Основные характеристики и параметры транзисторов
Классификация транзисторов. Проводимость, усиление, параметры, определяющие мощность, допустимое напряжение, частотные и шумовые свойства транзистора.
Транзистор, в общем понимании этого слова – это полупроводниковый прибор, как правило, с тремя выводами, способный усиливать поступающий на него сигнал. Выполняя функции усиления, преобразования, генерирования, а также коммутации сигналов в электрических цепях, в данный момент транзистор является основой подавляющего большинства электронных устройств и интегральных микросхем.
На принципиальных схемах транзистор обычно обозначается латинскими буквами «VT» или «Q» с добавлением позиционного номера (например, VT12 или Q12).
В отечественной документации прошлого века применялись обозначения «Т», «ПП» или «ПТ». Преобладающее применение в промышленных и радиолюбительских конструкциях находят два типа транзисторов – биполярные и полевые. Какими они бывают?
ОСНОВНАЯ КЛАССИФИКАЦИЯ, ПАРАМЕТРЫ И ХАРАКТЕРИСТИКИ ТРАНЗИСТОРОВ.
Основная классификация, определяющая область применения транзисторов, ведётся по: исходному материалу, на основе которого они сделаны, структуре проводимости, максимально допустимому напряжению, максимальной мощности, рассеиваемой на коллекторе, частотным свойствам, шумовым характеристикам, крутизне передаточной характеристики (для полевых) или статическому коэффициенту передачи тока (для биполярных транзисторов) . Рассмотрим перечисленные пункты классификации более детально.
По исходному полупроводниковому материалу транзисторы классифицируются на: — германиевые (в настоящее время не производятся); — кремниевые (наиболее широко представленный класс); — из арсенида галлия (в основном СВЧ транзисторы) и др.
По структуре транзисторы классифицируются на: — p-n-p структуры – биполярные транзисторы «прямой проводимости»; — n-p-n структуры – биполярные транзисторы «обратной проводимости»; — p-типа – полевые транзисторы с «p-типом проводимости»; — n-типа – полевые транзисторы с «n-типом проводимости». В свою очередь, полевые транзисторы подразделяются на приборы с управляющим p-n-переходом (JFET-транзисторы) и транзисторы с изолированным затвором (МДП или МОП-транзисторы).
По параметру мощности транзисторы делятся на: — транзисторы малой мощности (условно Рmах — транзисторы средней мощности (0,3 — мощные транзисторы (Рmах >1,5 Вт). Также косвенным показателем мощности транзистора является параметр максимально допустимого тока коллектора (Iк_max).
По параметру максимально допустимого напряжения Uкэ или Uси транзисторы делятся на: — транзисторы общего применения (условно Uкэ_mах — высоковольтные транзисторы (Uкэ_mах > 100 В). У современных биполярных и полевых транзисторов параметр Uкэ_mах (Uси_mах) может достигать нескольких тысяч вольт!
По частотным характеристикам транзисторы делятся на: — низкочастотные транзисторы (условно Fгр — среднечастотные транзисторы (3 — высокочастотные транзисторы (30 — сверхвысокочастотные транзисторы (Fгр > 300 МГц); Основным параметром, характеризующим быстродействия транзистора, является граничная частота коэффициента передачи тока (Fгр). Косвенным – входная и выходная ёмкости. Для транзисторов, разработанных для использования в ключевых схемах, также может указываться параметр задержки переключения (tr и ts).
По шумовым характеристикам транзисторы делятся на: — транзисторы с ненормированным коэффициентом шума; — транзисторы с нормированным коэффициентом шума (Кш).
Коэффициент передачи тока (h21 – для биполярного транзистора) и крутизна передаточной характеристики (S – для полевого) являются одними из основных параметров полупроводника. От него зависят как качественные показатели транзисторного усилительного каскада, так и требования, предъявляемые к предыдущим и последующим каскадам.
Однако давайте будем считать эту статью вводной, а углубляться и подробно рассуждать о влиянии тех или иных параметров на работу и поведение биполярного или полевого транзистора будем на следующих страницах. Полный перечень статей, посвящённых описанию работы транзистора, а также расчётам каскадов на полевых и биполярных полупроводниках, приведён в рубрике «Это тоже может быть интересно».
Электрические параметры
Характеристика | Обозначение | Параметры при измерениях | Значения |
---|---|---|---|
Характеристики выключенного состояния | |||
Напряжение пробоя коллектор-база, В | U(BR)CBO | IC = 1,0 мА, IE = 0 | ≥ 450 |
Напряжение пробоя коллектор-эмиттер, В | U(BR)CEO | IC = 10,0 мА, IB = 0 | ≥ 400 |
Напряжение пробоя эмиттер-база, В | U(BR)EBO | IE = 0,1 мА, IC = 0 | ≥ 7,0 |
Ток коллектора выключения, мА | ICBO | UCB = 450 В, IE = 0 | ≤ 1,0 |
Ток эмиттера выключения, мкА | IEBO | UEB = 7,0 В, IC = 0 | ≤ 100,0 |
Характеристики включенного состояния ٭ | |||
Напряжение насыщения коллектор-эмиттер, В | UCE(sat) | IC = 4,0 А, IB = 800 мА | ≤ 1,2 |
Напряжение насыщения база-эмиттер, В | UBE(sat) | IC = 4,0 А, IB = 800 мА | ≤ 1,5 |
Статический коэффициент усиления по току | hFE | UCE = 5,0 В, IC = 4,0 А | ≥ 10 |
Временные характеристики работы транзистора | |||
Время нарастания импульса, мкс | ton | UCC = 150 В, IC = 5,0 А,IB1 = IB2 = 1,0 А, RL = 30 Ом | ≤ 1,0 |
Время сохранения импульса, мкс | ts (tstg) | ≤ 2,5 | |
Время спадания импульса, мкс | tf | ≤ 1,0 |
٭ — получено в режиме импульсного теста: ширина импульса 300 мкс, скважность не более 2%
Мультивибратор на КТ315
Мультивибратор — это генератор широкой импульсной модуляции (или коротко ШИМ). Получается, что генератор будет выдавать сигнал либо постоянного плюса, либо постоянного минуса.
Принцип действий заключается в попеременном поступлении тока то к одному, то к другому светодиоду (их два). Частоту каждого из них можно менять (если резисторы будут разными, то и включение светодиодов тоже будет отличаться). Данная схема работает от напряжения 1,7 В до 16 В. Чтобы запустить схему понадобиться 3,2 В (этого будет достаточно, чтобы увидеть деятельность светодиодов).
Стоит отметить, что схема парная (2 конденсатора, 2 резистора, (2 RC-цепи), 2 светодиода), а вот значения транзисторов могут отличаться (от 220 Ом до 300 Ом), в таком случае схема все равно будет работать.
Надежная функциональность мультивибратора зависит от более высокого сопротивления одного из резисторов.
Отметим, что, чем больше сопротивление на переменном резисторе, тем больше будет мигать светодиод.
Технические характеристики
Рассмотрим технические характеристики отечественной серии транзисторов КТ503. Превышения указанных ниже значений не допускается, так как кремниевая структура в результате перегрева разрушается, и устройство в конечном итоге выходит из строя. Все параметры представлены с учётом температуры перехода (ТП) не более +25oC.
Абсолютные характеристики КТ503:
- максимальное напряжение К-Э (UКЭ0 max) при заданном токе К (IК до 0.15 А или IК имп. до 0.35 А) и нулевом токе Б (IБ = 0 А):
- КТ503А(Б) до 40 В;
- КТ503В(Г) до 60 В;
- КТ503Д до 80 В;
- КТ503Е до 100 В.
- напряжение Б-Э (UЭБ0 max) до 5 В (при IК max = 0 А);
- ток коллектора (IК) до 0.15 А; импульсный (IК имп) до 0.35 А;
- ток базы (IБ) до 0.1 А;
- рассеиваемая мощность (PK) до 0,35 Вт (с теплоотводом и без него);
- температура перехода (ТП) до 398 К (до +125oC).
Маркировка
В советское время до 1986 г. маркировка на корпусе КТ503 была цветная. Белая точка (круг) на квадратной части корпуса КТ-26 указывала принадлежность транзистора к рассматриваемой серии. Группу (от А до Е), к которой устройство было отнесено при производстве, можно определить по цвету краски на торце упаковки.
С 1986 г. до 2000 г. на аналогичных устройства наносилась кодово-символьная маркировка, для типизации по прежнему использовался белы круг. Год, месяц и группа имели соответствующий код на корпусе. Расшифровка такого обозначения показана в таблице ниже.
Кроме вышеуказанных вариантов, после 2000 г., на корпус наносилась буквенно-цифровое обозначение. Однако, в связи со снижением производства такая маркировка встречаются крайне редко.
Комплиментарная пара
Комплементарной парой для КТ503 является серия КТ502, которая имеет p-n-p-структуру кристалла. В советское время оба транзистора широко использовались во входных каскадах усиления сигнала низкой частоты. Не удивительно, что маркировка и классификация по группам у них схожа.
КТ315 — аналоги отечественные и зарубежные
Но так как главной темой статьи является не КТ315 — аналоги для этого транзистора, то следует уже уделить внимание и основной теме. Итак, вот список аналогов:
- Биполярный транзистор BC847B. Относительно дорогой (3 рубля за 1 штуку) маломощный транзистор, имеющий значительный коэффициент усиления. Если сравнивать с КТ315, аналог зарубежный довольно дорогой. Но он имеет то преимущество, что при пайке и перепайке не так быстро выходит из строя (что не в последнюю очередь благодаря его увеличенной и укреплённой конструкции). Максимальная рассеиваемая мощность — 0,25. На направление «коллектор-база» может подаваться до 50 Вольт. На коллектор-эмиттер — до 45 Вольт. Максимальное напряжение для направления эмиттер-база составляет 6 Вольт. Коллекторный переход имеет ёмкость 8. Предельная температура перехода составляет 150 градусов. Статистический коэффициент передачи тока — 200.
- Биполярный транзистор 2SC634. Этот импортный аналог КТ315 является довольно сбалансированным относительно характеристик и цены. Значение максимальной рассеиваемой мощности составляет 0,18. Максимально допустимое напряжение на коллектор-базу и коллектор-эмиттер — 40 Вольт. Эмиттер-база — всего 6 Вольт. Ёмкость коллекторного перехода составляет 8. Предельная температура перехода — 125 градусов. Статический коэффициент передачи тока — 90.
- Биполярный транзистор КТ3102. Сказать, что он для КТ315 — аналог отечественный будет неверно, ведь исторически так сложилось, что подобные детали изготавливались одного вида, который соответствует всем необходимым запросам и может выполнить возложенные на него функции. Дело в том, что просто КТ3102 не существует, обязательно вслед идёт ещё одна буква. Во избежание конфликтов значения будут указаны для всей группы. Более детальную информацию вы сможете получить, просматривая каждый транзистор. Отечественная разработка является усовершенствованным КТ315. Аналог в этом случае — слово не совсем уместное, скорее, усовершенствованный механизм. Максимальная рассеиваемая мощность КТ3102 составляет 0,25. На коллектор-базу может подаваться максимальное напряжение в 20-50 Вольт. Максимальное напряжение, которое можно подавать на коллектор-эмиттер, тоже составляет 20-50 Вольт. Максимальное напряжение на эмиттер-базу составляет 5 Вольт. Ёмкость коллекторного перехода равняется 6. Предельная температура перехода — 150 градусов. Статический коэффициент передачи тока равняется 100.
- Биполярный транзистор 2SC641. Максимальная рассеиваемая мощность — 0,1. Напряжение на направлении коллектор — база не должно превышать 40 Вольт. Максимальное напряжение на направлении коллектор — эмиттер не должно быть больше 15 Вольт. Для направления эмиттер — база это значение не должно превышать 5 Вольт. Ёмкость коллекторного перехода составляет 6 единиц. Предельная температура перехода — 125 градусов. Статический коэффициент передачи тока равен 35.
Электрические характеристики
Характеристика | Обозначение | Параметры при измерениях | Значения |
---|---|---|---|
Рабочее напряжение коллектор-эмиттер, В | UCEO(sus) | IC = 3 А, IB1 = 0,6 А, L = 1 мгн | ≥ 400 |
Рабочее напряжение коллектор-эмиттер, В | UCEX(sus)1 | IC = 3,0 А, IB1 = 0,6 А, IB2 = — 0,6 А, UBE(off) = — 5 В, L = 1 мкгн, с ограни-чением напряжения. | ≥ 450 |
Рабочее напряжение коллектор-эмиттер, В | UCEX(sus)2 | IC = 6,0 А, IB1 = 2,0 А, IB2 = — 0,6 А, UBE(off) = — 5В, L = 1 мкгн, с ограни-чением напряжения. | ≥ 400 |
Ток коллектора выключения, мкА | ICBO | UCB = 400 В, IE = 0 | ≤ 10 |
Ток коллектора выключения, мА | ICER | UCE = 400 В, RBE = 51 Ом, Tc = 125°C | ≤ 1 |
Ток коллектора выключения, мкА | ICEX1 | UCE = 400 В, UBE(off) = — 1,5В | ≤ 10 |
Ток коллектора выключения, мА | ICEX2 | UCE = 400 В, UBE(off) = — 1,5 В, Tc = 125°C | ≤ 1 |
Ток эмиттера выключения, мкА | IEBO | UEB = 5,0 В, IC = 0 | ≤ 10 |
Напряжение насыщения коллектор-эмиттер, В | UCE(sat) ٭ | IC = 3,0 А, IB = 0,6 А | ≤ 1,0 |
Напряжение насыщения база-эмиттер, В | UBE(sat) ٭ | IC = 3,0 А, IB = 0,6 А | ≤ 1,2 |
Статический коэффициент усиления по току | hFE (1) ٭ | UCE = 5,0 В, IC = 0,1 А | 20….80 |
hFE (2) ٭ | UCE = 5,0 В, IC = 1,0 А | 20….80 | |
hFE (3) ٭ | UCE = 5,0 В, IC = 3,0 А | ≥ 10 | |
Временные параметры транзистора, см. схему измерений | |||
Время включения транзистора, мкс | ton | UCC = 150 В, IC = 3,0 А, IB1 = 0,6 А, IB2 = — 0,6 А, RL = 50 Ом. | ≤ 1,0 |
Время сохранения импульса, мкс | tstg | ≤ 2,5 | |
Время спадания импульса, мкс | tf | ≤ 1,0 |
٭ — измерено при длительности импульса тока 350 мкс и скважности 2%. Примечание: данные в таблицах действительны при температуре среды Ta=25°C
Примечание: данные в таблицах действительны при температуре среды Ta=25°C.
Производитель разделяет транзисторы по величине параметра hFE2 на группы R, O, Y в пределах указанного диапазона.
Классификация | R | O | Y |
---|---|---|---|
hFE2 | 20….40 | 30….60 | 40….80 |
Схемы с использованием TL431
Микросхема может использоваться во многих разных схемах блоков питания. Это могут быть как регулируемые блоки питания, так и зарядные устройства к аккумуляторам. Давайте разберем несколько базовых, типовых схем, которые можно модернизировать, и на базе которых можно создавать свои замыслы и творения.
Стабилизатор напряжения на TL431 (2.5-36В, 100mA)
Данная схема позволяет заменить обыкновенный стабилитрон. Вы можете менять выходное напряжение путем изменения сопротивления резисторов R1 и R2. Чтобы провести расчет сопротивления, рекомендуем прибегнуть к использованию формулы, указанной ниже:
Стабилизатор напряжения с увеличенным максимальным током (2.5-36В)
Максимальный выходной ток TL431 равен 100мА. Однако, если вашему проекту нужен больший показатель выходного тока, то советуем вам использовать транзистор: тогда максимальный ток будет зависеть от его характеристик. Формула для расчета сопротивлений резисторов остается такой же.
Подобные схемы часто используются с другими микросхемами.К сожалению, большинство из них просто не могут пропускать высокий ток, поэтому, чтобы решить такую проблему, в дело вступает управляющий транзистор. В таком случае максимальный ток ограничивается его свойствами. Главная задача здесь — правильный подбор транзистора под управляющее напряжение на его базе.
Лабораторный блок питания на TL431 с защитой
Данная схема представляет собой регулируемый блок питания, который способен выдавать до 30Вт. И помимо этого имеет встроенную защиту от перегрузки. В случае, если ток начнет превышать допустимое значение на транзисторе Т2, то на ЛБП произойдет прекращение подачи напряжения, о чем будет сигнализировать загоревшийся светодиод.
Не стоит забывать использовать охлаждение в виде радиатора, ведь компоненты во время пиковых нагрузок будут быстро нагреваться, и со временем при частых перегревах, выходить из строя.
Стабилизатор тока на TL431 (Светодиодный драйвер)
Чаще всего стабилизаторы тока используются для запитывания светодиодов и светодиодных лент. Схема тут элементарная — вам понадобятся всего лишь пара резисторов и один транзистор.
Индикатор напряжения
Схема может понадобиться, когда вам необходимо следить за тем, чтобы напряжение не выходило за верхние и нижние пределы. Эти пределы задаются сопротивлением резисторов, по формуле, указанной ниже.
Данную схему можно модернизировать путем добавления пищалок или других звуковых устройств. Таким образом точно не получится пропустить сигнал о неправильном напряжении.
Таймер задержки на TL431
Универсальная микросхема, на которой есть возможность реализовать даже схему таймера задержки. Все, что вам понадобится — это пара резисторов и конденсатор. Их номиналы необходимо рассчитать по формуле, чтобы получить требуемое время задержки (формула указана ниже).
Такая схема возможна благодаря очень низкому показателю входного тока (4мкА). Во время замыкания главного контакта, транзистор начинает производить зарядку. После достижения показателя в 2.5В он открывается, и ток при содействии оптопаровому светодиоду (оптрону) начинает течь, от чего на внешней цепи происходит замыкание.
Зарядное устройство для литиевых аккумуляторах на TL431 и LM317
Эта простейшая схема позволяет правильно заряжать литиевые аккумуляторы. В этой зарядке TL431 используется в качестве источника опорного напряжения, а LM317 в качестве источника тока. Устройство заряжает аккумуляторы методом CC CV, означает, как все знают, постоянный ток (Constant Current), постоянное напряжение (Constant Voltage).
Входное напряжение для этой схемы — 9-20В. Сначала аккумулятор заряжается постоянным током, который поддается изменению, меняя сопротивление резистора R5. После того, как аккумулятор достигнет напряжения около 4.2В, он начинает заряжаться постоянным напряжением.
Учтите, что очень важно перед использованием настроить устройство: без нагрузки необходимо подстроить переменный резистор RV1 так, чтобы на выходе напряжение было равно 4.2 Вольта.