где нужен небольшой ток, до 150 mA или в электробритвах. Итак, детали для схемы. Вот так выглядят высоковольтные металлопленочные конденсаторы (те что красные), и слева от них электролитический конденсатор на 100 мкФ. Вместо микросхемы 78l08 можно использовать такие стабилизаторы напряжения, как КР1157ЕН5А (78l08) или КР1157ЕН5А (7905). Если отсутствует выпрямительный диод 1N4007, то его можно заменить на 1N5399 или 1N5408, которые рассчитаны на более высокий ток. Серый кружок на диоде обозначает его катод. Резистор R1 взял на 5W, а R2 – на 2W, для страховки, хотя оба можно было применять и на 0,5 Вт. Стабилитрон BZV85C24 (1N4749), рассчитан на мощность 1,5 W, и на напряжение до 24 вольт, заменить его можно отечественным 2С524А. Этот бестрансформаторный БП собрал без регулировки выходного напряжения, но если вы хотите организовать такую функцию, то просто подключите к выводу 2 микросхемы 78L08 переменный резистор примерно на 1 кОм, а второй его вывод – к минусу схемы. Плата к схеме бестрансформаторного блока питания конечно есть, формат лэй, скачать можно тут. Думаю вы поняли, что диоды без пометки – это 1n4007. Готовую конструкцию нужно обязательно поместить в пластиковый корпус, из-за того что включенная в сеть схема находиться под напряжением 220 вольт и прикасаться к ней ни в коем случае нельзя! На этих фото вы можете видеть напряжение на входе, то есть напряжение в розетке, и сколько вольт мы получаем на выходе БП. Видео работы схемы бестрансформаторного БПБольшим плюсом этой схемы можно считать очень скромные размеры готового устройства, ведь благодаря отсутствию трансформатора этот БП можно сделать маленьким, и относительно недорогая стоимость деталей для схемы. Минусом схемы можно считать то, что есть опасность случайно дотронуться к работающему источнику и получить удар током. Автор статьи – egoruch72. Обсудить статью БЕСТРАНСФОРМАТОРНОЕ ПИТАНИЕ СХЕМ Предлагается широкий ассортимент светодиодных ламп, светильников и LED фонарей, от японских и китайских производителей. |
РАСПАШНЫЕ АВТОМАТИЧЕСКИЕ ВОРОТА
Самодельные распашные ворота для частного дома – электроника и механика. Электрическая схема и фото процесса монтажа.
Светодиодная лампа smartbuy с драйвером на SM2082D
В led лампе smartbuy установлено 30 последовательно включенных светодиодов, балластный конденсатор отсутствует, а ток светодиодов поддерживается драйвером с запатентованной технологией управления током стабилизации. Такие лампы можно диммировать.
Светодиоды многокристальные с общим падением до 300В, по три светодиода в каждом корпусе. Таким образом падение напряжения и, соответственно, рассеиваемая мощность на SM2082D минимальные.
Колба из матового пластика приклеена к основанию белым герметиком, разборка путем многократного прорезания по кругу канцелярским ножом, а затем тонкой отверткой. Микросхема драйвера тока установлена на плате со светодиодами, которая снимается после отпайки двух контактов и сдвига в сторону, теплоотвод из алюминия.
Микросхема SM2082D — одноканальный стабилизатор постоянного тока. Внутри, похоже, полевик с резистором от стока к затвору, устанавливающим минимальный ток без внешнего резистора. Кроме этого встроена защита от перегрева
Резистор R1 разряжает конденсатор С1 после отключения схемы.
Рабочий выходной ток устанавливается внешним резистором Rext в пределах 5 – 60 mA и не изменяется при небольших изменениях входного напряжения в обе стороны. При значительном уменьшении входного напряжения питающей сети переменного тока (до 180 -190 вольт) лампа погаснет, а при увеличении стабилизатор будет греться сильнее и начнет работать температурная защита. Когда внутренняя температура лампы (чипа) превышает 110 ° C, начинает работать температурная компенсация, выходной ток будет уменьшаться и температура в колбе лампы автоматически понизится. Чем больше последовательно включенных светодиодов установлено в цепи стабилизатора, тем выше эффективность работы. Такая оптимизация должна учитывать уровень колебаний питающего напряжения. Светодиоды в лампе могут быть подключены последовательно или последовательно-параллельно.
