Аналоги
Транзистор TIP127 имеет много зарубежных аналогов. Приведем устройства, которые имеют такой же корпус, расположение выводов, электрические и функциональные характеристики: 2N6035, 2N6040, 2N6041, 2N6042, 2SB673, 2SB791, ECG26, TIP125, TIP126. На данные приборы можно менять без внесения изменений в электрическую схему.
Существуют похожие транзисторы, которыми можно заменить рассматриваемый, но некоторые электрические параметры могут отличаться: 2SB1024, 2SB676, BD332, BD334, BDT60B, BDW24C, BDW64C, KSB601, KTB1423, NSP702, TIP627.
Имеется также отечественный аналог TIP127 — КТ8115А.
Рекомендуемая комплементарная пара – TIP122.
Типы усилителей
Усилители можно разделить на три группы:
Усилитель напряжения
Усилитель напряжения (УН) усиливает входное напряжение в заданное число раз. Этот коэффициент называется коэффициентом усиления по напряжению и вычисляется по формуле:
где
KU — это коэффициент усиления по напряжению
Uвых — напряжение на выходе усилителя, В
Uвх — напряжение на входе усилителя, В
Выходное усиленное напряжение не должно меняться от тока нагрузки, а следовательно, и от сопротивления нагрузки. В идеале, выходное сопротивление Rвых должно быть равно нулю, что недостижимо на практике. Поэтому, УН стараются проектировать так, чтобы минимизировать выходное сопротивление Rвых .
В таком режиме усилитель работает, если выполняются условия, что Rвх намного больше, чем Rвых т. е. Rвх >>Rи и Rн намного больше, чем Rвых (Rн >>Rвых ). Чем больше номинал Rн , тем лучше для усилителя напряжения, так как нагрузка не будет просаживать выходное напряжение Uвых. Здесь все просто: чем меньше сопротивление нагрузки, тем бОльшая сила тока будет течь по цепи Eвых —> Rвых —> Rн , тем больше будет падение напряжения на выходном сопротивлении Rвых , исходя из формулы ЭДС: Eвых =IвыхRвых +IвыхRн . Об этом можно более подробно прочитать в статье Закон Ома для полной цепи.
Усилитель тока
Усилитель тока (УТ) усиливает входной ток в заданное число раз. Этот коэффициент называется коэффициентом усиления по току и вычисляется по формуле:
где KI — коэффициент усиления по току
Iвых — сила тока в цепи нагрузки, А
Iвх — сила тока во входной цепи Eи —>Rи —>Rвх , А
Смысл работы усилителя тока такой: при определенной силе тока во входной цепи, на выходе в цепи нагрузки мы получаем силу тока, бОльшую в KI раз, независимо от того, какое значение принимает номинал нагрузки. Здесь уже работает простой закон Ома I=U/R.
Если сила тока должна быть постоянной, а значение сопротивления у нас может быть плавающим, то для поддержания постоянной силы тока в цепи нагрузки у нас усилитель автоматически изменяет напряжение Uвых на нагрузке. В результате, ток как был постоянной величиной, так и остался. Или буквами: Rн =var, Iвых= const.
Объяснение выше вы будете рассказывать своему преподу по электронике, а теперь объяснение для полных чайников. Итак, во входной цепи Eи —>Rи —>Rвх пусть у нас течет сила тока в 10 мА. Коэффициент KI =100, следовательно, на выходе в цепи нагрузки Eвых —>Rвых —> Rн будет течь ток с силой в 1 А (10мА х 100). Но сам по себе такой ток не будет ведь гулять по этой цепи. Ему надо создать условия для протекания. Допустим, у нас нагрузка 10 Ом. Какое тогда напряжение должно быть в этой цепи для получения силы тока в этой цепи в 1 А? Вспоминаем дядюшку Ома: I=U/R. 1=Uвых /10, получаем U=10 В. Вот такое напряжение нам будет выдавать усилитель тока на выходе.
Но что, если нагрузка поменяет свое значение? Ток должен остаться таким же, не забывайте, то есть 1 А, так как это у нас усилитель тока. В этом случае, чтобы сила тока в цепи оставалась 1 А усилитель автоматически поменяет свое значение напряжения на выходе Uвых на 1=Uвых /5. Uвых =5/1=5 В. То есть на выходе у нас уже будет 5 Вольт.
Но также не забываем еще об одном параметре, который у нас находится в выходной цепи усилителя тока. Это выходное сопротивление Rвых . Поэтому, нам необходимо, чтобы выполнялось условие: Rвх << Rи и Rн << Rвых при которых обеспечивается заданный ток в нагрузке при малом значении напряжения.
Усилитель мощности
Раньше было очень круто и модно собирать усилители мощности (УН) своими руками, включить Ласковый Май и вывернуть громкость на всю катушку. Сейчас же УМ может собрать или купить каждый, благо интернет и Алиэкпресс всегда под рукой.
Чем же УМ отличается от УН и УТ?
Если в УТ мы увеличивали только силу тока, в УН — напряжение, то в УМ мы увеличиваем в кратное число раз ток и напряжение.
Формула мощности для постоянного и переменного тока при активной нагрузке выглядит вот так:
где
P — мощность, Вт
I — сила тока, А
U — напряжение, В
Следовательно, коэффициент усиления по мощности запишется как:
где
KP — коэффициент усиления по мощности
Pвых — мощность на выходе усилителя, Вт
Pвх — мощность на входе усилителя, Вт
Для усилителя мощности условия согласования входной цепи с источником входного сигнала и выходной цепи с нагрузкой для передачи максимальной мощности имеют вид: Rвх ≈ Rи и Rн ≈ Rвых .
Также не забывайте, что нагрузки могут быть как чисто активными (типа лампочки накаливания, резистора, различных нагревашек), так и иметь реактивную составляющую (катушки индуктивности, конденсаторы, двигатели и тд).
Пара Шиклаи и каскодная схема
Другое название составного полупроводникового триода – пара Дарлингтона. Кроме неё существует также пара Шиклаи. Это сходная комбинация диады основных элементов, которая отличается тем, что включает в себя разнотипные транзисторы.
Что до каскодной схемы, то это также вариант составного транзистора, в котором один полупроводниковый триод включается по схеме с ОЭ, а другой по схеме с ОБ. Такое устройство аналогично простому транзистору, который включён в схему с ОЭ, но обладающему более хорошими показателями по частоте, высоким входным сопротивлением и большим линейным диапазоном с меньшими искажениями транслируемого сигнала.
Технические характеристики
Приведем технические характеристики на транзистор TIP122. Основными для данного устройства считаются:
- Предельное напряжение между коллектором и эмиттером — 100 В;
- Максимальное напряжение между коллектором и базой — 100 В;
- Допустимое напряжение между эмиттером и базой — 5 В;
- Рассеиваемая мощность до 65 Вт;
- Коэффициент усиления по току (hfe) от 1000;
- Максимальный ток коллектора — 8 А;
- Диапазон рабочих температур -65…+160 0 С, у кристалла до 150 0 С.
Электрические
При проектировании схем с транзистором TIP122 нужно учитывать, что прибор не должен работать в условиях, превышающих рекомендуемые производителем. Длительное воздействие напряжений, выше этих значений, может отрицательно сказаться на работоспособности устройства. Ниже, в таблице, приведены его электрические параметры для температуры 25 0 С.
Обязательно обращайте внимание на температурные показатели
Примеры использования
Вариантов применения транзистора TIP122 и его схем включения достаточно много, их просто невозможно уместить в одну статью. Поэтому рассмотрим только некоторые схемы с его участием. Первая — усилитель звуковой частоты на 12 Вт, вторая — автоматический регулятор скорости вращения вентилятора.
Усилитель низкой частоты
Данный усилитель сделан на микросхеме операционном усилителе TL081 и двух выходных транзисторах TIP122 и TIP127. При нагрузке 8 Ом рассматриваемый усилитель способен обеспечить выходную мощность 12 Вт. Напряжение питания данного прибора должно находиться в пределах от 12 до 18 вольт.
Автоматический регулятор скорости вращения вентилятора
Рассматриваемый регулятор скорости вращения вентилятора можно использовать для предотвращения перегрева различной бытовой аппаратуры, например, компьютера. Его устанавливают в корпус охлаждаемого им устройства. Данная схема позволяет автоматически регулировать скорость вращения вентилятора, в зависимости от температуры воздуха.
Температурный датчик LM335 ориентирован на работу при -40 до +1000 градусов цельсия. Напряжение на нем будет увеличиваться на 10 мВ вместе с ростом вокруг окружающей температуры. Напряжение с него подается на неинвертирующий вход операционного усилителя LM741. Со стабилитрона 1N4733 на инвертирующий вход микросхемы, через потенциометр, подается опорное напряжение 5.1 В.
В данной схеме потенциометр предназначен для регулирования порога срабатывания вентилятора. Транзистор находится в выходном каскаде усилителя и предназначен для непосредственного управления вентилятором.
Что такое четырехполюсник
В электронике черным ящиком является четырехполюсник. Что вообще такое четырехполюсник? Четырехполюсник — это черный ящик, внутри которого имеется неизвестная электрическая цепь. Здесь мы видим две клеммы на вход, через которые подается входное воздействие и две клеммы на выход, с которых мы уже будем снимать отклик нашего «электрического черного ящика».
Пассивный четырехполюсник
Например, RC-цепь является пассивным четырехполюсником, так как она имеет четыре вывода: два на вход и два на выход, и как мы видим, она не содержит в себе какой-либо источник питания. Эта RC цепочка является пассивным фильтром низкой частоты (ФНЧ).
В пассивных четырехполюсниках напряжение или ток на выходе могут быть больше, чем на входе, но мощность при этом не увеличивается. Как же напряжение или ток на выходе могут быть больше, чем на входе? Здесь достаточно вспомнить трансформатор, а также последовательный и параллельный колебательные контура. Для них точнее было бы определение преобразователи напряжения, но никак не усилитель, так как усилитель должен иметь в своем составе обязательно источник питания, у которого он будет брать энергию для усиления слабого входного сигнала.
Также в пассивном четырехполюснике мощность на выходе никак не будет больше мощности, чем на входе. Если вы этого добьетесь, то сразу же получите вечный источник энергии и Нобелевскую премию в придачу. Но помните, что закон сохранения энергии, который впервые был еще сформулирован Лейбницем в 17 веке, никто не отменял.
Активный четырехполюсник
А вот этот четырехполюсник мы будем уже называть активным, так как он имеет в своем составе источник питания +Uпит , которое требуется для того, чтобы усиливать сигнал.
То есть мы здесь видим две клеммы на вход, на которые загоняется сигнал Uвх , а также видим две клеммы на выход, где снимается напряжение Uвых . Питается наш четырехполюсник через +Uпит , в результате чего, в данном случае, сигнал на выходе будет больше, чем сигнал на входе.
Загоняя на вход такой схемы синусоиду, на выходе мы получим ту же самую синусоиду, но ее амплитуда будет в разы больше.
Это, конечно же, верно для идеального усилителя, т.е. абсолютно линейного и без ограничения на амплитуду входного и выходного сигнала. В реальных усилителях, требуется чтобы амплитуда не превышала допустимую и усилитель был правильно спроектирован. Кроме того, любой реальный усилитель вносит искажения и характеризуется коэффициентом нелинейных искажений (КНИ) и еще многими другими параметрами, которые мы рассмотрим в следующей статье.
В активном четырехполюснике, одним из которых является усилитель мощности, мощность на выходе будет больше, чем на входе. Естественно, при этом не нарушается закон сохранения энергии, так как мощность, которая выделяется на нагрузке — это преобразованная мощность источника питания. Входной слабый сигнал просто управляет этой мощностью. Более подробно можно прочитать в статье про принцип усиления транзистора.
В электронике мы будем рассматривать усилитель, как активный четырехполюсник, на вход которого подается маломощный сигнал Uвх, а к выходу цепляется нагрузка Rн .
Усилители фирмы Ampleon
Компания Ampleon выпускает транзисторы, предназначенные для реализации усилителей Догерти, и интегральные СВЧ-микросхемы усилителей Догерти. Широкий ассортимент продукции охватывает диапазоны частот от 450 МГц до 3,8 ГГц и средние уровни мощности от 2 до 80 Вт. Эти устройства применимы для большинства приложений сотовой связи: от пикосот до макросот. В них используется технология цифровых предыскажений. Для достижения максимального КПД Ampleon предлагает сочетание последнего поколения технологий LDMOS с концепцией Догерти.
Компания Ampleon предлагает также решения на LDMOS-транзисторах, так называемые интегрированные архитектуры Догерти (iDPA). Первая подобная конструкция представляла собой демонстрационную плату усилителя Догерти для систем цифрового телерадиовещания и была выполнена на транзисторах серии BLF888A. Ее КПД составлял приблизительно 40% в диапазоне частот 470–800 МГц.
Еще один вариант демонстрационной платы (рис. состоит из двух частей: одна печатная плата содержит широкополосные основной и пиковый усилители, а вторая – сумматор (схема сложения выходных мощностей). В каждом из усилителей используется LDMOS-транзистор BLF888A вместе с соответствующими компонентами. Усилитель Догерти, реализованный на данной демонстрационной плате, охватывает весь диапазон УВЧ. Полоса пропускания этого усилителя зависит от конструкции сумматора. Для получения необходимой ширины полосы частот компания предлагает различные варианты демонстрационных версий.
Рисунок 8 – Демонстрационная плата Ampleon для УВЧ-диапазона
Усилитель имеет минимальную выходную мощность в среднем 200 Вт и полосу пропускания приблизительно 50 МГц (в зависимости от центральной частоты).
Предлагается также решение на основе архитектуры Догерти на двух мощных транзисторах шестого поколения компании Ampleon BLF6G15L-250PBRN, в которых применяется усовершенствованная технология LDMOS (рис. 9) .
Рисунок 9 – Фотография усилителя мощности на основе транзисторов BLF6G15L-250PBRN
Разработка оптимизирована для использования в приложениях для базовых станций 3GPP E-UTRA LTE, работающих на частоте 1,5 ГГц. Конструкция обеспечивает высокие КПД и максимальную мощность, подобно двум параллельным усилителям класса AB.
Устройство реализовано в виде классического усилителя Догерти, то есть на основной усилительный прибор подается смещение для работы в классе AB, а вспомогательный усилительный прибор работает в классе C. Входная и выходная секции внутренне согласованы, что обеспечивает высокий коэффициент усиления с хорошей равномерностью и фазовой линейностью в широком диапазоне частот (рис. 10) .
Рисунок 10 – Коэффициент усиления и входные обратные потери в зависимости от частоты решения на базе транзисторов BLF6G15L-250PBRN
Помимо рассмотренных конструкций усилителей, компания Ampleon предлагает еще два варианта усилителей для различных диапазонов частот: для диапазона 2 000 МГц на основе LDMOS-транзистора BLF7G22LS-130, а также для диапазона 1800 МГц на основе LDMOS-транзисторов BLF7G20LS-90P и BLF7G21LS-160P. Сравнительные характеристики разработок приведены в табл. 6 .
Используемые транзисторы | Диапазон частот, МГц |
Выходная мощность, дБм |
Напряжение питания стока, В |
КПД, % |
---|---|---|---|---|
BLF888A | 470-860 | 53 | 49 | 40 |
BLF6G15L-250PBRN | 1476-1511 | 49 | 32 | 36 |
BLF7G20LS-90P, BLF7G21LS-160P |
1805-1880 | 46 | 28 | 47 |
BLF7G22LS-130 | 2110-2170 | 47 | 28 | 43 |
Как проверить транзистор Дарлингтона
Самый простой способ проверки составного транзистора заключается в следующем:
- Эмиттер подсоединяется к «минусу» источника питания;
- Коллектор подсоединяется к одному из выводов лампочки, второй её вывод перенаправляется на «плюс» источника питания;
- Посредством резистора к базе передаётся плюсовое напряжение, лампочка светится;
- Посредством резистора к базе передаётся минусовое напряжение, лампочка не светится.
Если всё получилось так, как описано, то транзистор исправен.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Что такое усилитель?
В электрических схемах очень часто встречаются сигналы малой мощности. Например, это может быть звуковой сигнал с динамического микрофона
слабый радиосигнал, который ловит из эфира ваш китайский радиоприемник
Либо отраженный сигнал от ракеты противника, который уже потом ловит, усиливает и отслеживает радиолокационная установка. Для примера: зенитно-ракетный комплекс ТОР:
Как вы видите, в электронике абсолютно везде требуется усиление слабых сигналов. Для того, чтобы их усиливать, как раз нужны усилители сигналов. Усилители широко применяются в радиолокации, телевидении, радиовещании, телеметрии, в вычислительной технике, авторегулировании, в системах автоматики и тд.
TIP35C Datasheet (PDF)
TIP35CW TIP36CW Complementary power transistors . Features ■ Low collector-emitter saturation voltage ■ Complementary NPN — PNP transistors Applications ■ General purpose 3 2 ■ Audio amplifier 1 TO-247 Description The devices are manufactured in planar Figure 1. Internal schematic diagrams technology with “base island” layout. The resulting transistors show exc
TIP35C TIP36C Complementary power transistors . Features � Low collector-emitter saturation voltage � Complementary NPN — PNP transistors Applications � General purpose 3 2 � Audio amplifier 1 TO-247 Description The devices are manufactured in planar Figure 1. Internal schematic diagrams technology with �base island� layout. The resulting transistors show exceptional high gai
TIP35CP TIP36CP Complementary power transistors . Features � Low collector-emitter saturation voltage � Complementary NPN-PNP transistors Applications � General purpose 3 � Audio amplifier 2 1 TO-3P Description The devices are manufactured in planar Figure 1. Internal schematic diagrams technology with �base island� layout. The resulting transistors show exceptional high gain
TIP35A, TIP35B, TIP35C (NPN); TIP36A, TIP36B, TIP36C (PNP) TIP35B, TIP35C, TIP36B, and TIP36C are Preferred Devices Complementary Silicon High-Power Transistors http://onsemi.com Designed for general-purpose power amplifier and switching applications. 25 AMPERE Features COMPLEMENTARY SILICON � 25 A Collector Current POWER TRANSISTORS � Low Leakage Current — 60-100 VOLTS, 125 WATTS
1.5. tip35c.pdf Size:138K _utc
UNISONIC TECHNOLOGIES CO., LTD TIP35C NPN SILICON TRANSISTOR HIGH POWER TRANSISTORS ? DESCRIPTION The UTC TIP35C is a NPN Expitaxial-Base transistor, designed for using in general purpose amplifier and switching applications. Complement to TIP36C. ? INTERNAL SCHEMATIC DIAGRAM C (2) (1) B E (3) ? ORDERING INFORMATION Order Number Pin Assignment Package Packing Lead Free Ha
SEMICONDUCTOR TIP35CA TECHNICAL DATA TRIPLE DIFFUSED NPN TRANSISTOR HIGH POWER AMPLIFIER APPLICATION. A Q B N FEATURES O K Recommended for 75W Audio Frequency DIM MILLIMETERS Amplifier Output Stage. _ A + 15.60 0.20 _ B 4.80 + 0.20 Complementary to TIP36CA. _ C 19.90 + 0.20 _ D 2.00 0.20 + Icmax:25A. _ d + 1.00 0.20 _ E + 3.00 0.20 _ F 3.80 + 0.20 D _ G 3.50 +
1.7. tip35c.pdf Size:289K _kec
SEMICONDUCTOR TIP35C TECHNICAL DATA TRIPLE DIFFUSED NPN TRANSISTOR HIGH POWER AMPLIFIER APPLICATION. A Q B K FEATURES Recommended for 75W Audio Frequency Amplifier Output Stage. DIM MILLIMETERS Complementary to TIP36C. A 15.9 MAX B 4.8 MAX Icmax:25A. _ C 20.0 + 0.3 _ D 2.0 + 0.3 D d 1.0+0.3/-0.25 E 2.0 F 1.0 G 3.3 MAX d H 9.0 MAXIMUM RATING (Ta=25 ) I 4.5 P PT J 2.0
Аналоги транзистора Tip35c:
Type | Mat | Struct | Pc | Ucb | Uce | Ueb | Ic | Tj | Ft | Hfe | Caps |
BU323AP | Si | NPN | 125,00 | 350,00 | 250,00 | 7,00 | 40,00 | 200,00 | 4,00 | 1000,00 | TOP3 |
BU999 | Si | NPN | 100,00 | 160,00 | 140,00 | 25,00 | 150,00 | 40,00 | TOP3 | ||
BUD98 | Si | NPN | 250,00 | 850,00 | 400,00 | 32,00 | 150,00 | 100,00 | TOP3 | ||
BUD98I | Si | NPN | 110,00 | 850,00 | 400,00 | 32,00 | 150,00 | 100,00 | TOP3 | ||
BUF420 | Si | NPN | 200,00 | 850,00 | 450,00 | 30,00 | 150,00 | 100,00 | TOP3 | ||
BUF420A | Si | NPN | 200,00 | 1000,00 | 450,00 | 30,00 | 150,00 | 100,00 | TOP3 | ||
BUF420AI | Si | NPN | 115,00 | 1000,00 | 450,00 | 30,00 | 150,00 | 100,00 | TOP3 | ||
BUF420AM | Si | NPN | 115,00 | 1000,00 | 450,00 | 30,00 | 150,00 | 100,00 | TOP3 | ||
BUF420I | Si | NPN | 115,00 | 850,00 | 450,00 | 30,00 | 150,00 | 100,00 | TOP3 | ||
BUF420M | Si | NPN | 115,00 | 850,00 | 450,00 | 30,00 | 150,00 | 100,00 | TOP3 | ||
BUS24B | Si | NPN | 250,00 | 750,00 | 400,00 | 30,00 | 200,00 | 25,00 | TOP3 | ||
BUS24C | Si | NPN | 250,00 | 850,00 | 450,00 | 30,00 | 200,00 | 25,00 | TOP3 | ||
TIP35C | Si | NPN | 90,00 | 140,00 | 100,00 | 5,00 | 25,00 | 150,00 | 3,00 | 20,00 | TOP3 |
Достоинства и недостатки составных транзисторов
Мощность и сложность транзистора Дарлингтона может регулироваться через увеличение количества включённых в него биполярных транзисторов. Существует также IGBT-транзистор, который включает в себя биполярный и полевой транзистор, используется в сфере высоковольтной электроники.
Главным достоинством составных транзисторов считается их способность давать большой коэффициент усиления по току. Дело в том, что, если коэффициент усиления у каждого из двух транзисторов будет по 60, то при их совместной работе в составном транзисторе общий коэффициент усиления будет равен произведению коэффициентов входящих в его состав транзисторов (в данном случае — 3600). Как результат — для открытия транзистора Дарлингтона потребуется довольно небольшой ток базы.
Недостатком составного транзистора считается их низкая скорость работы, что делает их пригодными для использования только в схемах работающих на низких частотах. Зачастую составные транзисторы фигурируют как компонент выходных каскадов мощных низкочастотных усилителей.