Электрические характеристики
Обозначение | Параметр | Условия измерения | Мин. | Тип. | Макс. | Ед.изм. |
---|---|---|---|---|---|---|
BVCBO | Напряжение пробоя коллектор-база | IC= -100 µA, IE=0 | -50 | V | ||
BVCEO | Напряжение пробоя коллектор-эмиттер | IC= -10mA, IB=0 | -50 | V | ||
BVEBO | Напряжение пробоя эмиттер-база | IE= -10 µA, IC=0 | -5 | V | ||
ICBO | Ток отсечки коллектора | VCB= -50V, IE=0 | -0.1 | µA | ||
IEBO | Ток отсечки эмиттера | VEB= -5V, IC=0 | -0.1 | µA | ||
hFE1 hFE2 | Коэффициент усиления по постоянному току | VCE= -6V, IC= -2mA VCE= -6V, IC= -150mA | 70 25 | 400 | ||
VCE (sat) | Напряжение насыщения коллектор-эмиттер | IC= -100mA, IB= -10mA | -0.1 | -0.3 | V | |
VBE (sat) | Напряжение насыщения база-эмиттер | IC= -100mA, IB= -10mA | -1.1 | V | ||
fT | Частотная эффективность | VCE= -10V, IC=-1mA | 80 | MHz | ||
Cob | Выходное сопротивление | VCB= -10V, IE=0, f=1MHz | 4 | 7 | pF | |
NF | Уровень шумов | VCE= -6V, IC= -0.1mA f=100Hz, RG=10kΩ | 0.5 | 6 | dB |
Примечание: данные в таблицах действительны при температуре воздуха 25°C.
Какие бывают стандарты маркировки
Маркировка, которая наносится на корпус SMD-элементов, как правило, отличается от их фирменных названий. Причина банальная – нехватка места из-за миниатюрности корпуса. Проблема особенно актуальна для ЭРЭ, которые размещаются в корпусах с шестью и менее выводами.
Это миниатюрные диоды, транзисторы, стабилизаторы напряжения, усилители и т.д. Для разгадки “что есть что” требуется проводить настоящую экспертизу, ведь по одному маркировочному коду без дополнительной информации очень трудно идентифицировать тип ЭРЭ. С момента появления первых SMD-приборов прошло более 20 лет.
Несмотря на все попытки стандартизации, фирмы-изготовители до сих пор упорно изобретают все новые разновидности SMD-корпусов и бессистемно присваивают своим элементам маркировочные коды.
Полбеды, что наносимые символы даже близко не напоминают наименование ЭРЭ, – хуже всего, что имеются случаи “плагиата”, когда одинаковые коды присваивают функционально разным приборам разных фирм.
Тип | Наименование ЭРЭ | Зарубежное название |
A1 | Полевой N-канальный транзистор | Feld-Effect Transistor (FET), N-Channel |
A2 | Двухзатворный N-канальный полевой транзистор | Tetrode, Dual-Gate |
A3 | Набор N-канальных полевых транзисторов | Double MOSFET Transistor Array |
B1 | Полевой Р-канальный транзистор | MOS, GaAs FET, P-Channel |
D1 | Один диод широкого применения | General Purpose, Switching, PIN-Diode |
D2 | Два диода широкого применения | Dual Diodes |
D3 | Три диода широкого применения | Triple Diodes |
D4 | Четыре диода широкого применения | Bridge, Quad Diodes |
E1 | Один импульсный диод | Rectifier Diode |
E2 | Два импульсных диода | Dual |
E3 | Три импульсных диода | Triple |
E4 | Четыре импульсных диода | Quad |
F1 | Один диод Шоттки | AF-, RF-Schottky Diode, Schottky Detector Diode |
F2 | Два диода Шоттки | Dual |
F3 | Три диода Шоттки | Tripple |
F4 | Четыре диода Шоттки | Quad |
K1 | “Цифровой” транзистор NPN | Digital Transistor NPN |
K2 | Набор “цифровых” транзисторов NPN | Double Digital NPN Transistor Array |
L1 | “Цифровой” транзистор PNP | Digital Transistor PNP |
L2 | Набор “цифровых” транзисторов PNP | Double Digital PNP Transistor Array |
L3 | Набор “цифровых” транзисторов | PNP, NPN | Double Digital PNP-NPN Transistor Array |
N1 | Биполярный НЧ транзистор NPN (f < 400 МГц) | AF-Transistor NPN |
N2 | Биполярный ВЧ транзистор NPN (f > 400 МГц) | RF-Transistor NPN |
N3 | Высоковольтный транзистор NPN (U > 150 В) | High-Voltage Transistor NPN |
N4 | “Супербета” транзистор NPN (г“21э > 1000) | Darlington Transistor NPN |
N5 | Набор транзисторов NPN | Double Transistor Array NPN |
N6 | Малошумящий транзистор NPN | Low-Noise Transistor NPN |
01 | Операционный усилитель | Single Operational Amplifier |
02 | Компаратор | Single Differential Comparator |
P1 | Биполярный НЧ транзистор PNP (f < 400 МГц) | AF-Transistor PNP |
P2 | Биполярный ВЧ транзистор PNP (f > 400 МГц) | RF-Transistor PNP |
P3 | Высоковольтный транзистор PNP (U > 150 В) | High-Voltage Transisnor PNP |
P4 | “Супербета” транзистор PNP (п21э > 1000) | Darlington Transistor PNP |
P5 | Набор транзисторов PNP | Double Transistor Array PNP |
P6 | Набор транзисторов PNP, NPN | Double Transistor Array PNP-NPN |
S1 | Один сапрессор | Transient Voltage Suppressor (TVS) |
S2 | Два сапрессора | Dual |
T1 | Источник опорного напряжения | “Bandgap”, 3-Terminal Voltage Reference |
T2 | Стабилизатор напряжения | Voltage Regulator |
T3 | Детектор напряжения | Voltage Detector |
U1 | Усилитель на полевых транзисторах | GaAs Microwave Monolithic Integrated Circuit (MMIC) |
U2 | Усилитель биполярный NPN | Si-MMIC NPN, Amplifier |
U3 | Усилитель биполярный PNP | Si-MMIC PNP, Amplifier |
V1 | Один варикап (варактор) | Tuning Diode, Varactor |
V2 | Два варикапа (варактора) | Dual |
Z1 | Один стабилитрон | Zener Diode |
Производители
Все DataSheet от указных производителей ВС557 можно скачать здесь. Производители: Diotec Semiconductor, SeCoS Halbleitertechnologie GmbH, Rectron Semiconductor, Unisonic Technologies, Fairchild Semiconductor, Continental Device India Limited, Olitech Electronics, Foshan Blue Rocket Electronics, First Silicon, Semtech Corporation, Boca Semiconductor Corporation, KEC(Korea Electronics), Micro Electronics, ON Semiconductor, NXP Semiconductors, Dc Components, SEMTECH ELECTRONICS, Tiger Electronic, SHENZHEN YONGERJIA INDUSTRY, Micro Commercial Components, Jiangsu Changjiang Electronics Technology, SHENZHEN KOO CHIN ELECTRONICS, Siemens Semiconductor Group, General Semiconductor.
Транзисторы BC556, BC557, BC558, BC559, BC560 с буквами A, B, C.
Т ранзисторы BC556 – BC560 – кремниевые, высокочастотные усилительные общего назначения, структуры – p-n-p. Корпус пластиковый TO-92B. Маркировка буквенно – цифровая.
Наиболее важные параметры.
Постоянная рассеиваемая мощность(Рк т max ) – 500 мВт.
Предельная частота коэффициента передачи тока ( fh21э )транзистора для схем с общим эмиттером – 300 МГц;
Максимальное напряжение коллектор – эмиттер – У транзисторов BC556 65в. У транзисторов BC557, BC560 45в. У транзисторов BC558, BC549 30в.
Максимальное напряжение коллектор – база – У транзисторов BC556 80в. У транзисторов BC557, BC560 50в. У транзисторов BC558, BC559 30в.
Максимальное напряжение эмиттер – база – 5в.
Коэффициент передачи тока: У транзисторов BC556A, BC557A, BC558A, BC559A, BC560A – от 110 до 220. У транзисторов BC556B, BC557B, BC558B, BC559B, BC560B – от 200 до 450. У транзисторов BC556C, BC557C, BC558C, BC559C, BC560C – от 420 до 800.
Максимальный постоянный ток коллектора – 100 мА.
Напряжение насыщения коллектор-эмиттер при токе коллектора100мА, базы 5мА – не выше 0,6в.
Напряжение насыщения база-эмиттер при токе коллектора 100мА, базы 5мА – 0,9в.
Транзисторы комплиментарные BC556, BC557, BC558, BC559, BC560 – BC546, BC547, BC548, BC549, BC550.
BC556, BC557, BC558, BC559, BC560 встречаются в самых различных схемах. Эти транзисторы успешно используют, как для усиления сигналов звуковой частоты, так и в радиочастотных каскадах. Пример – популярная схема переговорного устройства(уоки – токи) на 27мГц.
Схема состоит из двух компонентов – LC генератора(емкостная трехточка) на частоту 27мГц и усилителя звуковой частоты с двухтактным выходным каскадом. Режимы прием – передача переключаются с помощью переключателя В1. В режиме передачи миниатюрный громкоговоритель переключается с выхода УЗЧ на вход и используется как динамический микрофон. Усиленный сигнал поступает на генератор 27мГц, производя модуляцию основной частоты.
В режиме приема схема работает как сверхрегнератор с очень большим усилением радиосигнала и прямым преобразованием его модуляции в сигнал звуковой частоты, после усиления в УЗЧ поступающий на громкоговоритель. В LC генераторе применен BC547(VT1), в усилителе звуковой частоты два BC547(VT2 – VT5) и два комплементарных BC557(VT3 – VT4). Все транзисторы лучше брать с буквой C(коэфф. усиления от 450). Резисторы можно взять любого типа с мощностью от 0,1 ватта, за исключением R3 – его мощность должна быть не менее 0,25 ватт.
Конденсаторы C1 – C11 слюдяные, C12 – C13 – оксидные(электролитические), любого типа. Катушка генератора L1 – 4 витка провода ПЭЛ -0,25 с отводом от одного витка, намотанная на каркасе диаметром 0,4 см, с подстроечным стержнем из феррита(от малогаб. импортного приемника). Катушка L2 – 1,5 витка на том же каркасе, тем же проводом. Антенной служит безкаркасная катушка – пружина диаметром 0,5 см содержащая 160 – 170 плотно намотанных витков провода ПЭВ 0,5 (виток, к витку). Длина такой антенны получается от 8 до 10см.
Использование каких – либо материалов этой страницы, допускается при наличии ссылки на сайт «Электрика это просто».
12 шт. из магазина г.Ижевск2328 шт. со склада г.Москва,срок 3-4 рабочих дня
− +
В корзину
PNP транзистор общего применения
ХарактеристикиТехнические ∙ Корпус TO-92 ∙ Распиновка CBE
Электрические ∙ Мощность 0.5Вт ∙ Ток коллектора -0.1А ∙ Обратный ток коллектор-база -0.015uA ∙ Напряжение эмиттер-база -5В ∙ Напряжение коллектор-эмиттер 45В ∙ Напряжение коллектор-база -50В ∙ Hfe min 420 ∙ Hfe max 800
Общие ∙ Производитель Semtech
Зачем нужна маркировка
Современному радиолюбителю сейчас доступны не только обычные компоненты с выводами, но и такие маленькие, темненькие, на которых не понять что написано, детали. Они называются “SMD”. По-русски это значит “компоненты поверхностного монтажа”. Их главное преимущество в том, что они позволяют промышленности собирать платы с помощью роботов, которые с огромной скоростью расставляют SMD-компоненты по своим местам на печатных платах, а затем массово “запекают” и на выходе получают смонтированные печатные платы. На долю человека остаются те операции, которые робот не может выполнить. Пока не может.
Маркировка на практике
Применение чип-компонентов в радиолюбительской практике тоже возможно, даже нужно, так как позволяет уменьшить вес, размер и стоимость готового изделия. Да ещё и сверлить практически не придётся
Другое важное качество компонентов поверхностного монтажа заключается в том, что благодаря своим малым размерам они вносят меньше паразитных явлений
Дело в том, что любой электронный компонент, даже простой резистор, обладает не только активным сопротивлением, но также паразитными ёмкостью и индуктивностью, которые могут проявится в виде паразитных сигналов или неправильной работы схемы. SMD-компоненты обладают малыми размерами, что помогает снизить паразитную емкость и индуктивность компонента, поэтому улучшается работа схемы с малыми сигналами или на высоких частотах.
Разнообразные корпуса транзисторов.
Маркировка SMD компонентов
SMD компоненты все чаще используются в промышленных и бытовых устройствах. Поверхностный монтаж улучшил производительность по сравнению с обычным монтажом, так как уменьшились размеры компонентов, а следовательно и размеры дорожек. Все эти факторы снизили паразитические индуктивности и емкости в электрических цепях.
Код | Сопротивление |
101 | 100 Ом |
471 | 470 Ом |
102 | 1 кОм |
122 | 1.2 кОм |
103 | 10 кОм |
123 | 12 кОм |
104 | 100 кОм |
124 | 120 кОм |
474 | 470 кОм |
Маркировка импортных SMD
Маркировка импортных SMD транзисторов происходит в основном по нескольким принятым системам. Одна из них – это система маркировки полупроводниковых приборов JEDEC.Согласно ей первый элемент – это число п-н переходов, второй элемент – тип номинал, третий – серийный номер, при наличие четвертого – модификации.
Вторая распространенная система маркировка – европейская. Согласно ей обозначение SMD транзисторов происходит по следующей схеме: первый элемент – тип исходного материала, второй – подкласс прибора, третий элемент – определение применение данного элемента, четвертый и пятый – основную спецификацию элемента.
Третьей популярной системой маркировки является японская. Эта система скомбинировала в себе две предыдущие. Согласно ей первый элемент – класс прибора, второй – буква S, ставится на всех полупроводниках, третий – тип прибора по исполнению, четвертый – регистрационный номер, пятый – индекс модификации, шестой – (необязательный) отношение к специальным стандартам.
Что бы к Вам ни попало в руки, для полной идентификации данного элемента следует применять маркировочные таблицы и по ним определить все характеристики данного элемента. По оценкам специалистов соотношение между производством ЭРЭ в обычном и SMD-исполнении должно приблизиться к 30:70. Многие радиолюбители уже начинают с успехом осваивать применение SMD в своих конструкциях.
Производители
Выберите производителя, чтобы ознакомится с его DataSheet на 13009:
Главная | О сайте | Теория | Практика | Контакты |
Высказывания: Во время пьянки мы чувствуем себя личностью. Наутро – организмом. Справка об аналогах биполярного низкочастотного npn транзистора MJE13009.Эта страница содержит информацию об аналогах биполярного низкочастотного npn транзистора MJE13009 . Перед заменой транзистора на аналогичный, !ОБЯЗАТЕЛЬНО! сравните параметры оригинального транзистора и предлагаемого на странице аналога. Решение о замене принимайте после сравнения характеристик, с учетом конкретной схемы применения и режима работы прибора. Можно попробовать заменить транзистор MJE13009 транзистором 2SC2335; транзистором 2SC3346; транзистором 2SC3306; транзистором 2SC2898; транзистором 2SC3257; транзистором BUL74A; транзистором BUW72; транзистором 2SC3346; транзистором 2SC3306; транзистором 2SC2898; транзистором 2SC3257; Коллективный разум.дата записи: 2015-02-14 22:21:29 дата записи: 2016-02-23 16:11:18 дата записи: 2016-02-23 16:13:10 дата записи: 2016-10-12 13:39:27 MJE13005 – функциональный аналог; дата записи: 2017-11-01 08:40:54 2SC3040 – функциональный аналог; дата записи: 2018-07-06 22:01:53 Добавить аналог транзистора MJE13009.Вы знаете аналог или комплементарную пару транзистора MJE13009? Добавьте. Поля, помеченные звездочкой, являются обязательными для заполнения. Другие разделы справочника:Есть надежда, что справочник транзисторов окажется полезен опытным и начинающим радиолюбителям, конструкторам и учащимся. Всем тем, кто так или иначе сталкивается с необходимостью узнать больше о параметрах транзисторов. Более подробную информацию обо всех возможностях этого интернет-справочника можно прочитать на странице «О сайте». Если Вы заметили ошибку, огромная просьба написать письмо. Спасибо за терпение и сотрудничество. Мощные транзисторы, применяемые в БП. Подбор и замена. 10 Ноя 2007 – 20:13 NMD 1572 >> 68.32 Ремонт Блоков Питания Транзисторы Детали Вот небольшая подборка транзисторов, использующихся в БП. Михаил.KSC5027- Vceo-800V, Ic- 3A, Icp – 10A, Pd – 50W 2SC4242 – Vceo – 450v, Ic – 7A. Pd – 40W BU508A – Vceo – 700V, Ic – 8A, Icp – 15A, Pd – 50W ST13003 – Vceo-400v, Ic- 1.5A, Icp – 3A, Pd – 40W MJE13003 – Vceo -400v. Ic -1.5A, Icp – 3A, Pd – 40W 2SC3457 – Vceo – 800v, Ic – 3A. P – 50w MJE13005 – Vceo – 400v, Ic – 4A, Icp – 8A, Pd – 75w MJE13006 – Vceo – 300v, Ic – 8A, Icp – 16A, Pd – 80w MJE13007 – Vceo – 400v, Ic – 8A, Icp – 16A, Pd – 80w 2SC2625 – Vceo – 450v, Ic – 10A, Pd – 80w 2SC3306 – Vceo – 500v, Ic -10A, Pd – 100w KSE13006 – Vceo – 300V, Ic – 8A, Icp – 16A, Pd – 80W KSE13007 – Vceo – 400V, Ic – 8A, Icp – 16A, Pd – 80W KSE13009 – Vceo – 400v, Ic – 12A, Icp – 24A, Pd – 130w KSP2222A – Vceo- 40v, Ic – 0.6A, Pd – 0.63w 2SC945 – Vcev – 60v, Ic – 0,1A, Pd – 0.25w 2SA733 – p-n-p Vce – 60v, Ic – 0.1A, Pd – 0.25w 2SA1015 p-n-p Vce – 50v, Ic – 0.15A, Pd – 0.4w 2SA1273 p-n-p Vce – 30v, Ic – 2A, Pd – 1.0w 2SB1116A p-n-p Vce – 80v, Ic – 1.0A, Pd – 0.75w KSC2335F – Vceo-500v, Ic – 7A, Pd – 40w. 2SC2553 – Vceo-500v, Ic – 5A, Pd – 40w. 2SC2979 – Vceo-900v, Ic – 3A, Pd – 40w. 2SC3039 – Vceo-500v, Ic – 7A, Pd – 50w. 2SC3447 – Vceo-800v, Ic – 5A, Pd – 50w. 2SC3451 – Vceo-800v, Ic -15A, Pd – 100w. 2SC3460 – Vceo-1100v, Ic – 6A, Pd – 100w. 2SC3461 – Vceo-1100v, Ic – 8A, Pd – 120w. 2SC3866 – Vceo-900v, Ic – 3A, Pd – 40w. 2SC4106 – Vceo-500v, Ic – 7A, Pd – 50w. 2SC4706 – Vceo-600v, Ic -14A, Pd – 130w. 2SC4744 – Vceo-1500v, Ic – 6A, Pd – 50w. KSC1008 – Vceo-80v, Ic -0.7A, Pd – 0.8w. 2SA928A p-n-p Vceo-20v, Ic – 1A, Pd – 0.25w. ZTX457 – Vceo-300V Ic – 0.5A, Pd – 1,0W |
ИНВЕРТОР 1
Этот инвертор предназначен только для питания сабвуферного усилителя по схеме ланзара. Выходное напряжение +/-65 Вольт. Инвертор не имеет стабилизацию выходного напряжения, но не смотря на это серьезные скачки напряжения не наблюдал. Построен инвертор по классической двухтактной схеме с применением ШИМ контроллера на микросхеме TL494. Трансформатор был намотан на двух кольцах марки 3000НМ (Евгений, спасибо, что выручил и с другого конца света выслал кольца), размеры колец 45*28*8. Если есть возможность, то используйте феррит марки 2000НМ, с ним меньше потерь в трансформаторе. Кольца не склеивал, просто обмотал прозрачным скотчем. Грани кольца не закруглял, просто перед намоткой сердечник обмотал полоской стекловолокна в два слоя. Стекловолокно не боится перегрева и обеспечивает довольно неплохую изоляцию обмоток, хотя в таких инверторах промышленного образца никогда не изолируют обмотки друг от друга, поскольку напряжение не столь высокое.
Намотка делалась двумя полностью идентичными шинами, каждая из шин состоит из 12 жил провода с диаметром 0,7 мм. Перед намоткой берем контрольный провод, им будем выяснять, какой длины нужна шина. Контрольный провод может быть любым, любого сечения (для удобства диаметр подобрать 0,3-1 мм), Итак, берем контрольный провод и мотаем 5 витков по на кольце, витки равномерно растягивая по всему кольцу. Теперь отматываем обмотку измеряя длину, допустим длина провода составила 20 см, следовательно для намотки основной обмотки провод нужно брать с запасом 5-7 см, т.е. 25-27 см, разумеется, длина не точная и привел только для примера. Теперь переходим дальше. Поскольку первичная (силовая) обмотка у нас состоит из двух полностью аналогичных плеч, то нам нужны 24 жилы провода 0,7 мм одинаковой длины. Дальше нужно собрать шины из 12 жил, концы жил скручиваем и переходим к процессу намотки.
