Транзистор s9013 (c9013)

Принцип действия транзистора

В активном режиме работы, транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении. Для определённости рассмотрим npn транзистор, все рассуждения повторяются абсолютно аналогично для случая pnp транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку.

В npn транзисторе электроны, основные носители тока в эмиттере проходят через открытый переход эмиттер-база в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками), часть диффундирует обратно в эмиттер.

Однако, из-за того что базу делают очень тонкой и очень слабо легированной, большая часть электронов, инжектированная из эмиттера диффундирует в область коллектора. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает электроны (напомним, что они неосновные носители в базе, поэтому для них переход открыт), и проносит их в коллектор. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб+Iк).

Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк=α Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α 0.9 — 0.999, чем больше коэффициент, тем лучше транзистор. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер.

В широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β=α/(1-α)=(10-1000). Т.о. изменяя малый ток базы можно управлять значительно большим током коллектора.

Биполярный транзистор – электропреобразовательный полупроводниковый прибор с одним или несколькими электрическими переходами, предназначенный для усиления, преобразования и генерации электрических сигналов. Вся конструкция выполняется на пластине кремния, либо германия, либо другого полупроводника, в которой созданы три области с различными типами электропроводности.

Будет интересно Как работает диод с барьером Шоттки

Средняя область называется базой, одна из крайних областей – эмиттером, другая – коллектором. Соответственно в транзисторе два p-n-перехода: эмиттерный – между базой и эмиттером и коллекторный – между базой и коллектором.

Область базы должна быть очень тонкой, гораздо тоньше эмиттерной и коллекторной областей (на рисунке это показано непропорционально). От этого зависит условие хорошей работы транзистора. Транзистор работает в трех режимах в зависимости от напряжения на его переходах.

При работе в активном режиме на эмиттерном переходе напряжение прямое, на коллекторном – обратное. В режиме отсечки на оба перехода подано обратное напряжение. Если на эти переходы подать прямое напряжение, то транзистор будет работать в режиме насыщения.

Типы биполярных транзисторов.

Как подключить транзистор к Ардуино

Для этого занятия нам потребуется:

  • плата Arduino Uno / Arduino Nano / Arduino Mega;
  • макетная плата;
  • 1 биполярный транзистор;
  • 1 мотор постоянного тока;
  • 2 резистора от 1 до 10 кОм;
  • провода «папа-папа» и «папа-мама».

Подключить мотор постоянного тока напрямую к цифровым или аналоговым портам Arduino не получится. Это обусловлено тем, что пины на плате Ардуино не способны выдавать ток более 40 мА. При этом мотору постоянного тока, в зависимости от нагрузки, необходимо сотни миллиампер. Потому и возникает потребность управления электрической цепью высокого напряжения транзистором или Motor Shield L293D.

Схема подключения мотора постоянного тока к Ардуино

Соберите электрическую цепь, как на рисунке выше. Если присмотреться к сборке на макетной плате, то вы заметите, что транзистор играет роль кнопки. Если кнопка замыкает электрическую цепь при нажатии на толкатель, то транзистор начинает пропускать ток при подаче напряжения на базу. Таким образом, мы можем сделать автоматическое или полуавтоматическое управление мотором на Ардуино.

Скетч. Управление мотором через транзистор

void setup() { pinMode(11, OUTPUT); // объявляем пин 13 как выход } void loop() { digitalWrite(11, HIGH); // зажигаем светодиод delay(2000); // ждем 2 секунды digitalWrite(11, LOW); // выключаем светодиод delay(2000); // ждем 2 секунды } Если вы заметили, то это скетч из занятия — Включение светодиода на Ардуино

С точки зрения микропроцессора абсолютно не важно, что подключено к Pin13 — светодиод, транзистор или драйвер светодиодов для Светового меча на Ардуино

Обратите внимание на то, что резистор R1 подтягивает базу транзистора к земле, а резистор R2 служит для защиты порта микроконтроллера от перегрузки

Скетч. Управление мотором от датчика

Скетч управления двигателем постоянного тока на Ардуино можно написать по-другому. Добавим в схему фоторезистор и сделаем автоматическое включение мотора при снижении уровня освещенности в комнате. Можно также использовать датчик уровня жидкости или любой другой датчик. В скетче мы используем операторы if и else для управлением (включением/выключением) мотора постоянного тока.

Управление двигателем постоянного тока на Arduino UNO // Присваиваем имя для аналогового входа A0 #define sensor A0 // Присваиваем имя для значений аналогового входа A0 // unsigned int принимает только положительные числа unsigned int value = 0; void setup() { // Пин 11 с транзистором будет выходом (англ. «output») pinMode(11, OUTPUT); } void loop() { // Считываем значение с фоторезистора на аналоговом входе A0 value = analogRead(sensor); // Если значение value меньше 500, включаем транзистор if (value<500) digitalWrite(9,HIGH); // В противном случае (если value>500), выключаем транзистор if (value>500) digitalWrite(9, LOW); }

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: