Что это такое
Гармонические составляющие самых удачных моделей находятся в диапазоне 20 – 20 000 Гц.
Основными компонентами являются:
- предварительный усилитель – первичное усиление входящего сигнала до уровня восприятия оконечным устройством, коммутация и регулирование уровня;
- усилитель мощности – увеличение обработанного сигнала до уровня воспроизведения акустическими системами на достаточной громкости;
- распределитель (дистрибьютор) – для регулирования амплитуд сигналов с их последующим распределением на несколько каналов;
- блок питания – для электропитания всех блоков и схем устройства.
Идеальный и реальный операционные усилители
Сначала суммируем характеристики идеального операционного усилителя, показанного на рис. «Идеальный операционный усилитель«:
- Синфазное входное сопротивление между входом и землей, где: rGL_P = UP/IP; rGL_N = UN/IN. В общем случае значение rGL можно проигнорировать.
- Дифференциальное входное сопротивление между двумя входами; здесь: rD = (UP -UN)/IP. rD увеличивается за счет отрицательной обратной связи.
- Дифференциальное выходное сопротивление rA = dUA/dIA. rA — за счет отрицательной обратной связи снижается.
- Напряжение смещения Uos — количественная характеристика того факта, что даже в случае короткого замыкания между двумя входами (т.е. UD = 0) выходное напряжение UA не равно нулю.
- Коэффициент ослабления синфазного сигнала (CMRR): количественная характеристика, описывающая изменение выходного напряжения UA при одновременном синхронном изменении входных напряжений UP и UN (в случае синфазных периодических входных сигналов), т.е., когда UD остается постоянным.
- Коэффициент подавления пульсаций питания (PSRR): количественная характеристика, описывающая изменение выходного напряжения UA при изменении напряжений питания.
Поэтому основные идеализации заключаются в следующем:
- Коэффициент усиления при разомкнутой цепи обратной связи АD приближается к бесконечности; в случае отрицательной обратной связи имеет место следующее: UD = 0.
- Входные токи IN и IР приближаются к нулю.
- Если IN и IР близки к нулю, это означает, что синфазное и дифференциальное входные сопротивления приближаются к бесконечности.
- Напряжение смещения Uos приближается к нулю.
- Выходное сопротивление RA приближается к нулю.
- Коэффициент ослабления синфазного сигнала (CMRR) приближается к бесконечности, т.е. в случае равного и синфазного изменения напряжений UP и UN, UА остается неизменным.
- Коэффициент ослабления пульсаций питания (PSRR) приближается к бесконечности, т.е. в случае изменения напряжения питания, UА остается неизменным.
- Поведение усилителя не зависит от частоты.
На практике, разумеется, значения вышеуказанных параметров отличны от идеальных:
- Коэффициент усиления при разомкнутой цепи обратной связи АD лежит в диапазоне от 104 до 107.
- Входные токи IN и IР лежат в диапазоне от 10 пА до 2 мкА.
- Синфазное входное сопротивление лежит в диапазоне от 106 до 1012 Ом, а дифференциальное входное сопротивление достигает 1012 Ом.
- Выходное сопротивление RA лежит в диапазоне от 2 до 50 Ом.
- Коэффициент ослабления синфазного сигнала (CMRR) лежит в диапазоне от 60 до 140 дБ.
- Коэффициент ослабления пульсаций питания (PSRR) лежит в диапазоне от 60 до 100 дБ.
- Поведение усилителя зависит от частоты (пропускание низких частот).
Собственные шумы усилителя.
Что же такое шум?
В электронике шумом называют беспорядочные колебания амплитуды сигнала, которые глушат полезный сигнал. Сюда же относятся разного рода помехи. Собственные шумы усилителя — это шумы, которые зарождаются как внутри самого усилителя, так и могут быть вызваны внешним источником помех, либо некачественным питанием усилителя. Давайте рассмотрим основные виды шумов усилителя.
Фон
Этот шум вызван некачественным питанием усилителя. Если источник питания собран на сетевом трансформаторе, то шум будет на частоте 100 Гц (2х50Гц, по схеме диодного моста). То есть на выходе такого усилителя мы услышим гудение, если подцепим к выходу динамик. Думаю, вы часто слышали такое выражение «что-то динамики фонят». Это все из этой серии.
Помехи и наводки
Это могут быть внешние источники, которые так или иначе действуют на усилитель. Это может быть наводка от сети 220 Вольт (очень часто ее можно увидеть, если просто прикоснуться к сигнальному щупу осциллографа), это также может быть какая-либо искра, которая образуется в свечах двигателей внутреннего сгорания.
Небольшое лирическое отступление. Помню, как смотрел диснеевские мультики по первому каналу, а через дорогу сосед пилил дрова с помощью бензопилы Дружба-2. Тогда на экране ТВ были такие помехи, что я про себя тихо материл соседа.
Ну а как же без грозовых разрядов? Благодаря электромагнитному импульсу у нас появилось такое изобретение, как радио.
К источникам помех можно также отнести радио- и ТВ-станции, рядом лежащее и стоящее электрооборудование, типа мощных коммутационных механических ключей, разрядников и тд.
Ну и конечно, это шум самих радиоэлементов. Сюда относится тепловой шум (джонсоновский), дробовой шум, а также фликкер-шум.
Наиболее существенными являются шумы, которые возникают на входе усилителя в самом первом каскаде. Этот шум в дальнейшем усиливается также, как и входной полезный сигнал. В результате на выходе усилителя у нас будет усилен как полезный сигнал, так и шумовой. Поэтому, при проектировании качественных усилителей стараются как можно сильнее минимизировать шум на входе первого каскада усилителя.
Устройство операционного усилителя
Итак, операционный усилитель – это усилитель электрических сигналов, чаще всего постоянного тока, с высоким коэффициентом усиления в широкой полосе частот, предназначенный для выполнения различных математических операций над аналоговыми величинами при работе в схеме с отрицательной обратной связью.
Операционные усилители в настоящее время выпускаются различного назначения и для выполнения различных функций и хотя электрическая схема усилителей даже одного класса может различаться, но структурная схема, которая лежит в основе всех операционных усилителей остается единой. Изображение структурной схемы выполнено ниже
.
Структурная схема операционного усилителя
Таким образом, операционный усилитель представляет собой схему из последовательно соединённых трёх частей: входной усилитель на основе дифференциального каскада (иногда может быть несколько дифференциальных каскадов), каскад согласования уровней и выходной каскад.
Дифференциальный входной каскад, имея большой коэффициент усиления и большое входное сопротивление, обеспечивает согласование операционного усилителя с источником сигнала. Довольно часто усиления одного входного каскада недостаточно, поэтому используется несколько дифференциальных усилителей на входе соединённых последовательно с симметричными входами и несимметричным выходом.
Каскад согласования уровней предназначен для согласования уровней напряжения между входным и выходным каскадами операционного усилителя. Кроме того данный каскад выполняет функцию усиления напряжения переменного тока и меет небольшое выходное сопротивление.
Выходной каскад операционного усилителя, обычно, не усиливает напряжение, но позволяет отдавать в нагрузку усилителя максимальное напряжение и ток, имеет небольшое выходное сопротивление, а мощность выделяемая на нём в случае отсутствия сигнала минимальна.
На изображении ниже показана принципиальная электрическая схема одного из первых операционных усилителей, выполненных по интегральной технологии, который разработал в 1963г. Роберт Видлар, инженер Fairchild Semiconductor
Электрическая принципиальная схема операционного усилителя μА702 (отечественный аналог К140УД1).
Данная схема содержит 9 транзисторов, 12 резисторов и 1 интегральный диод, в схеме отсутствуют конденсаторы, что даёт достаточно широкую полосу пропускания. В качестве входного усилителя используется дифференциальный каскад на транзисторах VT1VT2 с генератором стабильного тока на транзисторах VT3VT6. Дифференциальный каскад на транзисторах VT4VT5 совместно с транзисторами VT7VT8 выполняют роль каскада согласования уровней, а транзистор VT9 используется в качестве выходного каскада с небольшим выходным сопротивлением.
На принципиальных электрических схемах операционные усилители в интегральном исполнении обозначаются следующим образом
Обозначение операционных усилителей на принципиальных электрических схемах (слева иностранное, а справа отечественное изображение).
Маркировка
Цифры “13001” на корпусе дают общее представление об этом полупроводниковом устройстве. Многие производители маркируют так свои изделия из-за отсутствия места на корпусе ТО-92, не указывая при этом префикс в начале. В статье приведены технические характеристики устройств малоизвестных в России производителей DGNJDZ, Semtech Electronics, YFWDIODE. Указанные производители в своих даташитах не указывают дополнительных символов маркировки. Без дополнительных обозначений маркирует свой транзистор TS13001 тайваньская компания TSMC. Первые две литеры “TS” являются аббревиатурой первых двух слов в полном названии компании Taiwan Semiconductor Manufacturing Company. В тоже время, на рыке достаточно широко представлены транзисторы mje13001, которые тоже промаркированы цифрами 13001. SHENZHEN JTD ELECTRONICS и многие другие производители применяют s13001 s8d при маркировке своих девайсов. Встречаются и другие префиксы, не рассмотренные в статье. Многие продавцы не заморачиваясь с маркировкой в наименовании товара, указывают все возможные его типы вместе с датой производства.
Суммирование источников шума
Источники шума бывают белыми и гауссовыми. Белый шум — это шум, мощность которого в пределах заданной полосы частот постоянна. Гауссов шум — шум, вероятность появления конкретного значения амплитуды которого имеет гауссово распределение.
Гауссов шум обладает следующим свойством. При сложении среднеквадратичных значений шума от двух и более некоррелированных источников гауссова шума (когда один шумовой сигнал не может быть приведен к другому шумовому сигналу), результирующий шум будет равен не арифметической сумме, а квадратному корню из суммы квадратов отдельных среднеквадратичных значений:
где Vni, TOTAL — общий приведенный к входу шум; en — приведенное к входу шумовое напряжение; in — приведенный к входу шумовой ток; RS — эквивалентное сопротивление источника или сопротивление на входе усилителя; Vn(REX) — шумовое напряжение внешней части схемы. Отметим следующее:
- Любое сопротивление на неинвертиру-ющем входе обладает шумом Джонсона и преобразует шумовой ток в шумовое напряжение.
- Шум Джонсона в резисторах обратной связи в высокоомных схемах может быть значительным.
На рис. 3 графически представлено уравнение (5) как сумма векторов с использованием теоремы Пифагора.
Рис. 3. Векторное суммирование источников шума
Шумовое усиление
Шумы, которые обсуждались ранее, могут быть объединены в приведенный к входу шум схемы усилителя. Для того чтобы рассчитать общий выходной шум схемы усилителя, общий объединенный шум на входе должен быть умножен на шумовое усиление схемы усилителя. Шумовое усиление — это усиление схемы усилителя для приведенного к входу шума. Оно обычно используется для определения устойчивости схемы усилителя.
Для упрощения расчета шумового усиления источники шума в простой схеме усилителя на рис. 1 могут быть объединены в один общий приведенный к входу источник шума (Vni, TOTAL ) , как показано на рис. 4.
Рис. 4. Упрощение схемы шумов усилителя
Обычно при расчете принято предполагать, что общий приведенный к входу шум прикладывается к неинвертирующему входу усилителя:
где Vno, TOTAL — общий приведенный к выходу шум; Vni, TOTAL — общий приведенный к входу шум.
где Gn — шумовое усиление; R1 — эквивалентный импеданс цепи обратной связи; R2 — входной эквивалентный импеданс.
В некоторых случаях шумовое усиление и усиление сигнала не являются эквивалентными (рис. 5). Заметим, что полоса пропускания схемы с замкнутой обратной связью определяется делением произведения усиления на полосу (или частоты единичного усиления) на шумовое усиление схемы усилителя.
Рис. 5. Сравнение усиления сигнала и шумового усиления
Цоколёвка и маркировка КТ815
Цоколёвка транзистора КТ815 зависит от типа корпуса прибора. Существует два различных типа корпуса – КТ-27 и КТ-89. Первый случай используется для объёмного монтажа элементов, второй – для поверхностного. По зарубежной классификации, типы данных корпусов имеют, соответственно, следующие обозначения: TO -126 для первого случая и DPAK для второго случая.
Расположение выводов элемента прибора в корпусе КТ-27 имеет следующий порядок: эмиттер-коллектор-база, если смотреть на транзистор с его лицевой стороны. Для элемента в корпусе КТ-89, расположение выводов имеет следующий порядок: база-коллектор-эмиттер, где коллектором является верхний электрод прибора.
На сегодняшний день, применение элементов в корпусе КТ-27 ограничено, в основном, радиолюбительскими схемами и конструкциям. Элементы в корпусах КТ-89 применяются в изготовлении бытовой техники и по сей день.
Для маркировки данного прибора изначально использовали полное его название, например, КТ815А и дополняли маркировку месяцем и годом выпуска транзистора. В дальнейшем обозначения значительно сократили, оставив на корпусе элемента только одну букву, обозначающую тип элемента и цифру, например -5А для прибора КТ815А.
Какие бывают стандарты маркировки
Маркировка, которая наносится на корпус SMD-элементов, как правило, отличается от их фирменных названий. Причина банальная – нехватка места из-за миниатюрности корпуса. Проблема особенно актуальна для ЭРЭ, которые размещаются в корпусах с шестью и менее выводами.
Это миниатюрные диоды, транзисторы, стабилизаторы напряжения, усилители и т.д. Для разгадки “что есть что” требуется проводить настоящую экспертизу, ведь по одному маркировочному коду без дополнительной информации очень трудно идентифицировать тип ЭРЭ. С момента появления первых SMD-приборов прошло более 20 лет.
Несмотря на все попытки стандартизации, фирмы-изготовители до сих пор упорно изобретают все новые разновидности SMD-корпусов и бессистемно присваивают своим элементам маркировочные коды.
Полбеды, что наносимые символы даже близко не напоминают наименование ЭРЭ, – хуже всего, что имеются случаи “плагиата”, когда одинаковые коды присваивают функционально разным приборам разных фирм.
Тип | Наименование ЭРЭ | Зарубежное название |
A1 | Полевой N-канальный транзистор | Feld-Effect Transistor (FET), N-Channel |
A2 | Двухзатворный N-канальный полевой транзистор | Tetrode, Dual-Gate |
A3 | Набор N-канальных полевых транзисторов | Double MOSFET Transistor Array |
B1 | Полевой Р-канальный транзистор | MOS, GaAs FET, P-Channel |
D1 | Один диод широкого применения | General Purpose, Switching, PIN-Diode |
D2 | Два диода широкого применения | Dual Diodes |
D3 | Три диода широкого применения | Triple Diodes |
D4 | Четыре диода широкого применения | Bridge, Quad Diodes |
E1 | Один импульсный диод | Rectifier Diode |
E2 | Два импульсных диода | Dual |
E3 | Три импульсных диода | Triple |
E4 | Четыре импульсных диода | Quad |
F1 | Один диод Шоттки | AF-, RF-Schottky Diode, Schottky Detector Diode |
F2 | Два диода Шоттки | Dual |
F3 | Три диода Шоттки | Tripple |
F4 | Четыре диода Шоттки | Quad |
K1 | “Цифровой” транзистор NPN | Digital Transistor NPN |
K2 | Набор “цифровых” транзисторов NPN | Double Digital NPN Transistor Array |
L1 | “Цифровой” транзистор PNP | Digital Transistor PNP |
L2 | Набор “цифровых” транзисторов PNP | Double Digital PNP Transistor Array |
L3 | Набор “цифровых” транзисторов | PNP, NPN | Double Digital PNP-NPN Transistor Array |
N1 | Биполярный НЧ транзистор NPN (f < 400 МГц) | AF-Transistor NPN |
N2 | Биполярный ВЧ транзистор NPN (f > 400 МГц) | RF-Transistor NPN |
N3 | Высоковольтный транзистор NPN (U > 150 В) | High-Voltage Transistor NPN |
N4 | “Супербета” транзистор NPN (г“21э > 1000) | Darlington Transistor NPN |
N5 | Набор транзисторов NPN | Double Transistor Array NPN |
N6 | Малошумящий транзистор NPN | Low-Noise Transistor NPN |
01 | Операционный усилитель | Single Operational Amplifier |
02 | Компаратор | Single Differential Comparator |
P1 | Биполярный НЧ транзистор PNP (f < 400 МГц) | AF-Transistor PNP |
P2 | Биполярный ВЧ транзистор PNP (f > 400 МГц) | RF-Transistor PNP |
P3 | Высоковольтный транзистор PNP (U > 150 В) | High-Voltage Transisnor PNP |
P4 | “Супербета” транзистор PNP (п21э > 1000) | Darlington Transistor PNP |
P5 | Набор транзисторов PNP | Double Transistor Array PNP |
P6 | Набор транзисторов PNP, NPN | Double Transistor Array PNP-NPN |
S1 | Один сапрессор | Transient Voltage Suppressor (TVS) |
S2 | Два сапрессора | Dual |
T1 | Источник опорного напряжения | “Bandgap”, 3-Terminal Voltage Reference |
T2 | Стабилизатор напряжения | Voltage Regulator |
T3 | Детектор напряжения | Voltage Detector |
U1 | Усилитель на полевых транзисторах | GaAs Microwave Monolithic Integrated Circuit (MMIC) |
U2 | Усилитель биполярный NPN | Si-MMIC NPN, Amplifier |
U3 | Усилитель биполярный PNP | Si-MMIC PNP, Amplifier |
V1 | Один варикап (варактор) | Tuning Diode, Varactor |
V2 | Два варикапа (варактора) | Dual |
Z1 | Один стабилитрон | Zener Diode |
Наиболее важные параметры.
Коэффициент передачи тока – от 8.
Максимально допустимое напряжение коллектор-эмиттер – 300 В.
Максимальный ток коллектора – 1,5 А.
Напряжение насыщения коллектор-эмиттер при токе коллектора 1 А, базы 0,25 А – 1в.
Напряжение насыщения база-эмиттерпри токе коллектора 1 А, базы 0,25 А – – не выше 1,2в.
Рассеиваемая мощность коллектора – около 40 Вт(на радиаторе).
Граничная частота передачи тока – 4 МГц.
Обратный ток колектора при напряжении коллектор-база 15 в – не более 1 мА.
Обратный ток эмитера при напряжении эмиттер-база 9 в – не более 1 мА.
Использование каких – либо материалов этой страницы, допускается при наличии ссылки на сайт «Электрика это просто».
13001 – кремниевый, эпитаксильно-планарный биполярный транзистор n-p-n проводимости. Используется в маломощных импульсных блоках питания бытовых приборов, зарядках, энергосберегающих, светодиодных лампах и других высоковольтных устройствах. Так же его можно встретить в схемах низкочастотных усилителей в качестве усилителя звукового сигнала.
Источник питания
Для питания усилителя в целом были использованы два трансформатора мощностью по 60-70 Вт, по одному для для НЧ и СЧ-ВЧ каналов. Один трансформатор достаточной мощности (120 и более Вт) просто не «вписывался» в малогабаритный корпус по высоте. Стабилизаторов тоже, соответственно, два. Питание использованных здесь МС лежит в пределах от 8 до 18 вольт, поэтому трансформатор может быть выбран с соответствующим напряжением на вторичной обмотке и выходным током не менее 3-х ампер без значительной «просадки». После трансформатора ставятся обычные двухполупериодные мостовые выпрямители с диодами нужной мощности, или диодная сборка (например KBU810 на 8 А). Далее выпрямленное напряжение стабилизируется в схеме «умощнённого» стабилизатора на МС типа КРЕН8 или аналогичной с дополнительным регулирующим транзистором (рис.5)
Выходное напряжение стабилизатора может быть в пределах 12 — 17 вольт для достижения максимально возможной мощности при минимуме искажений. В данном случае применена микросхема KIA7812 с напряжением стабилизации 12 вольт и для поднятия выходного напряжения до 15-16 вольт между средним выводом и общим проводом установлен дополнительно стабилитрон на 3-4 вольта (КС133, КС 139). Поднимать напряжение питания до 18 вольт не следует, хоть такой предел и указан в даташитах на МС TDA, так как на практике, в момент включения возможно срабатывание системы внутренней защиты этих микросхем из-за «перегрузки». Можно питать усилители и нестабилизированным напряжением, но это увеличит их нагрев во время работы и уменьшит перегрузочную способность.
Все микросхемы (усилители мощности и стабилизаторы), а также дополнительные мощные транзисторы (КТ818 или аналогичные импортные) блока питания следует закрепить на теплоотводах достаточной площади. В моём случае все эти элементы расположены на одном общем теплоотводе, состоящим из двух параллельно закреплённых алюминиевых пластин толщиной 3 мм и размером 70х200 мм. Как правило, большинство микросхем TDA и аналогичных имеют минус питания на корпусе и их можно, соответственно, крепить к одному теплоотводу без изоляционных прокладок. Транзисторы же и микросхемы стабилизатора следует изолировать. Печатные платы в архиве.
Заключение
Использование усилителя по приведённым здесь схемам позволило значительно повысить качество воспроизведения фонограмм даже с использованием акустики среднего уровня и качества. При этом колонки PHILIPS никак не переделывались, а в S-30 были отключены все внутренние пассивные фильтры и СЧ-ВЧ-головка 6ГДВ-1, а НЧ сигнал подавался напрямую на НЧ динамик (25ГДН-1-4). Регулировка уровня НЧ составляющей позволяет сбалансировать общую частотную характеристику всей системы в зависимости от размеров помещения и расстояния слушателя до акустики. Специально для сайта Радиосхемы – А. Барышев.