В разных источниках приводятся отличающиеся друг от друга технологии намотки, этот метод отличается тем, что позволяет получить максимально равноценные обмотки. Намотку делаем сразу двумя шинами, желательно использовать жгут для удобства, но я мотал без него. Максимально аккуратно мотаем 5 витков по всему кольцу, в итоге у нас получается 4 отвода. Для стойкости витков обмотку изолируем, пробная изоляция может быть любой — скотч, изолента, нитки и т.п, лишь бы обмотка держалась, если уверены в правильности намотки, то можно ставить конечную изоляцию (в моем случае опять стекловолокно). Теперь нужно сфазировать обмотки, подключая начало первой полуобмотки (плеча) к концу второй или наоборот начало второй, к концу первой. Мест стыковки обмоток есть отвод от середины, на него подается силовой плюс 12 Вольт по схеме. Вторичная обмотка мотается и фазируется по тому же принципу, что и первичная. Обмотка состоит из 2х24 витков, мотается двумя шинами. Каждая шина состоит из 5 жил провода 0,7 мм.
Диодный выпрямитель собран из 4-х диодов серии КД213А. Это импульсные диоды с обратным напряжением до 200 Вольт, отлично себя чувствуют на частотах 50-80 кГц (хотя могут работать на частотах до 100 кГц), а максимально допустимый ток 10 Ампер — то, что нужно. В дополнительном охлаждении диоды не нуждаются, хотя в ходе работы может наблюдаться тепловыделение.
Дросселя в выходной цепи использовал готовые, от компьютерных блоков питания. Намотаны дросселя на ферритовом стержне (длина 1,5-2 см, диаметр 6 мм). Обмотка содержит 5-6 витков, намотана проводом 2-2,5 мм, для удобства можно мотать несколькими жилами более тонкого провода. Сглаживающие электролиты брал с напряжением 100 Вольт 1000 мкФ, работают с большим запасом. В итоге на плате инвертора 4 таких конденсатора в плече, еще два аналогичных стоят на плате усилителя Ланзар, т.е общая емкость фильтров в плече 5000 мкФ. Перед и после дросселей стоят пленочные конденсаторы с напряжением 100 Вольт, их емкость не особа критична и может быть в районе 0,1-1 мкФ.
Устройство и принцип работы
Внутреннее устройство IGBT транзистора состоит из двух каскадных электронных ключей, которые управляют конечным выходом. В каждом конкретном случае, в зависимости от мощности и других показателей, конструкция прибора может различаться, включая дополнительные затворы и иные элементы, которые улучшают показатели мощности и допустимого напряжения, обеспечивая возможность работы при температурах свыше 100 градусов.
Полупроводники IGBT типа имеют стандартизированную комбинированную структуру и следующие обозначения:
- К — коллектор.
- Э — эмиттер.
- З — затвор.
Принцип работы транзистора чрезвычайно прост. Как только на него подается напряжение положительного потенциала, в затворе и истоке полевого транзистора открывается n-канал, в результате чего происходит движение заряженных электронов. Это возбуждает действие биполярного транзистора, после чего от эмиттера напрямую к коллектору начинает протекать электрический ток.
Привязкой к установленному показателю напряжения. Драйвер затвора должен иметь постоянные параметры, что достигается за счёт добавления в схему устройства диода Шоттки. Тем самым обеспечивается уменьшение индуктивности в цепи питания и затвора.
Показатели напряжения ограничиваются за счёт наличия стабилитрона в схеме эмиттера и затвора. Отличная эффективность таких IGBT транзисторов достигается за счёт установки к клеммам модуля дополнительных диодов. Используемые компоненты должны иметь высокую температурную независимость и малый разброс.
Правильный выбор типа транзистора позволит обеспечить стабильность работы блоков питания и других электроприборов. Только в таком случае можно гарантировать полностью безопасную работу электроустановок при коротких замыканиях и в аварийных режимах эксплуатации техники.
Основные характеристики и параметры транзисторов
Классификация транзисторов. Проводимость, усиление, параметры, определяющие мощность, допустимое напряжение, частотные и шумовые свойства транзистора.
Транзистор, в общем понимании этого слова – это полупроводниковый прибор, как правило, с тремя выводами, способный усиливать поступающий на него сигнал. Выполняя функции усиления, преобразования, генерирования, а также коммутации сигналов в электрических цепях, в данный момент транзистор является основой подавляющего большинства электронных устройств и интегральных микросхем.
На принципиальных схемах транзистор обычно обозначается латинскими буквами «VT» или «Q» с добавлением позиционного номера (например, VT12 или Q12).
В отечественной документации прошлого века применялись обозначения «Т», «ПП» или «ПТ». Преобладающее применение в промышленных и радиолюбительских конструкциях находят два типа транзисторов – биполярные и полевые. Какими они бывают?
ОСНОВНАЯ КЛАССИФИКАЦИЯ, ПАРАМЕТРЫ И ХАРАКТЕРИСТИКИ ТРАНЗИСТОРОВ.
Основная классификация, определяющая область применения транзисторов, ведётся по: исходному материалу, на основе которого они сделаны, структуре проводимости, максимально допустимому напряжению, максимальной мощности, рассеиваемой на коллекторе, частотным свойствам, шумовым характеристикам, крутизне передаточной характеристики (для полевых) или статическому коэффициенту передачи тока (для биполярных транзисторов) . Рассмотрим перечисленные пункты классификации более детально.
По исходному полупроводниковому материалу транзисторы классифицируются на: — германиевые (в настоящее время не производятся); — кремниевые (наиболее широко представленный класс); — из арсенида галлия (в основном СВЧ транзисторы) и др.
По структуре транзисторы классифицируются на: — p-n-p структуры – биполярные транзисторы «прямой проводимости»; — n-p-n структуры – биполярные транзисторы «обратной проводимости»; — p-типа – полевые транзисторы с «p-типом проводимости»; — n-типа – полевые транзисторы с «n-типом проводимости». В свою очередь, полевые транзисторы подразделяются на приборы с управляющим p-n-переходом (JFET-транзисторы) и транзисторы с изолированным затвором (МДП или МОП-транзисторы).
По параметру мощности транзисторы делятся на: — транзисторы малой мощности (условно Рmах — транзисторы средней мощности (0,3 — мощные транзисторы (Рmах >1,5 Вт). Также косвенным показателем мощности транзистора является параметр максимально допустимого тока коллектора (Iк_max).
По параметру максимально допустимого напряжения Uкэ или Uси транзисторы делятся на: — транзисторы общего применения (условно Uкэ_mах — высоковольтные транзисторы (Uкэ_mах > 100 В). У современных биполярных и полевых транзисторов параметр Uкэ_mах (Uси_mах) может достигать нескольких тысяч вольт!
По частотным характеристикам транзисторы делятся на: — низкочастотные транзисторы (условно Fгр — среднечастотные транзисторы (3 — высокочастотные транзисторы (30 — сверхвысокочастотные транзисторы (Fгр > 300 МГц); Основным параметром, характеризующим быстродействия транзистора, является граничная частота коэффициента передачи тока (Fгр). Косвенным – входная и выходная ёмкости. Для транзисторов, разработанных для использования в ключевых схемах, также может указываться параметр задержки переключения (tr и ts).
По шумовым характеристикам транзисторы делятся на: — транзисторы с ненормированным коэффициентом шума; — транзисторы с нормированным коэффициентом шума (Кш).
Коэффициент передачи тока (h21 – для биполярного транзистора) и крутизна передаточной характеристики (S – для полевого) являются одними из основных параметров полупроводника. От него зависят как качественные показатели транзисторного усилительного каскада, так и требования, предъявляемые к предыдущим и последующим каскадам.
Однако давайте будем считать эту статью вводной, а углубляться и подробно рассуждать о влиянии тех или иных параметров на работу и поведение биполярного или полевого транзистора будем на следующих страницах. Полный перечень статей, посвящённых описанию работы транзистора, а также расчётам каскадов на полевых и биполярных полупроводниках, приведён в рубрике «Это тоже может быть интересно».
Основные технические характеристики
13003 – это высоковольтный силовой транзистор, прежде всего спроектированный для работы с большими токами и пропускаемым напряжением между коллектором и базой. Высокая скорость переключений и низким временем задержки включения/выключения позволяет использовать его преимущественно в импульсных схемах с индуктивной нагрузкой.
Предельные режимы эксплуатации
13003 рассчитан на работу с большими напряжениями и токами. Так, заявленные производителями максимально допустимые характеристики постоянного рабочего напряжения достигают (VCEO) 400 вольт, а порогового (VCEV) 700 вольт. Номинальное значение постоянного коллекторного тока коллектора (IC) 1.5 A, а импульсного пиковое (ICM), как у большинства силовых транзисторов, в два раза больше 3 A. Максимальная мощность рассеивания, при этом, не должна превышать 40 Ватт.
Предельные значения для пикового тока измерены при длительности импульса в 5 мс и величине обратной скважности не более 10%
Электрические характеристики
Следует учесть, что для расчета возможности применения 13003 в своих схемах, величины предельных режимов эксплуатации обычно уменьшают на 25-30%. Это связано с тем, что они рассчитаны на работу прибора при температуре Тс=25°С. Рабочая же температура устройства будет значительно выше. Зная это, производители в электрических характеристиках на 13003, указывают параметры его использования не только при температуре Тс=25°С.
Как мы видим, в таблице электрических параметров 13003, величины напряжений насыщения и времени переключения приведены и для температуры 100 градусов. Если внимательно присмотреться, то можно увидеть, что эти значения указаны при максимальном токе коллектора IC не превышающем 1 A. А это в 1.5 раза (на 33%) меньше, приведенного значения в предельно допустимых параметрах.
Наиболее важные параметры.
Коэффициент передачи тока — от 8 до 40.
Максимально допустимое напряжение коллектор-эмиттер — 700 В.
Максимальный ток коллектора — постоянный 12 А, пульсирующий — 24 А.
Напряжение насыщения коллектор-эмиттер при токе коллектора 5А, базы 1 А — 1в.
Напряжение насыщения база-эмиттер при токе коллектора 5А, базы 1 А — 1,2в.
Рассеиваемая мощность коллектора — около 100 Вт(на радиаторе).
Граничная частота передачи тока — 4 МГц.
Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт «Электрика это просто».
Главная | О сайте | Теория | Практика | Контакты |
Мысли и афоризмы: Возобновленная рана много хуже противу новой. Козьма Прутков. Справка об аналогах биполярного низкочастотного npn транзистора MJE13005.Эта страница содержит информацию об аналогах биполярного низкочастотного npn транзистора MJE13005 . Перед заменой транзистора на аналогичный, !ОБЯЗАТЕЛЬНО! сравните параметры оригинального транзистора и предлагаемого на странице аналога. Решение о замене принимайте после сравнения характеристик, с учетом конкретной схемы применения и режима работы прибора. Можно попробовать заменить транзистор MJE13005 транзистором BU406D; транзистором MJE13004; транзистором MJE53T; транзистором MJ4380; транзистором MJE53; транзистором MJ4401; транзистором TIP75C; транзистором TIP75; транзистором TIP75A; транзистором TIP75B; транзистором 2SC2126; Добавить аналог транзистора MJE13005.Вы знаете аналог или комплементарную пару транзистора MJE13005? Добавьте. Поля, помеченные звездочкой, являются обязательными для заполнения. Другие разделы справочника:Есть надежда, что справочник транзисторов окажется полезен опытным и начинающим радиолюбителям, конструкторам и учащимся. Всем тем, кто так или иначе сталкивается с необходимостью узнать больше о параметрах транзисторов. Более подробную информацию обо всех возможностях этого интернет-справочника можно прочитать на странице «О сайте». Если Вы заметили ошибку, огромная просьба написать письмо. Спасибо за терпение и сотрудничество. |
ЗАВЕРШЕНИЕ
Да, этот проект отнял у меня много времени и финансов, но знаете что? Ничуть не жалею, в конце концов был собран действительно очень крутой усилитель, который можно использовать и в машине, и дома, а качество звучания на все 200% лучше любого промышленного аудиоцентра аналогичного класса, не зря в комплексе использовал высококачественные схемы УМЗЧ.
Изначально, затял проект и не знал сколько времени он у меня отнимет, но благодаря конкурсу довел его до конца и успел буквально на последний день приема заявок, хотя очень сомневался, что успею в срок.
Усилитель вполне подходит для дискотек в малых залах — колоссальная мощность не подведет даже на свадьбах, осталось сделать блок питания и предварительные усилители со всеми удобствами, которые планирую на следующее лето. На сборку было потрачено 4 месяца, были трудности с компонентами и временем, которого так не хватает, но при наличии всех компонентов и комплектующих частей, можно уложится в гораздо короткий срок.
На счет качества звучания — не могу передать это словами, нужно лишь раз послушать и все станет ясно! Основные проблемы заключались в том, что нужно было все приспособить, резать, травить и смонтировать все это в общий блок. Над видом передней панели думали всей семьей, в конце концов победила версия матери — именно она предложила этот вариант, за это и многое другое — низкий ей поклон — основные идеи подавала она, ну и разумеется жена тоже не оставалась в стороне — помогала и работала почти наравне со мной.
В процессе сборки были некоторые этапы, когда проект забросил, но находил силы и довел до конца, а сегодня с гордостью представляю его вашему суду — здоровья вам, любви и терпения, всегда ваш КАСЬЯН АКА.
Усилитель на КТ315
Для создания усилителя, представленного на схеме, нужен один КТ315, один конденсатор (1 мкФ), один резистор и mini Jack.
На схеме видно, что отрицательное питание и один из двух ходов mini Jack надо припаять к эмиттеру (левая ножка).
Ко второму ходу mini Jack присоединяем “плюсом” конденсатор, а его “минус” припаиваем к базе. Дальше мы переходим к резистору. Одна его сторона должна быть прикреплена к первому колоночному проводу (другой ход колоночного провода — к коллектору), а второй — к отрицательному ходу конденсатора. К соединению провода от колонки и резистора добавляется плюсовой провод.
Теперь можно вставлять разъем в колонку и наслаждаться улучшенным и громким звуком.
Маркировка
Маркируется на корпусе цифрами “13003”, указывающими на серийный номер устройства по системе JEDEC. Префикс MJE, в начале указывает на происхождение устройства у именитого брэнда — компании Motorola. В настоящее время префикс mje в обозначении своей продукции добавляют и другие производители радиоэлектронного оборудования. Так что, не удивительно встретить транзистор с таким префиксом от другого компании.
Также, вместо MJE, но с другими буквами в названиях, могут встречается похожие устройства: ST13003 SOT-32 (ST Microelectronics), FJP13003, KSE 13003 (Fairchild). В последнее время стали встречается копии устройств от китайских компаний с такой маркировкой на корпусе: 13003d, 13003br, j13003, e13003. В большинстве случаев у приборов с буквой “d” в конце есть встроенный защитный диод, а у остальных меньшая мощность до 25 Вт.
Аналоги
Для замены могут подойти транзисторы кремниевые, со структурой NPN, эпитаксиально-планарные, предназначенные для использования в импульсных источниках питания, пускорегулирующих устройствах, схемах управления электродвигателями и др., аппаратуре общего применения.
Отечественное производство
Транзисторы, близкие по параметрам к серии 13003 (MJE13003).
Тип | PC, Вт | UCB, В | UCE, В | UBE, В | IC, А | UCE(sat), В | Tj , °С | fT , МГц | hFE | ton / ts / tf, мкс | Корпус |
---|---|---|---|---|---|---|---|---|---|---|---|
MJE13003 | 40 | 700 | 400 | 9 | 2 | 0,6 | 150 | 4 | 5…40 | — / 3,5 / 1 | TO-126 |
КТ8170А | 40 | 700 | 400 | 9 | 2,25 | 3 | 150 | 4 | 5…40 | 1,1 / 4 / 0,7 | TO-126 |
КТ859А | 40 | 800 | 800 | 10 | 3 | 1,5 | 150 | ˃ 3,3 | ˃ 10 | 0,35 / 3,3 / 0,35 | TO-220AB |
КТ841А/В | 50 | 600/800 | 350 | 5 | 10 | 1,5 | 150 | 10 | 12…45 | 0,08 / 0,8 / 0,2 | TO-3 |
КТ8118А | 50 | 900 | 800 | — | 3 | ˂ 2,0 | 150 | ˃ 15 | 10…40 | — | TO-220 |
КТ8120А | 60 | 600 | 450 | 5 | 8 | 1 | 150 | 20 | ˃ 10 | — / 2 / 0,2 | TO-220 |
КТ840А/Б/В | 60 | 900/750/800 | 400/350/375 | 5 | 6 | 0,6 | 150 | 8…15 | 10…60 | 0,2 / 3,5 / 0,6 | TO-3 |
КТ868А/Б | 70 | 900/750 | 400/375 | 5 | 6 | 1,5 | 150 | ˃ 8 | 10…100 | — | TO-3PML |
Зарубежное производство
Аналоги транзистора E13003 (MJE13003).
Тип | PC, Вт | UCB, В | UCE, В | UBE, В | IC, А | UCE(sat), В | Tj , °С | fT , МГц | hFE | ton / ts / tf, мкс | Корпус |
---|---|---|---|---|---|---|---|---|---|---|---|
MJE13003 | 40 | 700 | 400 | 9 | 2 | 0,6 | 150 | 4 | 5…40 | — / 3,5 / 1 | TO-126 |
3DD1910 | 40 | 700 | 400 | 9 | 2,5 | 1 | 150 | 5 | 15…30 | 1 / 5 / 0,8 | TO-126A |
3DD13005A7 | 40 | 800 | 400 | 9 | 3 | 0,6 | 150 | 5 | 15…35 | 1 / 5 / 1 | TO-126F |
WBR13005D1 | 40 | 700 | 400 | 9 | 4 | 1 | 150 | 4 | 10…40 | — / 3,6 / 1,6 | TO-126 |
BTN3A60T3 | 40 | 900 | 700 | 9 | 3 | 0,6 | 150 | 4 | 10…40 | — | TO-126 |
HLD133D | 35 | 700 | 400 | 9 | 2 | 1 | 150 | — | 5…40 | — / 4 / 0,8 | TO-126 |
ST13007DFP | 36 | 700 | 400 | 9 | 8 | 3 | 150 | 4 | 8…40 | — / 2,2 / 0,15 | TO-220FP |
BUL310FP | 36 | 1000 | 500 | 9 | 5 | 1,1 | 150 | — | 10 | — / 1,8 / 0,5 | TO-220FP |
Аналоги транзисторов 13003BR (MJE13003BR) и 13003T (KSE13003T).
Тип | PC, Вт | UCB, В | UCE, В | UBE, В | IC, А | UCE(sat), В | Tj , °С | fT , МГц | hFE | ton / ts / tf, мкс | Корпус |
---|---|---|---|---|---|---|---|---|---|---|---|
MJE13003BR | 30 | 600 | 400 | 9 | 2 | 0,85 | 150 | — | 5…40 | — / 3 / 0,8 | TO-126 |
BLD123D | 30 | 600 | 400 | 9 | 2 | 0,9 | 150 | — | 5…40 | — / 4 / 0,8 | TO-126 |
KSE13003T | 30 | 700 | 400 | 9 | 1,5 | 3 | 150 | 4 | 5…40 | 1,1 / 4 / 0,7 | TO-220 |
FJPE3305 | 30 | 700 | 400 | 9 | 4 | 1 | 150 | 4 | 8…40 | 0,8 / 4 / 0,9 | TO-220F |
KSH13005AF | 30 | 700 | 400 | 9 | 4 | 1 | 150 | 4 | 8…60 | 0,8 / 4 / 0,9 | TO-220F |
MJE13005AF | 30 | 800 | 400 | 10 | 5 | 1 | 150 | 4 | 8…35 | 0,15 / 5 / 0,8 | TO-220IS |
MJE13005F | 30 | 700 | 400 | 9 | 4 | 1 | 150 | 4 | 10…35 | 0,8 / 4 / 0,9 | TO-220IS |
STD13005F/FC | 30 | 700 | 400 | 9 | 4 | 1 | 150 | 4 | 8…40 | 0,8 / 4 / 0,9 | TO-220F-3L |
STL128DFP | 30 | 700 | 400 | — | 4 | 1,5 | 150 | — | 10…32 | — / 0,6 / 0,1 | TO-220FP |
TS13005CI | 30 | 700 | 400 | 9 | 4 | 1 | 150 | 4 | 8…40 | 0,7 / 3 / 0,5 | ITO-220 |
TSC236CI | 30 | 700 | 400 | 9 | 4 | 1,3 | 150 | — | 8…32 | 0,5 / 3 / 0,5 | ITO-220 |
BUL128FP | 31 | 700 | 400 | 9 | 4 | 1,5 | 150 | — | 10…45 | — / 2,9 / 0,4 | TO220FP |
Примечание: данные таблиц получены из даташип компаний-производителя.