При небольшом количестве последовательно включенных светодиодов в схему устанавливается высоковольтный керамический конденсатор С1 (от 0 до 4,7 мкф), который снижает входное напряжение на стабилизаторе тока. Когда количество светодиодов достаточно велико, C1 не нужен.
Пример схемы на 18 Вт. В цепочке 80 светодиодов, включенных последовательно.
Для увеличения мощности светильника, микросхемы можно включать параллельно
С2 — электролитический конденсатор, который используется для снижения пульсации входного напряжения. Чем больше емкость С2, тем меньше пульсации напряжения. Величина С2 определяется суммарным рабочим током через цепочку LED. Чем выше этот ток, тем больше величина С2 (от 4.7 мкф/400В до 22мкф/400В). Rext используется для установки рабочего тока светодиодной цепочки.
SM2082D в схеме может быть подключена на массу, внутри цепочки или перед ней. Это улучшает возможности компоновки платы светильника.
Зависимость тока стабилизации от сопротивления внешнего резистора Rext.
Описание sm2082d, все параметры, схемы включения, формулы, графики можно посмотреть в SM2082D datasheet.
Драйвер для светодиодов на pt4115
Нередко возникает необходимость собрать компактный блок питания для нескольких мощных светодиодов. Обычно эта задача возникает при переоборудовании автомобиля под светодиодное освещение либо самостоятельной сборке освещения на LED матрицах.
Основным критерием выбора микросхемы является минимальная обвязка, чтобы «не заморачиваться» с печатной платой, а собрать навесным монтажом. Одним из вариантов такого решение может стать сборка рт4115 микросхема драйвер светодиодов.
Pt4115 datasheet
Pt4115 сочетает в себе массу преимуществ:
- минимальная обвязка;
- большой диапазон входного напряжения (от 8 до 30 В);
- мощность на выходе до 30 Вт;
- регулировка выходного напряжения шим-контроллером;
- доступная стоимость (менее 1 у.е).
Идеально подходит для миниатюрных контроллеров питания автомобильных светодиодов и создания компактных источников LED освещения.
Принцип управления микросхемой pt4115
Индуктивность катушки регулирует выходной ток в диапазоне 0,3 – 1,2 А
Очень удобный калькулятор расчета индуктивности: http://coil32.ru/calc/one-layer.html
Между выводами vin(6) и sw(1) впаиваем стабилитрон на напряжение питания светодиодов. Резистор Rs между vin(6) и csn(4) дополнительно ограничивает выходной ток. Через вход dim(3) можно подать шим-сигнал для модуляции выходного напряжения.
Подача шим-сигнала с амплитудой до 2,5 В (стандартная ТТТЛ 155 логика) на диммирующий вход позволяет плавно регулировать яркость от 0 до 100%.
Важно! Не подавайте входное напряжение без сглаживающего конденсатора С1. Это может вывести из строя микросхему при высокой индуктивности L1 (выше 200 мкГн)
Схемы на pt4115 обеспечивают очень высокую стабильность выходных параметров.
Конструктивные особенности и принцип работы
Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:
- Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
- Импульсный принцип.
Рассмотрим, чем отличаются эти два варианта.
БП на основе силового трансформатора
Упрощенная структурная схема аналогового БП
Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.
Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.
Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.
Понижающий трансформатор ОСО-0,25 220/12
Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.
Импульсные устройства
Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.
Рисунок 3. Структурная схема импульсного блока питания
Рассмотрим алгоритм работы такого источника:
Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.
Здесь мы поговорим об импульсных блоках питания (ИБП), которые на сегодняшний день получили самое широкое распространение и с успехом используются во всех современных радиоэлектронных устройствах.
Прежде всего, эта статья посвящена для начинающих специалистов по ремонту электронной техники, поэтому материал будет изложен в упрощенной форме и поможет понять основные принципы работы ИБП.
Основной принцип, положенный в основу работы ИБП заключается в преобразовании сетевого переменного напряжения (50 Гц) в переменное высокочастотное напряжение прямоугольной формы, которое трансформируется до требуемых значений, выпрямляется и фильтруется.
Преобразование осуществляется с помощью мощного транзистора, работающего в режиме ключа и импульсного трансформатора, вместе образующих схему ВЧ преобразователя. Что касается схемного решения, то здесь возможны два варианта преобразователей: первый –выполняется по схеме импульсного автогенератора (например, такой использовался в ИБП телевизоров 3 – 4 УСЦТ) и второй – с внешним управлением (используется в большинстве современных радиоэлектронных устройств).
Поскольку частота преобразователя обычно выбирается от 18 до 50 кГц, то размеры импульсного трансформатора, а, следовательно, и всего блока питания достаточно компактны, что является немаловажным параметром для современной аппаратуры.
В ИБП используются два принципа реализации цепей слежения – «непосредственный» и «косвенный». Выше описанный метод называется «непосредственный», так как напряжение обратной связи снимается непосредственно с вторичного выпрямителя. При «косвенном» слежении напряжение обратной связи снимается с дополнительной обмотки импульсного трансформатора (рисунок 2).
Уменьшение или увеличение напряжения на обмотке W2, приведет к изменению напряжения и на обмотке W3, которое через резистор R2 также приложено к выводу 1 ШИМ контроллера.
Структурная схема PT4515
Рис. 2. Структурная схема микросхемы PT4515.
Теперь несколько слов о самой микросхеме PT4515, структурная схема которой показана на рис. 2. Она содержит высоковольтный полевой транзистор VT1, усилитель постоянного тока DA1, узел питания (стабилизатор напряжения) А1 и узел защиты от перегрева и высокого напряжения в режиме стабилизации тока А2.
Узел питания А1 формирует напряжение для питания остальных элементов и образцовое напряжение для усилителя DA1, который сравнивает его с напряжением на выводе REXT, к которому подключают внешний токозадающий резистор.
В зависимости от напряжения на токозадающем резисторе ОУ открывает или закрывает полевой транзистор, поддерживая ток стока стабильным.
Выпускают эту микросхему в корпусах Т0252, SOT89, СРС4 и ESOP8, от типа корпуса зависят тепловое сопротивление и максимальная рассеиваемая мощность (без теплоотвода).
Эту микросхему выпускают с обозначениями РТ4515 и РТ4515С . Параметры этих модификаций несколько различаются. Кроме того, их производят в разных корпусах.
Судя по измеренному напряжению на выводе REXT, можно предположить, что в микромощных ИП была применена микросхема РТ4515С.
Если в такой или подобной светодиодной лампе вышли из строя один или несколько светодиодов, а это типичная ситуация, и ремонтировать её нецелесообразно, исправные «остатки» можно использовать для изготовления небольшого по размерам и имеющего неплохие параметры сетевого ИП.
Пригодятся диодный мост, оксидный конденсатор и микросхема. Для этого следует вынуть из цоколя алюминиевую плату, на которой установлены элементы, нагреть её с нижней стороны (паяльником, феном или утюгом), а когда припой расплавится, аккуратно и быстро снять все элементы. Исправные светодиоды могут пригодиться для ремонта аналогичных ламп.
FDS4501H Datasheet (PDF)
1.1. fds4501h.pdf Size:1390K _fairchild_semi
May 2001
FDS4501H
Complementary PowerTrench Half-Bridge MOSFET
General Description Features
This complementary MOSFET half-bridge device is • Q1: N-Channel
produced using Fairchild’s advanced PowerTrench
9.3A, 30V RDS(on) = 18 mΩ @ VGS = 10V
process that has been especially tailored to minimize
the on-state resistance and yet maintain low gate
RDS(on) = 23 mΩ @ VGS =
5.1. fds4559.pdf Size:147K _fairchild_semi
April 2002
FDS4559
60V Complementary PowerTrenchMOSFET
General Description Features
This complementary MOSFET device is produced using • Q1: N-Channel
Fairchild’s advanced PowerTrench process that has
4.5 A, 60 V RDS(on) = 55 mΩ @ VGS = 10V
been especially tailored to minimize the on-state
resistance and yet maintain low gate charge for
RDS(on) = 75 m
5.2. fds4559 f085.pdf Size:380K _fairchild_semi
October 2008
tm
FDS4559_F085
60V Complementary PowerTrenchMOSFET
General Description Features
This complementary MOSFET device is produced using • Q1: N-Channel
Fairchild’s advanced PowerTrench process that has
4.5 A, 60 V RDS(on) = 55 mΩ @ VGS = 10V
been especially tailored to minimize the on-state
resistance and yet maintain low gate charge for
RD
Расчет бестрансформаторного источника питания
Максимальный ток:
I = V / Z, где V — напряжение, а Z — полное сопротивление.
Емкостное реактивное сопротивление конденсатора равно:
XC1 = 1 / (2πfC), где f — частота, а C — емкость.
- XC1 = 1/(2 x 3.14 x 50 x 680 x 10-9) = 4683Ω.
- X1 = (XC1 x R1)/ (XC1 + R1) = (4683 x 470 x 103)/ (4683 + 470 x 103) = 4637Ω (общее сопротивление C1 и R1)
- Напряжение стабилитрона Vz = 12V
- Vin = 230V
- Падение на диоде, Vd = 0.7V
- I = (Vin – Vd – Vz)/(X1 + R2) = (230 – 0.7 – 12)/(4637 + 100) = 0.046A = 46mA.
Характеристики компонентов для источника питания 12 В, 40 мА
Согласно приведенным выше расчетам, C1 = 680 нФ, 400 В
- V X1 = X1 x I = 4637 x 0,046 = 213,3 В
- PR1 = I2 R1 = V2/R1 = (213,3)2/470000 = 0,1 Вт
- R1 = 470 кОм, 0,25 Вт
- PR2 = I2R2 = (0,046)2×100 = 0,2116 Вт
- R2 = 100 Ом, 0,5 Вт
- Мощность стабилитрона , Pz = Vz x Imax = 12 x 0,046 = 0,552 Вт
- D1, D2 = 12 В, 1 Вт
- D3, D4 = 1N4007
Примечание. Лучше выбирать номинальную мощность резисторов, превышающую удвоенную рассеиваемую мощность.
Пригодность блока питания в быту
У каждого в доме есть различная аппаратура, работающая от батареек или аккумуляторов. Чтобы не менять каждый раз элементы, ее питают от любого источника, подключаемого к сети 220 В.
К такому БП можно подключать осветительные приборы и электронную технику, которые потребляют ток до 500 мА:
- малогабаритные приемники;
- светодиодные лампы и гирлянды (но не ленты);
- портативную маломощную медицинскую аппаратуру (наручный тонометр, измеритель пульса и других параметров);
- зарядные модули телефонов;
- детские игрушки;
- моторы магнитофонов, вентиляторы;
- самодельные устройства;
- платы от Arduino.
Устройство и конструкция
Простой 12-вольтовый БП без трансформатора можно сделать из нескольких радиоэлементов. Он представляет собой диодный мост VD1-4 и 3 однотипных транзисторных стабилизатора, включенных последовательно.
Другая схема состоит из следующих деталей:
- 2 конденсаторов C1 и C2;
- 4 диодов, образующих мост VD1-4;
- 1 стабилитрона D1.
C1, подключенный к сети 220 В, гасит большую часть напряжения. Оно выпрямляется диодным мостом VD1-4. Цепочка D1, C2 является параметрическим стабилизатором, с выхода которого снимается постоянное напряжение, питающее нагрузку.
Более продвинутое устройство содержит на входе сопротивление R1 для подавления броска тока и RC-цепочку — подключенные параллельно гасящая емкость C1 и резистор r2 большого номинала для ее разрядки. Средняя часть схемы такая же. На выходе установлен дополнительный неполярный конденсатор C3.
Дальнейшее усовершенствование предполагает установку на выходе БП стабилизатора VR1 на транзисторах или микросхеме.
Эти блоки опасны, так как их детали находятся под напряжением 220 В. При отсутствии нагрузки (если испорчен стабилизатор) потенциал на выходе будет равен сетевому.
AP4501GM Datasheet (PDF)
1.1. ap4501gm-hf.pdf Size:80K _ape
AP4501GM-HF
Halogen-Free Product
Advanced Power N AND P-CHANNEL ENHANCEMENT
Electronics Corp. MODE POWER MOSFET
▼ Simple Drive Requirement N-CH BVDSS 30V
D2
D2
▼ Low On-resistance RDS(ON) 28mΩ
D1
D1
▼ Fast Switching Performance ID 7A
G2
▼ RoHS Compliant & Halogen-Free P-CH BVDSS -30V
S2
G1
S1
SO-8 RDS(ON) 50mΩ
Description ID -5.3A
Advanced Power MOSFETs from APEC pro
1.2. ap4501gm.pdf Size:84K _ape
AP4501GM
RoHS-compliant Product
Advanced Power N AND P-CHANNEL ENHANCEMENT
Electronics Corp. MODE POWER MOSFET
▼ Simple Drive Requirement N-CH BVDSS 30V
D2
D2
▼ Low On-resistance D1 RDS(ON) 28mΩ
D1
▼ Fast Switching Performance ID 7A
G2
S2 P-CH BVDSS -30V
G1
S1
SO-8
RDS(ON) 50mΩ
Description ID -5.3A
Advanced Power MOSFETs from APEC provide the
designer with the best com
3.1. ap4501gd.pdf Size:84K _ape
AP4501GD
Pb Free Plating Product
Advanced Power N AND P-CHANNEL ENHANCEMENT
Electronics Corp. MODE POWER MOSFET
▼ Low Gate Charge N-CH BVDSS 30V
D2
D2
D1
▼ Fast Switching Speed RDS(ON) 28mΩ
D1
▼ PDIP-8 Package ID 7A
▼ RoHS Compliant P-CH BVDSS -30V
G2
S2
RDS(ON) 50mΩ
PDIP-8
G1
S1
ID -5.3A
Description
The Advanced Power MOSFETs from APEC provide the
designer with t
3.2. ap4501gsd.pdf Size:96K _ape
AP4501GSD
Pb Free Plating Product
Advanced Power N AND P-CHANNEL ENHANCEMENT
Electronics Corp. MODE POWER MOSFET
D2
▼Simple Drive Requirement N-CH BVDSS 30V
▼
▼
▼
D2
D1
▼Low On-resistance D1 RDS(ON) 27mΩ
▼
▼
▼
▼Fast Switching Characteristic ID 7A
▼
▼
▼
G2
P-CH BVDSS -30V
S2
PDIP-8
G1
RDS(ON) 49mΩ
S1
Description ID -5A
The Advanced Power
3.3. ap4501gh-hf.pdf Size:119K _ape
AP4501GH-HF
Halogen-Free Product
Advanced Power N AND P-CHANNEL ENHANCEMENT
Electronics Corp. MODE POWER MOSFET
▼ Simple Drive Requirement N-CH BVDSS 30V
D1/D2
▼ Good Thermal Performance RDS(ON) 18mΩ
▼ Fast Switching Performance ID 10.2A
S1
G1
S2
▼ Halogen-Free Product P-CH BVDSS -30V
G2
RDS(ON) 50mΩ
TO-252-4L
Description ID -6.4A
Advanced Power MOSFETs from APEC provi
CL6807
По внутреннему устройству и принципу действия микросхема-драйвер светодиодов CL6807 полностью идентична рассмотренной выше PT4115. Имеются лишь некоторые отличия в технических характеристиках. Вот самые главные из них:
- напряжение питания 6-35В;
- максимальный ток нагрузки — 1А;
- имеет мягкий старт;
- максимальный КПД — 95%;
- выпускается в трех различных корпусах: SOT89-5, SOT23-5, SOP8 (цоколевка SOT89-5 полностью совпадает с PT4115).
Сопротивление токозадающего резистора (в Омах) рассчитывается точно по такой же формуле:
R = 0.1 / ILED
Типовая схема включения выглядит так:
Как видите, все очень похоже на схему светодиодной лампы с драйвером на РТ4515. Описание работы, уровни сигналов, особенности используемых элементов и компоновки печатной платы точно такие же как у PT4115, поэтому повторяться не имеет смысла.
CL6807 продают по 12 руб/шт, надо только смотреть, чтоб не подсунули паяные (рекомендую брать тут).
СТАБИЛИЗИРОВАННЫЙ БЛОК ПИТАНИЯ
А. ПОГОРЕЛЬСКИЙ, пос. Пойковский Тюменской обл.
Описываемый блок питания собран из доступных элементов. Он почти не требует налаживания, работает в широком интервале подводимого переменного напряжения, снабжен защитой от перегрузки по току.
Предлагаемый блок питания позволяет получать выходное стабилизированное напряжение от 1 В почти до значения выпрямленного напряжения с вторичной обмотки трансформатора (см. схему). На транзисторе VT1 собран узел сравнения: с движка переменного резистора R3 на базу подается часть образцового напряжения (задается источником образцового напряжения VD5VD6HL1 R1), а на эмиттер — выходное напряжение с делителя R14R15. Сигнал рассогласования поступает на усилитель тока, выполненный на транзисторе VT2, который управляет регулирующим транзистором VT4.
При замыкании на выходе блока питания или чрезмерном токе нагрузки увеличивается падение напряжения на резисторе R8. Транзистор VT3 открывается и шунтирует базовую цепь транзистора VT2, ограничивая тем самым ток нагрузки. Светодиод HL2 сигнализирует о включении защиты от перегрузки потоку.
Рабочие схемы
Все описанные устройства выполнены на распространенных радиоэлементах. Ниже приведены схемы с обозначением всех деталей.
В БП с транзисторными стабилизаторами КТ940А можно заменить на высоковольтный, выдерживающий более 250 В, а КТ815Г — на другой, с минимальным напряжением 80 В. При указанных деталях устройство может выдать до 300 мА. Для увеличения силы тока надо транзисторы установить на радиаторы. Если вместо стабилитрона КС512А поставить Д814Д, то выходной ток устройства уменьшится до 200 мА.
Традиционный бестрансформаторный блок на 12 В с RC-цепочкой выдает всего 20-40 мА. Если после моста установить мощный стабилитрон Д815Ж, который ограничит напряжение до 16-19 В, и дополнить схему стабилизатором на транзисторе, то выходной ток повысится до 120 мА. Для его увеличения до 180 мА необходимо параллельно конденсаторам C1, C2 припаять еще один такой же.
Более стабилен блок на микросхеме 78L08 (российское обозначение КР142Б). При указанных деталях он выдает до 200 мА.
Принцип работы схем на балластном конденсаторе
В этой схеме конде-р является фильтром тока. Напряжение на нагрузку поступает только до момента полного заряда конде-ра, время которого зависит от его ёмкости. При этом никакого тепловыделения не происходит, что снимает ограничения с мощности нагрузки.
Чтобы понять, как работает эта схема и принцип подбора балластного элемента для LED, напомню, что напряжение – скорость движения электронов по проводнику, сила тока – плотность электронов.
Для диода абсолютно безразлично, с какой скоростью через него будут «пролетать» электроны. Расчет конде-ра основан на ограничении тока в цепи. Мы можем подать хоть десять киловольт, но если сила тока составит несколько микр оампер, количества электронов, проходящих через светоизлучающий кристалл, хватит для возбуждения лишь крохотной части светоизлучателя и свечения мы не увидим.
В то же время при напряжении несколько вольт и силе тока десятки ампер плотность потока электронов значительно превысит пропускную способность матрицы диода, преобразовав излишки в тепловую энергию, и наш LED элемент попросту испарится в облачке дыма.