Как подобрать транзистор для усилителя

Аналоги транзистора BD139

Для замены могут подойти транзисторы кремниевые мезо-эпитаксиально-планарные, NPN, усилительные. Разработаны для применения в усилителях низкой частоты, преобразователях, операционных усилителях, импульсных и переключающих устройствах. Данные получены из даташит производителя.

Отечественное производство (РФ и РБ)

Модель PC UCB UCE UEB IC TJ fT hFE
BS139 12,5 100 80 5 1,5 150 190 ≥ 40
КТ815Г 10 100 100 5 1,5 150 ≥ 3 ≥ 30
КТ8272В 10 80 80 5 1,5 150 40
КТ961А 12,5 100 80 5 1,5 150 ≥ 50 от 40 до 100
КТ943В 25 100 80 5 2 150 30 от 40 до 120

Зарубежное производство

Модель PC UCB UCE UEB IC TJ fT hFE
BD139 12,5 100 80 5 1,5 150 190 40…250
2SC2824 15 120 120 5 1 150 120 80
2SC4342 12 150 3 150 10000
2SD1438 15 80 80 8 2 150 100 4000
2(K)SD1692 15 150 100 8 3 150 100 3000
2(K)SD1692G 15 150 100 8 3 150 100 14000
2(K)SD1692O 15 150 100 8 3 150 100 3000
2(K)SD1692Y 15 150 100 8 3 150 100 7000
2SD2039 15 100 2 150 100 4000
2SD2139 15 80 3 150 50 50
BTD1858T3 15 180 180 5 1,5 150 140 180
KSE182 12,5 100 80 7 3 150 50 50
MJE182 12 100 80 7 3 150 50 50
BD137 12,5 60 60 5 1,5 150 190 25…250
BDW57 8 60 60 5 1,5 175 40 40

Примечание: представленные в таблицах транзисторы имеют конструктивное исполнение ТО-126.

Мультивибратор на КТ315

Мультивибратор — это генератор широкой импульсной модуляции (или коротко ШИМ). Получается, что генератор будет выдавать сигнал либо постоянного плюса, либо постоянного минуса.

Принцип действий заключается в попеременном поступлении тока то к одному, то к другому светодиоду (их два). Частоту каждого из них можно менять (если резисторы будут разными, то и включение светодиодов тоже будет отличаться). Данная схема работает от напряжения 1,7 В до 16 В. Чтобы запустить схему понадобиться 3,2 В (этого будет достаточно, чтобы увидеть деятельность светодиодов).

Стоит отметить, что схема парная (2 конденсатора, 2 резистора, (2 RC-цепи), 2 светодиода), а вот значения транзисторов могут отличаться (от 220 Ом до 300 Ом), в таком случае схема все равно будет работать.

Надежная функциональность мультивибратора зависит от более высокого сопротивления одного из резисторов.

Отметим, что, чем больше сопротивление на переменном резисторе, тем больше будет мигать светодиод.

E13005-250 Datasheet (PDF)

1.1. e13005-250.pdf Size:163K _upd

E13005-250

Pb E13005-250 Pb Free Plating Product MJE Power Transistor Product specification MJE13005 series Silicon NPN Power Transistor DESCRIPTION Silicon NPN, high power transistors in a plastic envelope, primarily for use in high-speed power switching circuits. 1. B 2. C 3. E Absolute Maximum Ratings ( Ta = 25℃ ) Parameter Value Unit l Collector-Base Voltage VCBO 70

2.1. e13005-225.pdf Size:162K _upd

E13005-225

Pb E13005-225 Pb Free Plating Product MJE Power Transistor Product specification MJE13005 series Silicon NPN Power Transistor DESCRIPTION Silicon NPN, high power transistors in a plastic envelope, primarily for use in high-speed power switching circuits. 1. B 2. C 3. E Absolute Maximum Ratings ( Ta = 25℃ ) Parameter Value Unit l Collector-Base Voltage VCBO 70

3.1. mje13005-k.pdf Size:393K _utc

UNISONIC TECHNOLOGIES CO., LTD MJE13005-K NPN SILICON TRANSISTOR NPN SILICON POWER TRANSISTORS ? DESCRIPTION These devices are designed for high-voltage, high-speed power switching inductive circuits where fall time is critical. They are particularly suited for 115 and 220 V SWITCHMODE. ? FEATURES * VCEO(SUS)= 400 V * Reverse bias SOA with inductive loads @ TC = 100°С * Indu

Рабочая точка и смещение транзистора в схеме усилителя напряжения

Схема, приведенная на рис. 1.(a), как можно догадаться, является сильно упрощенной схемой усилителя напряжения. Она будет давать отклик только на положительное входное напряжение и, кроме того, только на напряжение, большее чем 0,5 В; последнее значение является той э.д.с., которая необходима для смещения перехода база-эмиттер в прямом направлении. Ясно, что если схема предназначена для усиления малых сигналов без искажения, переход база-эмиттер должен быть смещен в прямом направлении даже в отсутствие сигнала. Обычно напряжение переменного сигнала принимает как положительное, так и отрицательное значение, так что выходное напряжение на коллекторе должно иметь возможность двигаться вверх к напряжению источника питания (при отрицательном входном напряжении) и вниз к потенциалу земляной шины (при положительном входном напряжении). Из этого следует, что при равном нулю входном сигнале (это состояние обычно называется режимом покоя) в транзисторе должен протекать такой ток коллектора, чтобы напряжение на коллекторе находилось посредине между землей и напряжением источника питания, готовое изменяться в любом направлении в соответствии с полярностью входного сигнала.

На рис. 1.(б) показана схема, в которой достигается требуемый результат. Маломощный кремниевый транзистор, такой как ВС 107, будет очень хорошо работать с коллекторным током в режиме покоя 1 мА. В этом случае при правильном выборе рабочей (начальной) точки требуется, чтобы напряжение на коллекторе находилось посредине между 0 В и +9 В, то есть на резисторе RL должно падать 4,5 В. Таким образом, согласно закону Ома, RL = 4,5 В / 1 мА = 4500 Ом. Ближайшее номинальное значение RL равно 4,7 кОм. Для рассматриваемой схемы имеем:

VCE=Vcc-IcRL=Vcc-hFEIBRL

где Vcc — напряжение питания.

Если мы примем для транзистора ВС 107 коэффициент усиления постоянного тока hFE равным 200, то для тока коллектора 1 мА требуется ток базы IB = 1/200 мА = 5 мкА. Сопротивление базового резистора RB, задающего ток базы, снова находится согласно закону Ома:

RB=Vcc/IB=9/(5×10-6)=1,8МОм

Напряжением база-эмиттер VBE (приблизительно равным 0,6 В) здесь пренебрегаем по сравнению с намного большим напряжением питания Vcc.

Разделительные конденсаторы С1 и С2 используются для изоляции внешних цепей от постоянных напряжений, имеющихся на базе и коллекторе в режиме покоя. Свойство конденсатора не пропускать постоянное напряжение и в то же время пропускать переменное очень ценно в электронике; оно является результатом стремления конденсатора сохранять свой заряд и поэтому разность потенциалов на его обкладках остается постоянной. Следовательно, увеличение потенциала на одной обкладке вызывает соответствующее увеличение потенциала на другой. Поданный на одну из обкладок, переменный сигнал изменяет ее потенциал много раз в секунду и, таким образом, передается с одной обкладки на другую. В то же время постоянное напряжение дает возможность конденсатору накопить заряд, соответствующий новой разности потенциалов на его обкладках, и поэтому оно не передается. Время, необходимое для установления новой разности потенциалов, зависит от постоянной времени цепи, которая должна быть больше периода передаваемого переменного напряжения самой низкой частоты. Более подробно этот вопрос обсуждается в главе 8. В рассматриваемом простом усилителе напряжения постоянные времени цепей с разделительными конденсаторами емкостью 10 мкФ обеспечивают передачу переменного напряжения без ослабления вплоть до 10 Гц.

Знак плюс на рисунке у одной из обкладок конденсатора является указанием, как подключать электролитические конденсаторы, у которых изолирующий диэлектрический слой представляет собой чрезвычайно тонкую пленку окиси алюминия, полученную электролитическим осаждением. Такие конденсаторы имеют большие емкости при малых размерах и низкой цене, но должны включаться в схему с учетом полярности, за исключением конденсаторов специального типа — неполярных конденсаторов.

Наиболее важные параметры.

Коэффициент передачи тока от 15 и выше.

Максимально допустимое напряжение коллектор-эмиттер – 60 в, импульсное – 160 в – у КТ805А, КТ805АМ. 135 в – у КТ805Б, КТ805БМ, КТ805ВМ.

Напряжение насыщения коллектор-эмиттер при коллекторном токе 5 А и базовом 0,5А: У транзисторов КТ805А, КТ805АМ – не более 2,5 в. У транзисторов КТ805Б, КТ805БМ – 5 в.

Напряжение насыщения база-эмиттер при коллекторном токе 5 А и базовом 0,5А: У транзисторов КТ805А, КТ805АМ – не более 2,5 в. У транзисторов КТ805Б, КТ805БМ – 5 в.

Максимальный ток коллектора. – 5 А.

Обратный импульсный ток коллектора при сопротивлении база-эмиттер 10Ом и температуре окружающей среды от +25 до +100 по Цельсию, у транзисторов КТ805А, КТ805АМ – – не более 60 мА, при напряжении колектор-эмиттер 160в. У транзисторов КТ805Б, КТ805БМ – – не более 70 мА, при напряжении колектор-эмиттер 135в.

Обратный ток эмиттера при напряжении база-эмиттер 5в не более – 100 мА.

Рассеиваемая мощность коллектора(с теплоотводом). – 30 Вт.

Граничная частота передачи тока – 20 МГц.

Транзисторы КТ805 и качер Бровина.

Качер Бровина – черезвычайно популярное устройство, представляющее из себя фактически, настольный трансформатор Тесла – источник высокого напряжения. Схема самого генератора предельно проста – он очень напоминает обычный блокинг-генератор на одном транзисторе, хотя как утверждают многие, им вовсе не является.

В качере(как в общем-то и в блокинг-генераторе) теоретически, можно использовать любые транзисторы и радиолампы. Однако, практически очень неплохо себя зарекомендовали именно транзисторы КТ805, в частости – КТ805АМ.

В самостоятельной сборке качера самый серьезный момент – намотка вторичной обмотки(L2). Как правило она содержит в себе от 800 до 1200 витков. Намотка производится виток, к витку проводом диаметром 0,1 – 0,25 мм на диэлектрическое основание, например – пластиковую трубку. Соответствено, габариты полученного трансформатора (длина) напрямую зависят от толщины используемого провода. Диаметр каркаса при этом некритичен – может быть от 15мм, но при его увеличении эффективность качера должна возрастать (как и ток потребления).

После намотки витки покрываются лаком(ЦАПОН). К неподключенному концу катушки можно подсоединить иглу – это даст возможность наблюдать «стример» – коронообразное свечение, которое возникнет на ее кончике, во время работы устройства. Можно обойтись и без иглы – стример точно так же будет появляться на конце намоточного провода, без затей отогнутого к верху.

Вторичная обмотка представляет из себя бескаркасный четырехвитковой соленоид намотаный проводом диаметром(не сечением!) от 1,5 до 3 мм. Длина этой катушки может составлять от 7-8 до 25-30 см, а диаметр зависит от расстояния между ее витками и поверхностью катушки L2. Оно должно составлять 1 – 2 см. Направление витков обеих катушек должно совпадать обязательно.

Резисторы R1 и R2 можно взять любого типа с мощностью рассеивания не менее 0,5 Вт. Конденсатор C1 так же любого типа от 0,1 до 0,5 мФ на напряжение от 160 в. При работе от нестабилизированного источника питания необходимо подсоединить параллельно C1 еще один, сглаживающий конденсатор 1000 – 2000 мФ на 50 в. Транзистор обязательно устанавливается на радиатор – чем больше, тем лучше.

Источник питания для качера должен быть рассчитан на работу при токе до 3 А (с запасом), с напряжением от 12 вольт, а желательно – выше. Будет гораздо удобнее, если он будет регулируемым по напряжению. Например, в собранном мной образце качера, при диаметре вторичной катушки 3 см (длина – 22см), а первичной – 6см (длина – 10 см) стример возникал при напряжении питания 11 в, а наиболее красочно проявлялся при 30 в. Причем, обычные эффекты, вроде зажигания светодиодных и газоразрядных ламп на расстоянии, возникали уже с начиная с уровня напряжения – 8 в.

В качестве источника питания был использован обычный ЛАТР + диодный мост + сглаживающий электролитический конденсатор 2000 мФ на 50 в. Больше 30 вольт я не давал, ток при этом не превышал значения в 1 А, что более чем приемлимо для таких транзисторов как КТ805, при наличии приличного радиатора.

При попытке заменить(из чистого интереса) КТ805 на более брутальный КТ8102, обнаружилось что режимы работы устройства значительно поменялись. Заметно упал рабочий ток. Он составил всего – от 100 до 250 мА. Но стример стал загораться только при достижения предела напряжения 24 в, при напряжении 60 в выглядя гораздо менее эффектно, нежели с КТ805 при 30.

Параметры

Основные технические параметры 13001 (при температуре окружающей среды +25 °C) следующие:

физические:

  • принцип действия – биполярный;
  • корпус ТО-92 или SOT-23;
  • материал корпуса – пластик;
  • материал – монокристаллический кремний;

электрические (для устройства в корпусе ТО-92):

  • проводимость – n-p-n (обратная);
  • IK макс. (Ic max) не более 200 мА (mA);
  • UКЭ макс. (VCEmax) не более 400 В (V);
  • UКБ макс. (VCBmax) не более 500 В (V);
  • UЭБ макс. (VЕВ max) не более 9 В (V);
  • UКЭ нас. (VCEsat) не более 0.5 В (V), при IK (Ic)=50 мА (mA) и IБ (Ic)= 10 мА (mA);
  • UКЭ нас. (VCEsat) не более 1.2 В (V), при IK (Ic)=50 мА (mA) и IБ (Ic)= 10 мА (mA);
  • fгр (ft) от 8 МГц (MHz), при U КЭ = 20 В (V), IK = 20 мА (mA);
  • UКБ макс. (VCB max ) = 500 В (V) и отключенном эммитере (ток эммитора IЭ (IE)=0;
  • IКЭО (ICEO) не более 200 мкА (µA), при U КЭ макс. (VCEmax ) =400 В (V) и IБ (IB)=0;
  • IЭБО (IEBO) не более 100 мкА (µA), при U EБ макc. (VEB max ) = 9 В (V) и IК (IС)=0;
  • PK макс. (PC) 0,75 Вт (W);
  • Tраб. (Tj) не более + 150 °C;
  • Tхран. (Tstr) от — 55 до + 150 °C.;
  • Hfe при UКЭ = 20 В (V) и IK = 20 мА (mA) от 10 до 40 , при UКЭ = 10 В (V) и IK = 0,25 мА (mA) — 8;

электрические (для устройств в корпусе SOT-23):

  • проводимость – n-p-n;
  • IK (Ic max) 200 мА (mA);
  • UКЭО (VCEO) ≤ 500 В (V);
  • UКБО (VCBO) ≤ 800 В (V);
  • UЭБО (VЕВO) ≤ 9 В (V);
  • UКЭ нас. (VCEsat) ≤ 0.5 В (V), при IK (Ic) = 50 мА (mA) и IБ (Ic)= 10 мА (mA);
  • UКЭ нас. (VCEsat) ≤1.2 В (V), при IK (Ic) = 50 мА (mA) и IБ (Ic)= 10 мА (mA);
  • fгр (ft) 8 МГц (MHz), при U КЭ = 20 В (V), IK = 20 мА (mA);
  • IКБО (ICBO) ≤1 мкА (µA) при U КБ (VCBО) = 600 В (V);
  • IКЭО (ICEO) ≤10 мкА (µA), при U КЭ (VCEО ) = 400 В (V) и IБ (IB)=0;
  • IЭБО (IEBO) ≤1 мкА (µA), при U EБ (VEBО ) = 9 В (V) и IК (IС)=0;
  • PK (PC) = 0,5 Вт (W);
  • Tраб. (Tj) ≤ + 150 °C.;
  • Tхран. (Tstr) от — 55 до + 150 °C.;
  • Hfe при UКЭ = 20 В (V) и IK = 20 мА (mA) 8 Hfe, при UКЭ = 5 В (V) и IK = 1 мА (mA) от 10 до 30 Hfe.

Технические характеристики

Рассмотрим основные технические параметры транзистора 13002. Они приведены в datasheet в разделах максимальных значений и электрических характеристик. Превышение предельно допустимых величин приводит к выходу устройства из строя.

Максимальные значения параметров для транзистора 13002:

  • напряжение К-Э: (VCEO (SUS)) до 300 В;
  • напряжение Э-Б: (VEBO) до 9 В;
  • ток коллектора: (IC) до 1.5 А; (ICM) до 3 А (пиковый);
  • ток базы: (IВ) = 0.75 А; (IВМ) до 1.5 А (пиковый);
  • рассеиваемая мощность (РD): до 1.4 Вт (без радиатора); до 40 Вт (с теплоотводом);
  • диапазон рабочих температур (TJ,Tstg) от -65 до +150ОС.

Электрические параметры

Электрические характеристики представляют собой перечень номинальных значений параметров, при которых гарантируется стабильная работа полупроводникового устройства. Для транзистора 13002 представлены в таблице ниже. Обычно производитель указывает их с учётом температуры кристалла не более +25ОС. В столбце «режимы измерений» приведены условия тестирования.

Аналоги

Наиболее подходящей заменой для рассматриваемого полупроводникового триода можно назвать более мощный транзистор 13003. Он встречается с символами в начале маркировке: MJE, ST, PHE, KSE, указывающими на производителя. По расположению выводов полностью идентичен. Имеет лучшие технические параметры, но перед его использованием внимательно ознакомьтесь с datasheet.

Наиболее близкими российскими аналогами является: КТ8170Б1, КТ872.

Усилитель своими руками 100Вт/200Вт

Параметры изделия: 150Вт на нагрузку 4 Ом и 100Вт на нагрузку 8 Ом.

Второй усилитель звука лишен недостатков первого, что касается шума. Усилитель работает в классе В, диоды D2-D3-D4 задают данный режим работы выходным транзисторам VT4-VT5.

Сделанный УНЧ своими руками можно применить в активной колонке, сабвуфере воспроизведения низких частот превосходны.

В этой статье на нашем сайте www.radiochipi.ru мы расскажем вам как самостоятельно собрать усилители звука, что и позволит сэкономить на покупке уже готовых моделей.

Какой усилитель мощности будет лучшим?

Единого мнения о том какой тип усилителя лучший не существует. В настоящее время имеется возможность самостоятельной сборки двух типов усилителей звука:

Ламповые модели пользовались популярностью в недалёком прошлом. Они отличаются увеличенными размерами и повышенным потреблением электроэнергии.

Но при этом подобные ламповые усилители превосходят своих конкурентов по качеству звучания.

Транзисторные усилители имеют компактный размер и малое потребление электроэнергии. При этом они обеспечивают отличное качество звука.

С чего начать работу?

Для начала вам надлежит определиться с мощностью будущего усилителя. Стандартным параметром мощности для использования усилителя в домашних условиях является уровень в 30 – 50 Вт. Если же вам нужно изготовить простой усилитель звука, который будет использоваться для масштабных мероприятий, мощность может составлять 200-300 ватт.

Для работы нам потребуются следующие инструменты:

  • Набор отверток.
  • Мультиметр.
  • Паяльник.
  • Материал для изготовления корпуса.
  • Электродетали.
  • Текстолит для печатной платы.

По сути, печатные платы являются основой для будущего усилителя. Собрать её в домашних условиях не составит сложности.

Для выполнения печатной платы своими руками вам потребуется:

  • Текстолит, имеющий медную фольгу.
  • Моющее средство.
  • Бытовой утюг.
  • Самоклеящаяся китайская плёнка.
  • Лазерный принтер.
  • Сверло для работы с платой.

Кусок хлопчатобумажной ткани или марлевый тампон. Вырезаем из текстолита заготовку будущей платы. Оставьте с каждой из сторон сантиметровый запас. При помощи моющего средства необходимо обработать кусок текстолита, чтобы медная фольга получила розовый цвет. Промываем сделанную нами заготовку и тщательно её выслушиваем.

Приклеиваем самоклеящуюся плёнку к листу формата А4. Распечатываем на принтере заготовку будущей платы. Рекомендуется установить на максимум подачу тонера в принтер. На рабочую поверхность следует уложить фанеру, старую книгу и сверху плату фольгой вверх. Все накрываем офисной бумагой и тщательно прогреваем горячим утюгом. Прогревать нужно около 1 минуты.

Наносим распечатанную схему с листа бумаги на разогретую плату. Накрываем сверху плату листом бумаги и в течение 30 секунд прогреваем утюгом. Разглаживает рисунок при помощи тампона поперечными и продольными движениями. Дождитесь остывания заготовки, после чего можно снять с неё подложку.

Графические данные

Рис. 1. Зависимость статического коэффициента усиления по току от коллекторной нагрузки IC при напряжении коллектор-эмиттер UCE = 2 В.

Рис. 2. Зависимость напряжения насыщения UCE(sat) коллектор-эмиттер от коллекторной нагрузки ICпри двух разных соотношениях тока коллектора и тока базы IC/IB.

Рис. 3. Зависимости напряжения насыщения база-эмиттер UBE(sat) и напряжения включения база-эмиттер UBE(ON) от коллекторной нагрузки IC.

Рис. 4. Ограничение рассеиваемой мощности PC транзистора при увеличении температуры корпуса TC.

Рис. 5. Область безопасной работы транзистора.

Область безопасной работы ограничивается предельным током коллекторной нагрузки в импульсном режиме IC MAX (Pulsed) и режиме постоянного тока IC MAX (Continuous), предельным напряжением коллектор-эмиттер UCE MAX = 80 В и максимальной мощностью рассеивания. Кривые мощности рассеивания сняты для однократных неповторяющихся импульсов тока длительностью 100 мкс и 1 мс и постоянного тока (помечено на графике как «DC»).

Маркировка

Транзистор, чаще всего, обозначен на корпусе только цифрами. Цифры “13009” обозначают серийный номер в американской системе JEDEC. Считается, что впервые данный транзистор произвела американская компания Motorola. Символы mje, в начале маркировки транзистора указывали на брэнд именно этой компании. После 1999 года, когда компания Motorola была реструктуризирована, с символов «MJE» начинается маркировка данного транзистора у других производителей, не связанных с этой компанией. В то же время ON Semiconductor, дочерняя компания Motorola, так же продолжает выпускать эти транзисторы с указанием mje13009 на корпусе. Более именитые из производители, вместо MJE, указывают в начале маркировки первые буквы из названия своих компаний: ST13009 (ST Microelectronics), J13009,FJP13009 (Fairchild), PHE13009 (WeEn Semiconductors).

Классы работы звуковых усилителей

Все усилительные устройства разделяются на несколько классов, в зависимости от того, какая степень протекания в течение периода работы тока через каскад:

  1. Класс «А» – ток протекает безостановочно в течение всего периода работы усилительного каскада.
  2. В классе работы «В» протекает ток в течение половины периода.
  3. Класс «АВ» говорит о том, что ток протекает через усилительный каскад в течение времени, равного 50-100 % от периода.
  4. В режиме «С» электрический ток протекает менее чем половину периода времени работы.
  5. Режим «D» УНЧ применяется в радиолюбительской практике совсем недавно – чуть больше 50 лет. В большинстве случаев эти устройства реализуются на основе цифровых элементов и имеют очень высокий КПД – свыше 90 %.

Выбор транзисторов в зависимости от приложения

Выбор технологии мощных СВЧ-транзисторов, как правило, основан на типе сигналов, с которыми они будут работать: например, с непрерывными сигналами (CW) или импульсными. При усилении импульсного сигнала наиболее важными его характеристиками являются длительность импульса и его коэффициент заполнения. Хотя мощные ВЧ- и СВЧ-транзисторы разных типов обладают достаточно высокой эффективностью, ни у одного транзистора КПД не равен 100%, поскольку некоторая часть мощности постоянного тока и высокочастотного сигнала неизбежно рассеивается в виде тепла, которое необходимо отвести. Тепловыделение при усилении постоянных (CW) или импульсных сигналов с большой длительностью импульса и с высоким коэффициентом заполнения различается в зависимости от используемой технологии. Это различие может оказаться иным при усилении импульсного сигнала с малой длительностью импульса или небольшим коэффициентом заполнения. Не существует некой универсальной технологии, которая отвечала бы всем требованиям, предъявляемым к современным усилителям мощности. Единственным решением в такой ситуации является сопоставление ключевых характеристик транзисторов разных типов с основными требованиями конкретного приложения. Нельзя также ограничиваться только сравнением спецификаций выбираемых транзисторов. Для обеспечения наилучшего сочетания производительности, надежности, минимизации тепловыделения, снижения общих затрат и сокращения перечня используемых элементов, как правило, приходится искать компромисс и на системном уровне.

Шум

Максимальная чувствительность усилителей малых сигналов ограничена шумом случайных колебаний тока. Двумя основными источниками шума в транзисторах являются дробовой шум из-за потока носителей заряда в базе и тепловой шум. Источником теплового шума является сопротивление устройства, и с ростом температуры уровень теплового шума увеличивается:

\

где

  • k – постоянная Больцмана (1,38 · 10-23 Вт · с/К);
  • T – температура резистора в кельвинах;
  • R – сопротивление в омах;
  • Bш – полоса шума в герцах.

Шум в транзисторном усилителе определяется с точки зрения дополнительного шума, создаваемого усилителем, то есть не того шума, который усиливается от входа к выходу, а того, который генерируется в усилителе. Он определяется путем измерения отношения сигнал/шум (С/Ш, S/N) на входе и выходе усилителя. Выходное переменное напряжение усилителя с малым входным сигналом соответствует S + N, сумме сигнала и шума. Переменное напряжение без входного сигнала соответствует только шуму N. Величина шума F определяется через отношения S/N на входе и выходе усилителя.

\[F = {(S/N)_{вх} \over (S/N)_{вых}}\]

\

Величина шума F для радиочастотных (РЧ, RF) транзисторов обычно приводится в технических описаниях в децибелах, FдБ. На ОВЧ (очень высоких частотах, VHF, от 30 МГц до 300 МГц) хорошим показателем шума является величина <1 дБ. На частотах свыше ОВЧ уровень шума значительно увеличивается, 20 дБ на декаду, как показано на рисунке ниже.

Уровень шума малосигнального транзистора в зависимости от частоты

На рисунке выше также показано, что шум на низких частотах с уменьшением частоты увеличивается на 10 дБ за декаду. Этот шум известен как шум 1/f.

Уровень шума зависит от типа транзистора (модели). Радиочастотные транзисторы малых сигналов, используемые на антенном входе радиоприемников, специально разработаны для внесения малого уровня шума. Уровень шума зависит от тока смещения и согласования импедансов. Наилучший показатель шума для транзистора достигается при более низком токе смещения и, возможно, при рассогласовании импедансов.

Возможно, вам также будет интересно

Часть 1. Часть 2. Часть 3. Часть 4. Основные характеристики конденсаторов Конденсатор представляет собой пассивный радиоэлемент, состоящий из двух и более металлических пластин (обкладок), разделенных диэлектриком, и способный накапливать электрические заряды на обкладках, если к ним приложена разность потенциалов. Простейший конденсатор — это двухполюсник, состоящий из двух пластин (обкладок), которые разделены диэлектриком, толщина которого мала по сравнению с размерами пластин. В цепи постоянного тока конденсатор

Введение Фазированная антенная решетка (ФАР) — это антенна, состоящая из нескольких отдельных излучающих элементов, каждый из которых возбуждается высокочастотным сигналом, контролируемым при помощи фазовращателей таким образом, чтобы радиоизлучение от отдельных антенн суммировалось и увеличивалось в выбранном направлении, а в нежелательных направлениях — подавлялось. По сравнению со всенаправленными антеннами, ФАР имеют такие преимущества, как более высокая направленность и скорость управления лучом (перемещение может быть осуществлено за несколько миллисекунд)

Для проектирования интегральных схем требуются специальные библиотеки компонентов и техпроцессов от производителя, но для реализации сложных проектов необходимые дополнительные модели. В статье на практическом примере рассматривается решение, которое позволило создать недостающие структуры в виде параметризованных ячеек PCell с помощью системы проектирования Analog Office. Все пассивные компоненты схемы моделировались как отдельные структуры с помощью ЭМ-симулятора AXIEM.

KSH13005W Datasheet (PDF)

1.1. ksh13005w.pdf Size:144K _shantou-huashan

N P N S I L I C O N T R A N S I S T O R Shantou Huashan Electronic Devices Co.,Ltd. KSH13005W █ HIGH VOLTAGE SWITCH MODE APPLICICATION High Speed Switching Suitable for Switching Regulator and Montor Control █ ABSOLUTE MAXIMUM RATINGS(Ta=25℃) TO-263(D2PAK) Tstg——Storage Temperature………………………… -55~150℃ Tj——Junction Temperature………

2.1. ksh13005a.pdf Size:227K _upd

KSH13005A KSH13005A ◎ SEMIHOW REV.A1,Oct 2007 KSH130 005A KSH13005A Switch Mode series NPN silicon Power Transistor Switch Mode series NPN silicon Power Transistor — High voltage, high speed power switching — Suitable for switching regulator, inverters motor controls 4 Amperes NPN Silicon Power Transistor Absolute Maximum Ratings TC=25℃ unless otherwise noted 75 Watts TO-220

2.2. ksh13005af.pdf Size:223K _upd

KSH13005AF KSH13005AF ◎ SEMIHOW REV.A1,Oct 2007 KSH130 005AF KSH13005AF Switch Mode series NPN silicon Power Transistor Switch Mode series NPN silicon Power Transistor — High voltage, high speed power switching — Suitable for switching regulator, inverters motor controls 4 Amperes NPN Silicon Power Transistor Absolute Maximum Ratings TC=25℃ unless otherwise noted 75 Watts TO

Наличие искажений в различных классах НЧ-усилителей

Рабочая область транзисторного усилителя класса «А» характеризуется достаточно небольшими нелинейными искажениями. Если входящий сигнал выбрасывает импульсы с более высоким напряжением, это приводит к тому, что транзисторы насыщаются. В выходном сигнале возле каждой гармоники начинают появляться более высокие (до 10 или 11). Из-за этого появляется металлический звук, характерный только для транзисторных усилителей.

При нестабильном питании выходной сигнал будет по амплитуде моделироваться возле частоты сети. Звук станет в левой части частотной характеристики более жестким. Но чем лучше стабилизация питания усилителя, тем сложнее становится конструкция всего устройства. УНЧ, работающие в классе «А», имеют относительно небольшой КПД – менее 20 %. Причина заключается в том, что транзистор постоянно открыт и ток через него протекает постоянно.

Транзисторы MJE13001 и 13001

Транзисторы кремниевые структуры n-p-n, высоковольтные усилительные. Производство транзисторов 13001 локализовано в странах Юго-восточной Азии и в Индии. Применяются в маломощных импульсных блоках питания, зарядных устройствах для различных мобильных телефонов, планшетов и т. п.

Внимание!

При близких(почти идентичных) общих параметрах уразных производителей транзисторы 13001 могутотличаться по расположению выводов .

Выпускаются в пластмассовых корпусах TO-92, с гибкими выводами и TO-126 с жесткими. Тип прибора указывается на корпусе. На рисунке ниже — цоколевка MJE13001 и 13001 разных производителей, с разными корпусами.

Заключение

Какие из характеристик выбираемых СВЧ-транзисторов окажутся наиболее важными в процессе выбора, зависит от баланса между производительностью и ценой создаваемого усилителя. В некоторых случаях применение дорогих транзисторов оправдано, если снижается стоимость системы в целом. Диапазон рабочих частот и тип усиливаемого сигнала (импульсный или CW) являются отправными точками при выборе транзисторной технологии. Именно эти параметры помогут значительно сократить время на подбор транзисторов и общей конструкции усилителя для конкретной задачи. Не последнюю роль играет и понимание особенностей работы конкретной структурной схемы усилителя мощности, а также дополнительные функции и возможности, предоставляемые производителем. Необходимо знать расстояние, на которое передается сигнал радара, рабочую частоту и разрешающую способность, чтобы определить бюджет на выбираемые мощные СВЧ-транзисторы.

Рис. 4. Готовый усилительный субмодуль (паллета) включает в себя помимо усилительных цепей элементы высокочастотного согласования, схемы питания и управления, упрощающие интеграцию транзистора в усилитель мощности

Рассмотренные нами мощные СВЧ-транзисторы являются лишь единичными представителями широкого ассортимента полупроводниковых приборов от компании Integra, изготовленных с использованием всех трех рассмотренных технологий . Заметим, что транзисторы выпускаются с внутренним согласованием импеданса и без согласования, а также в разных корпусах. Кроме того, предлагаются решения в виде уже готовых усилительных субмодулей (паллет). Подобные интегральные решения помимо собственно усилительных цепей включают в себя элементы высокочастотного согласования, схемы питания и управления (рис. 4), что максимально упрощает их интеграцию в создаваемую систему.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: