Bc547 транзистор характеристики аналоги

Маркировка

Цифры “13001” на корпусе дают общее представление об этом полупроводниковом устройстве. Многие производители маркируют так свои изделия из-за отсутствия места на корпусе ТО-92, не указывая при этом префикс в начале. В статье приведены технические характеристики устройств малоизвестных в России производителей DGNJDZ, Semtech Electronics, YFWDIODE. Указанные производители в своих даташитах не указывают дополнительных символов маркировки. Без дополнительных обозначений маркирует свой транзистор TS13001 тайваньская компания TSMC. Первые две литеры “TS” являются аббревиатурой первых двух слов в полном названии компании Taiwan Semiconductor Manufacturing Company. В тоже время, на рыке достаточно широко представлены транзисторы mje13001, которые тоже промаркированы цифрами 13001. SHENZHEN JTD ELECTRONICS и многие другие производители применяют s13001 s8d при маркировке своих девайсов. Встречаются и другие префиксы, не рассмотренные в статье. Многие продавцы не заморачиваясь с маркировкой в наименовании товара, указывают все возможные его типы вместе с датой производства.

Зарождение элемента

Германий был обнаружен Клеменсом и Винклером в немецком городе Фрайберг в 1886 году. Существование этого элемента предсказывал Менделеев, установив заранее его атомный вес, равный 71, и плотность 5,5 г/см3.

Вам будет интересно:Как выбирать ЖК-телевизор: описание, характеристики

В начале осени 1885 года шахтер, работавший на серебряном руднике Химмельсфюрст близ Фрайберга, наткнулся на необычную руду. Она была передана Альбину Вейсбаху из близлежащей Горной академии, который подтвердил, что это новый минерал. Он в свою очередь попросил своего коллегу Винклера проанализировать добычу. Винклер обнаружил, что в составе найденного химического элемента находится 75 % серебра, 18 % серы, состав остального 7 %-ного объема находки ученый определить не смог.

Вам будет интересно:Схемы электродвигателя звезда и треугольник: виды подключения, особенности и отличия

К февралю 1886 года он понял, что это новый металлоподобный элемент. Когда были протестированы его свойства, стало ясно, что это недостающий элемент в таблице Менделеева, который располагается ниже кремния. Минерал, из которого он произошел, известен как аргиродит – Ag 8 GeS 6. Спустя несколько десятилетий этот элемент будет выступать основой германиевых транзисторов для звука.

Транзистор, который включен по схеме с общей базой

При такой конфигурации базовый вывод транзистора будет общим между выводами входа и выхода, как показано на рисунке 1. Данная конфигурация демонстрирует низкое полное сопротивление на входе, высокое полное сопротивление на выходе, высокий коэффициент усиления сопротивления и высокий коэффициент усиления напряжения.

Рисунок 1 Схема с общей базой

Характеристики входа

Рисунок 2 показывает характеристики входа схемы вышеописанной конфигурации, которые описывают изменение тока на эмиттере, IE с напряжением на базе-эмиттере, VBE удерживает напряжение на коллекторе-базе, VCB постоянно.

Характеристики выхода

Характеристики выхода для такой конфигурации (Рисунок 3) демонстрируют изменение тока на коллекторе, IC с VCB, где ток на эмиттере, IE является удерживаемой постоянной. Из показанного графика следует, что сопротивление на выходе может быть получено как:

Рисунок 3 Характеристики выхода

Характеристики передачи тока

Рисунок 4 демонстрирует характеристики передачи тока для вышеназванной конфигурации, которые объясняют изменение IC с IE, удерживающим VCB постоянным. Получившийся коэффициент усиления тока имеет значение меньше единицы и может быть математически выражен следующим образом:

Рисунок 4 Характеристики передачи тока

Выбор транзисторов в зависимости от приложения

Выбор технологии мощных СВЧ-транзисторов, как правило, основан на типе сигналов, с которыми они будут работать: например, с непрерывными сигналами (CW) или импульсными. При усилении импульсного сигнала наиболее важными его характеристиками являются длительность импульса и его коэффициент заполнения. Хотя мощные ВЧ- и СВЧ-транзисторы разных типов обладают достаточно высокой эффективностью, ни у одного транзистора КПД не равен 100%, поскольку некоторая часть мощности постоянного тока и высокочастотного сигнала неизбежно рассеивается в виде тепла, которое необходимо отвести. Тепловыделение при усилении постоянных (CW) или импульсных сигналов с большой длительностью импульса и с высоким коэффициентом заполнения различается в зависимости от используемой технологии. Это различие может оказаться иным при усилении импульсного сигнала с малой длительностью импульса или небольшим коэффициентом заполнения. Не существует некой универсальной технологии, которая отвечала бы всем требованиям, предъявляемым к современным усилителям мощности. Единственным решением в такой ситуации является сопоставление ключевых характеристик транзисторов разных типов с основными требованиями конкретного приложения. Нельзя также ограничиваться только сравнением спецификаций выбираемых транзисторов. Для обеспечения наилучшего сочетания производительности, надежности, минимизации тепловыделения, снижения общих затрат и сокращения перечня используемых элементов, как правило, приходится искать компромисс и на системном уровне.

Транзистор, который включен по схеме с общим эмиттером

В данной конфигурации вывод эмиттера является общим между выводами входа и выхода, как показано на рисунке 9. Эта конфигурация обеспечивает среднее полное сопротивление на входе, среднее полное сопротивление на выходе, средний коэффициент усиления тока и коэффициент усиления напряжения.

Рисунок 9 Схема с общим эмиттером

Характеристики входа

Рисунок 10 показывает характеристики входа для данной конфигурации, которая объясняет изменение в IB в соответствии с VBE, где VCE является постоянной.

Рисунок 10 Характеристики входа

Исходя из рисунка, сопротивление на входе может быть представлено как:

Характеристики выхода

Характеристики выхода у такой конфигурации (Рисунок 11) также рассматриваются как характеристики коллектора. Этот график показывает изменение в IC с изменениями в VCE, когда IB удерживается постоянной. Исходя из графика, можно получить сопротивление на выходе следующим образом:

Рисунок 11 Характеристики выхода

Характеристики передачи тока

Эти характеристики данной конфигурации показывают изменение IC с IB, удерживающим VCE в качестве постоянной. Это может быть математически выражено как:

Это соотношение рассматривается как коэффициент усиления тока с общим эмиттером, и оно всегда больше единицы.

Рисунок 12 Характеристики передачи тока

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Подбор транзисторов в усилитель JLH

Выходные транзисторы

  • Старые экземпляры, которые делались по меза-планарной технологии (2N3055), которую вытеснила эпитаксильно-паланарная современная (MJE3055) — очень музыкальные транзисторы.
  • Несмотря на АЧХ, звук 2n3055 звонче и прозрачнее, но у 2sc3281 звук более приглушённый и ламповый, что ли. Видимо, сказывается распределение гармоник
  • Самыми лучшими и стабильными в этом агрегате все-таки оказались MJ15024, MJ15003, 2N2773. Бэтта транзисторов выходного каскада при 4 Ом нагрузке должна быть не менее 120.
  • Супер транзисторы — MJ15026, 15027 за 27 $ один, в Штатах 7 $.

Ну и моторолловский клон 2SC3281 — это MJL3281A, он по линейности Кус вообще рекордсмен. Практически прямая «полка», а спад беты начинается с 5-6 Ампер. По звуку лидируют MJL3281A (NPN) MJL1302A (PNP) как самые интегрально-линейные мощные биполярные транзисторы для ЗЧ.

Очень хороший результат дает параллельное включение на выходе 2-х 3-х транзисторов средней мощности 2sc5707, предварительно отобранных по бэтте (она у них очень высокая – до 560). Паяем по 2-3 транзистора на общую медную пластину, а потом ее крепим к радиатору через прокладку, паять лучше легкоплавким припоем пос-61.

В пластике (ТО-247) можно ставить MJE21193, 2CS5200, КТ8101 (в порядке ухудшения качества); В металле (ТО-3) можно MJ15003, MJ15024, 2N3055, КТ819ВМ, ГМ (в таком же порядке); Из наших — КТ908, КТ903, КТ808, КТ805, КТ803 (КТ908 на голову выше всех, из отечественных они самые лучшие).

Не применяйте MJL21294, эти транзисторы не для этого усилителя. Тем более при 4 Ом нагрузке. Вот в однотактном повторителе Игоря Семынина или усилителях с составными транзисторами на выходе им самое место. В усилителе по схеме JLH чем выше Кус выходных транзисторов и предвыходного — тем лучше. MJL-21194 сейчас лучшие для звука но не для Худа, в JLH можно применить MJ15003, но у них корпус неудобный, как и у 2N3055

Смотрел характеристики аппарата на таком комплекте транзисторов: Выходные высокочастотные 2sc5200 + драйверный каскад на вс550bp, входной транзистор bc109b. Искажения получились 0,02. 0,03 % при прекрасном меандре. При тех же условиях низкочастотные моторолы с невысокой бэтой дают искажения 0,08-0,1 % при сильно заваленном фронте меандра.

Схема с ВЧ транзисторами на выходе должна обязательно корректироваться от возбуждения установкой конденсаторов между базой и коллектором драйверного транзистора порядка 10-15 пФ и конденсатором емкостью 22-60 пФ параллельно резистору ООС R5 2,7 кОм. Если конденсатор ООС имеет номинал 470-680 мкФ, то делитель ООС 2,7 кОм/240 Ом лучше уменьшить до 1,2 кОм/120 Ом, что даст меньшие искажения и большую устойчивость.

Современные транзисторы проигрывают винтажным по качеству воспроизведения НЧ. Я считаю, что 2SA1943, 2SC5200 обеспечивают лучшее звучание, чем MJ15003, 15004 или MJ15024, 25.

MJL21194 сочетают в себе плюсы: плоский удобный для монтажа корпус и узкую полосу в 4-6,5 МГц. Правда они имеют два «минуса» — высокую стоимость и маленький коэффициент усиления. Мощные современные транзисторы с ft>30MHz ставить не рекомендуются — будет возбуд. Старые НЧ транзисторы лучше себя ведут, чем новодельные ВЧ. В этом смысле стоит попробовать наши Кт805-Кт819

У транзисторов серий: MJ, MJL, MJW – 21193, 21194, 21195, 21196… применена медная металлизация на поверхности кристалла для формирования вывода базы, что выравнивает температуру поверхности кристалла, улучшает распределение тока по площади кристалла и расширяет ОБР, особенно в области высоких напряжений.

Драйверный транзистор

Перепробовал множество транзисторов в драйвере, лучшие результаты показал 2sc2240, что закономерно т.к. у него 300-700 бэтта, при прекрасной линейности тока коллектора в диапазоне 1,0-50 мА и малая емкость 3 пФ, приклеиваем к нему медную пластинку получаем превосходный драйвер средней мощности = Ибуки

Если у вас выходные транзисторы с большой бэттой, то ток от драйверного транзистора нужен не очень большой 15-25 мА, так что не нужно туда ставить тупой конский транзистор. Из советских неплох кт602Б, но его нужно отбирать с бетой при токе 20-30 мА не менее 200.

Маломощный предвыходной транзистор показывает намного лучшие результаты по качеству меандра и искажениям чем BD139 и такие же «среднемощные» из-за более линейных характеристик при токах 10-30 мА, высокого h21э и малых межэлектродных емкостей. Особенно хорош прирост качества в классической схеме 1969 года.

Распиновка

Bc547 впервые появился на рынке радиоэлектронных компонентов в апреле 1966 года, благодаря компаниям Philips (Голландия) и Mullard (Великобритания). Это совместная доработка популярного в то время bc107. Он был идентичный по своим техническим характеристикам, но выпускался в отличии от металлического bc107 в пластиковом герметичном корпусе ТО-92. В настоящее время является действующей заменой для более старых BC107 или BC147, которые включены во множество разработок компаний Mullard и Philips.

Цоколевка корпуса ТО-92 (или ТО-226AA) у bc547 имеет три гибких вывода для дырочного монтажа. Если смотреть на скошенную часть спереди, то назначение этих выводов слева направо: коллектор, база, эмиттер. На рисунке показан базовый внешний вид устройства, который будет немного отличаться в зависимости от конкретной марки, однако характеристики и назначения выводов остаются идентичными.

Вступление

Грамотное проектирование твердотельных СВЧ-усилителей мощности (high power amplifier, HPA), особенно тех, которые используются в критически важных оборонных, авиакосмических и метеорологических приложениях, начинается с выбора наиболее подходящей технологии используемых дискретных или интегральных мощных полупроводниковых приборов. В настоящее время разработчики мощных СВЧ-усилителей имеют возможность выбирать из нескольких полупроводниковых технологий, применяемых для усиления импульсных и непрерывных (continuous-wave, CW) широкополосных или узкополосных сигналов в диапазоне частот от ВЧ, ОВЧ, УВЧ до L‑, S‑, C‑ и X‑диапазонов и выше. Транзисторы подобных усилителей мощности созданы на основе не только ряда устаревших и хорошо зарекомендовавших себя технологий полупроводниковых приборов (кремниевая биполярная Si-BJT, кремниевая VDMOS), но и более новых: кремниевая LDMOS и GaN-on-SiC HEMT (нитрид-галлиевые ПВПЭ транзисторы на подложках из карбида кремния). В зависимости от диапазона рабочих частот и ряда других требований каждая из транзисторных технологий обладает своими преимуществами с точки зрения выходной мощности, коэффициента усиления и эффективности (КПД). Таким образом, выбор приемлемого решения с позиции затрат и стоимости конечного изделия может оказаться весьма непростой задачей.

Модификации транзистора

Тип Pc Ucb Uce Ueb Tj Cc Ic hfe ft Корпус
BC547 0.5 W 50 V 50 V 6 V 150 °C 6 pf 0.1 A 110 300 MHz TO92
BC547A 0.5 W 50 V 45 V 6 V 150 °C 4.5 pf 0.1 A 110 200 MHz TO92
BC547ABK 0.5 W 50 V 45 V 5 V 150 °C 3.5 pf 0.1 A 90 300 MHz TO92
BC547AP 0.5 W 50 V 45 V 6 V 150 °C 4.5 pf 0.1 A 110 200 MHz TO92
BC547B 0.5 W 50 V 45 V 6 V 150 °C 4.5 pf 0.1 A 200 200 MHz TO92
BC547BA3 0.625 W 60 V 50 V 6 V 150 °C 2.1 pf 0.2 A 200 100 MHz TO92
BC547BBK 0.5 W 50 V 45 V 5 V 150 °C 3.5 pf 0.1 A 150 300 MHz TO92
BC547BP 0.5 W 50 V 45 V 6 V 150 °C 4.5 pf 0.1 A 200 200 MHz TO92
BC547C 0.5 W 50 V 45 V 6 V 150 °C 4.5 pf 0.1 A 420 200 MHz TO92
BC547CBK 0.5 W 50 V 45 V 5 V 150 °C 3.5 pf 0.1 A 270 300 MHz TO92
BC547VI 0.5 W 50 V 45 V 6 V 150 °C 4.5 pf 0.1 A 75 150 MHz TO92
LBC547 0.5 W 50 V 45 V 6 V 150 °C 4.5 pf 0.1 A 110 200 MHz TO92
LBC547A 0.5 W 50 V 45 V 6 V 150 °C 4.5 pf 0.1 A 110 200 MHz TO92
LBC547AP 0.5 W 50 V 45 V 6 V 150 °C 4.5 pf 0.1 A 110 200 MHz TO92
LBC547B 0.5 W 50 V 45 V 6 V 150 °C 4.5 pf 0.1 A 200 200 MHz TO92
LBC547BP 0.5 W 50 V 45 V 6 V 150 °C 4.5 pf 0.1 A 200 200 MHz TO92
LBC547C 0.5 W 50 V 45 V 6 V 150 °C 4.5 pf 0.1 A 420 200 MHz TO92
LBC547VI 0.5 W 50 V 45 V 6 V 150 °C 4.5 pf 0.1 A 75 150 MHz TO92
SBC547 0.625 W 50 V 45 V 5 V 150 °C 4.5 pf 0.1 A 110 150 MHz TO92
TBC547 0.5 W 50 V 45 V 6 V 150 °C 4.5 pf 0.1 A 110 200 MHz TO92

Типы и символы

PNP
NPN
Обозначения биполярных транзисторов

Легенда:
B: База — C: Коллектор — E: Излучатель

Каталоги транзисторов содержат большое количество моделей. Мы можем классифицировать биполярные транзисторы по разным критериям:

  • тип: NPN или PNP. Это два дополнительных типа, то есть направление токов и напряжений для PNP является дополнением к направлениям NPN. Поскольку транзисторы NPN обычно имеют лучшие характеристики, чем PNP (с точки зрения пропускной способности), они используются наиболее широко. Поэтому в оставшейся части статьи будут обсуждаться только схемы, использующие NPN-транзисторы;
  • мощность: транзисторы для усиления слабых сигналов рассеивают всего несколько десятков или сотен милливатт. Транзисторы средней мощности выдерживают несколько ватт; силовые транзисторы, используемые, например, в усилителях мощности звука или в стабилизированных источниках питания, могут выдерживать, если они размещены на подходящем радиаторе , более 100  Вт  ;
  • частотный диапазон: транзисторы на низкие частоты (корректно работают до нескольких МГц), средние (до нескольких десятков МГц), высокие (до нескольких ГГц), даже более высокие (максимальные частоты колебаний в несколько сотен ГГц) .

На рисунке напротив изображен символ и указаны названия трех электродов транзисторов. Таким образом, мы можем выделить три интересных потенциальных различия: V BE , V CE и V CB  ; и три тока: ток базы I Б , из передатчика Я Е и коллектор Я С . Однако эти шесть переменных не являются независимыми. Действительно, мы можем написать:

VПРОТИВEзнак равноVПРОТИВB+VBE{\ displaystyle V_ {CE} = V_ {CB} + V_ {BE}} а также яEзнак равнояПРОТИВ+яB{\ displaystyle I_ {E} = I_ {C} + I_ {B}}

Некоторые производители предлагают множество функций, но эта тенденция исчезает. Кроме того, вы должны знать, что типичные параметры транзисторов меняются с температурой и сильно различаются от одного транзистора к другому, даже для одной и той же модели.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: