Даташит ztx450 pdf ( datasheet )

Зачем нужна маркировка

Современному радиолюбителю сейчас доступны не только обычные компоненты с выводами, но и такие маленькие, темненькие, на которых не понять что написано, детали. Они называются “SMD”. По-русски это значит “компоненты поверхностного монтажа”. Их главное преимущество в том, что они позволяют промышленности собирать платы с помощью роботов, которые с огромной скоростью расставляют SMD-компоненты по своим местам на печатных платах, а затем массово “запекают” и на выходе получают смонтированные печатные платы. На долю человека остаются те операции, которые робот не может выполнить. Пока не может.

Маркировка на практике

Применение чип-компонентов в радиолюбительской практике тоже возможно, даже нужно, так как позволяет уменьшить вес, размер и стоимость готового изделия. Да ещё и сверлить практически не придётся

Другое важное качество компонентов поверхностного монтажа заключается в том, что благодаря своим малым размерам они вносят меньше паразитных явлений

Дело в том, что любой электронный компонент, даже простой резистор, обладает не только активным сопротивлением, но также паразитными ёмкостью и индуктивностью, которые могут проявится в виде паразитных сигналов или неправильной работы схемы. SMD-компоненты обладают малыми размерами, что помогает снизить паразитную емкость и индуктивность компонента, поэтому улучшается работа схемы с малыми сигналами или на высоких частотах.

Разнообразные корпуса транзисторов.

Маркировка SMD компонентов

SMD компоненты все чаще используются в промышленных и бытовых устройствах. Поверхностный монтаж улучшил производительность по сравнению с обычным монтажом, так как уменьшились размеры компонентов, а следовательно и размеры дорожек. Все эти факторы снизили паразитические индуктивности и емкости в электрических цепях.

Код Сопротивление
101 100 Ом
471 470 Ом
102 1 кОм
122 1.2 кОм
103 10 кОм
123 12 кОм
104 100 кОм
124 120 кОм
474 470 кОм

Маркировка импортных SMD

Маркировка импортных SMD транзисторов происходит в основном по нескольким принятым системам. Одна из них – это система маркировки полупроводниковых приборов JEDEC.Согласно ей первый элемент – это число п-н переходов, второй элемент – тип номинал, третий – серийный номер, при наличие четвертого – модификации.

Вторая распространенная система маркировка – европейская. Согласно ей обозначение SMD транзисторов происходит по следующей схеме: первый элемент – тип исходного материала, второй – подкласс прибора, третий элемент – определение применение данного элемента, четвертый и пятый – основную спецификацию элемента.

Третьей популярной системой маркировки является японская. Эта система скомбинировала в себе две предыдущие. Согласно ей первый элемент – класс прибора, второй – буква S, ставится на всех полупроводниках, третий – тип прибора по исполнению, четвертый – регистрационный номер, пятый – индекс модификации, шестой – (необязательный) отношение к специальным стандартам.

Что бы к Вам ни попало в руки, для полной идентификации данного элемента следует применять маркировочные таблицы и по ним определить все характеристики данного элемента. По оценкам специалистов соотношение между производством ЭРЭ в обычном и SMD-исполнении должно приблизиться к 30:70. Многие радиолюбители уже начинают с успехом осваивать применение SMD в своих конструкциях.

Основные технические характеристики

У транзисторов серии C945 представлены такие технические характеристики (при температуре окружающей среды +25 °C,):

физические:

  • принцип действия – биполярный;
  • корпус ТО-92, SOT-23;
  • материал корпуса – пластмасса;
  • материал транзистора — аморфный кремний (amorphous silicon) Si;

электрические:

  • проводимость – обратная (n-p-n);
  • максимально допустимый коллекторный ток (Maximum Collector Current) IK макс (Ic max) 0,15 А или 150 мА (mA);
  • максимальное допустимое напряжение между коллектором и эмиттером (Collector-Emitter Voltage) U КЭ макс. (VCEmax) не более 50 В (V);
  • максимально допустимое обратном напряжении на коллекторном переходе, между коллектором и базой (Collector-Base Voltage) UКБ макс. (VCBmax) не более 60 В (V);
  • максимальное допустимое напряжение между эмиттером и базой (Emitter-Base Voltage) UЭБ макс (VЕВ max) не более 5 В (V);
  • напряжение насыщения коллектор-эмиттер (Collector-emitter saturation voltage) UКЭ.нас. (VCEsat) не более 0.3 В (V);
  • граничная частота передачи тока (Current Gain Bandwidth Product) fгр (ft) от 100 до 450 МГц (MHz), при U КЭ = 6 В (V), IK = 10 мА (mA);
  • максимальный обратный ток коллектора (Collector Cutoff Current) IКБО (ICBO) не более 0.01 мкА (µA), при U КБ макс. (VCBО ) = 60 В (V) и отключенном эммитере (ток эммитора IЭ (IE)=0);
  • максимальный обратный ток эммитера (Emmiter Cutoff Current) IЭБО (IEBO) не более 0.01 мкА (µA), при U EБ макс. (VEBО ) = 5 В (V) и отключенном коллекторе (ток коллектора IК (IС)=0);
  • максимальная мощность, рассеиваемая на коллекторе (Maximum Collector Dissipation) PK макс. (PC) 0,400 Вт (Watt) или 400 мВт (mW);
  • максимальная температура хранения и эксплуатации (Max Storage & Operating temperature Should be) Tхран. (Tstr) от — 55 до + 150 °C.
  • Коэффициент усиления по току (Minimum & maximum DC Current Gain) при UКЭ макс = 6 В (V) и IK макс  = 1 мА (mA) находится в пределах от 70 до 700 Hfe.

Классификация по Hfe

Наименование Коэффициент Hfe
С945-Y 120-240
С945-O 70-140
С945-R 90-180
С945-Q 135-270
С945-P 200-400
C945-K 300-600
C945-G 200-400
C945-GR 200-400
C945-BL 350-700
C945-L (SOT-23) 120-200
C945-H (SOT-23) 200-400

Точное значение Hfeсмотрите в даташите производителя, предварительно посмотрев буквы находящиеся в конце маркировки транзистора. Например у c945O Electronic Manufacturer Hfe характеристика находится в пределах от 70-140, а у С945R Stanson Technology от 90-180.

PNP-транзистор

Впервые биполярный транзистор изготовили, вплавляя в кристалл германия (материал n-типа) капли индия. Индий (In) – трехвалентный металл, материал p-типа. Поэтому такой транзистор назвали диффузным (сплавным), имеющим структуру p-n-p (или pnp). Биполярный транзистор на рисунке ниже изготовлен в 1965 году.

Его корпус обрезан для наглядности. Кристалл германия в центре называется базой, а вплавленные в него капли индия – эмиттером и коллектором. Можно рассматривать переходы ЭБ (эмиттерный) и КБ (коллекторный) как обычные диоды, но переход КЭ (коллектор-эмиттерный) имеет особое свойство. Поэтому невозможно изготовить биполярный транзистор из двух отдельных диодов.

Если в транзисторе типа pnp приложить между коллектором (-) и эмиттером (+) напряжение в несколько вольт, в цепи пойдет очень слабый ток, несколько мкА. Если затем приложить небольшое (открывающее) напряжение между базой (-) и эмиттером (+) – для германия оно составляет около 0,3 В (а для кремния 0,6 В) – то ток некоторой величины потечет из эмиттера в базу.

Но так как база сделана очень тонкой, то она быстро насытится дырками (“растеряет” свой избыток электронов, которые уйдут в эмиттер). Поскольку эмиттер сильно легирован дырочной проводимостью, а в слабо легированной базе рекомбинация электронов немного запаздывает, то существенно большая часть тока пойдет из эмиттера в коллектор.

Коллектор сделан больше эмиттера и слабо легирован, что позволяет иметь на нем большее пробивное напряжение (Uпроб.КЭ > Uпроб.ЭБ). Также, поскольку основная часть дырок рекомбинирует в коллекторе, то он и греется сильнее остальных электродов прибора. Обычно α лежит в пределах 0,85-0,999 и обратно зависит от толщины базы.

Эта величина называется коэффициент передачи тока эмиттера. Это коэффициент передачи тока базы, один из самых важных параметров биполярного транзистора. Он чаще определяет усилительные свойства на практике. Транзистор pnp называют транзистором прямой проводимости. Но бывает и другой тип транзистора, структура которого отлично дополняет pnp в схемотехнике.


Двухполярные транзисторы

Параметры, характеристики irfp450

Вашему вниманию подборки материалов:

Конструирование источников питания и преобразователей напряжения Разработка источников питания и преобразователей напряжения. Типовые схемы. Примеры готовых устройств. Онлайн расчет. Возможность задать вопрос авторам

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Максимально допустимое напряжение: 500 В.

Максимально допустимый средний ток (при условии выполнения требований по мощности) при температуре корпуса 25 грЦ: 14 А.

Максимально допустимый средний ток (при условии выполнения требований по мощности) при температуре корпуса 100 грЦ: 9 А.

Какая будет температура у корпуса в реальных условиях, предсказать тяжело. Я советую использовать этот прибор на ток до 10 — 11 А. Эти транзисторы легко можно соединять параллельно, если нужны большие токи.

Максимальный импульсный ток: 56 А. Конечно, вероятно, МОП транзистор irfp 450 может выдержать этот ток одноразово, в течение очень короткого времени. Но по моей практике пиковая сила тока через этот MOSFET не должна превышать 30 — 35 А. Иначе устройство будет работать ненадежно.

Максимальная рассеиваемая мощност:ь 190 Вт. Я на самом деле сделал устройство, где этот транзистор рассеивал близкую мощность. Применялось жидкостное охлаждение. irfp50 отлично работает в нем и по сей день.

Максимальная энергия, которая может рассеиваться прибором периодически: 19 мДж.

Максимальное напряжение на затворе: +- 20 В.

Управляющее напряжение: от 10 до 15 В. Вообще использование более высокого управляющего напряжения снижает потери и нагрев, но нельзя допускать превышения максимального напряжения на затворе с учетом некоторых его бросков в результате переходных процессов. Отсюда и выбран интервал.

Сопротивление в открытом состоянии при управляющем напряжении 10 В, токе стока 8.4 А: 0.4 Ом. Если управляющее напряжение будет больше, то сопротивление будет немного меньше. При росте тока сопротивление тоже немного снижается. Но для оценки потерь на проводимость имеет смысл использовать именно это значение, тогда Вы получите расчетное значение немного выше реального, что неплохо.

Емкость затвор — исток: 2.6 нФ.

Емкость затвор — сток: 0.2 нФ.

Емкость исток — сток: 0.72 нФ.

Аналоги

В таблице 3 представлены основные параметры n-p-n транзисторов, пригодных для замены S9014.

Таблица 3. Транзисторы, подходящие для замены S9014 (все кремниевые, n-p-n)

Тип VCEO IC PC hFE fT Корпус Цоколевка*
S9014 45 100 450 60-1000 150 ТО-92 эбк
200 SOT-23 эбк
Импорт
BC547 45 100 625 110 – 800 150 ТО-92 кбэ
MPSW06 60 500 1000 от 80 50 ТО-92 эбк
BC550 45 100 500 420-800 300 ТО-92 кбэ
MPSA43 200 500 625 от 25 от 50 ТО-92 эбк
2SD1938 20 300 200 500 –2500 80 SOT-346 эбк
9014SLT1 45 100 300 300 300 SOT-23 эбк
2N7051 100 1500 625 от 1000 200 ТО-92 экб
Российское производство
КТ3102 20-50 100 250 100 – 1000 от 150 ТО-92 кбэ
КТ6111 45 100 450 60 – 1000 от 150 ТО-92 кбэ

*Цоколевка (ТО-92 – слева направо; SOT-23 – по часовой стрелке)

Примечания.

1. Значение VCEO КТ3102 определяется буквой, следующей за последней цифрой.

2. Корпус SOT-346 отличается от SOT-23 размерами (см. табл. 4).

3. Информация по параметрам аналогов заимствована из даташитов компаний-производителей.

Рис. 7. Корпуса  SOT-23 и SOT-346.

Таблица 4. Размеры SMD-корпусов

Корпус А (мм) B (мм) S (мм) H (мм)
SOT-23 2,9 1,3 2,4 0,95
SOT-346 2,9 1,6 2,8 1,1

Транзисторы BC556, BC557, BC558, BC559, BC560 с буквами A, B, C.

Т ранзисторы BC556 – BC560 – кремниевые, высокочастотные усилительные общего назначения, структуры – p-n-p. Корпус пластиковый TO-92B. Маркировка буквенно – цифровая.

Наиболее важные параметры.

Постоянная рассеиваемая мощность(Рк т max ) – 500 мВт.

Предельная частота коэффициента передачи тока ( fh21э )транзистора для схем с общим эмиттером – 300 МГц;

Максимальное напряжение коллектор – эмиттер – У транзисторов BC556 65в. У транзисторов BC557, BC560 45в. У транзисторов BC558, BC549 30в.

Максимальное напряжение коллектор – база – У транзисторов BC556 80в. У транзисторов BC557, BC560 50в. У транзисторов BC558, BC559 30в.

Максимальное напряжение эмиттер – база – 5в.

Коэффициент передачи тока: У транзисторов BC556A, BC557A, BC558A, BC559A, BC560A – от 110 до 220. У транзисторов BC556B, BC557B, BC558B, BC559B, BC560B – от 200 до 450. У транзисторов BC556C, BC557C, BC558C, BC559C, BC560C – от 420 до 800.

Максимальный постоянный ток коллектора – 100 мА.

Напряжение насыщения коллектор-эмиттер при токе коллектора100мА, базы 5мА – не выше 0,6в.

Напряжение насыщения база-эмиттер при токе коллектора 100мА, базы 5мА – 0,9в.

Транзисторы комплиментарные BC556, BC557, BC558, BC559, BC560 – BC546, BC547, BC548, BC549, BC550.

BC556, BC557, BC558, BC559, BC560 встречаются в самых различных схемах. Эти транзисторы успешно используют, как для усиления сигналов звуковой частоты, так и в радиочастотных каскадах. Пример – популярная схема переговорного устройства(уоки – токи) на 27мГц.

Схема состоит из двух компонентов – LC генератора(емкостная трехточка) на частоту 27мГц и усилителя звуковой частоты с двухтактным выходным каскадом. Режимы прием – передача переключаются с помощью переключателя В1. В режиме передачи миниатюрный громкоговоритель переключается с выхода УЗЧ на вход и используется как динамический микрофон. Усиленный сигнал поступает на генератор 27мГц, производя модуляцию основной частоты.

В режиме приема схема работает как сверхрегнератор с очень большим усилением радиосигнала и прямым преобразованием его модуляции в сигнал звуковой частоты, после усиления в УЗЧ поступающий на громкоговоритель. В LC генераторе применен BC547(VT1), в усилителе звуковой частоты два BC547(VT2 – VT5) и два комплементарных BC557(VT3 – VT4). Все транзисторы лучше брать с буквой C(коэфф. усиления от 450). Резисторы можно взять любого типа с мощностью от 0,1 ватта, за исключением R3 – его мощность должна быть не менее 0,25 ватт.

Конденсаторы C1 – C11 слюдяные, C12 – C13 – оксидные(электролитические), любого типа. Катушка генератора L1 – 4 витка провода ПЭЛ -0,25 с отводом от одного витка, намотанная на каркасе диаметром 0,4 см, с подстроечным стержнем из феррита(от малогаб. импортного приемника). Катушка L2 – 1,5 витка на том же каркасе, тем же проводом. Антенной служит безкаркасная катушка – пружина диаметром 0,5 см содержащая 160 – 170 плотно намотанных витков провода ПЭВ 0,5 (виток, к витку). Длина такой антенны получается от 8 до 10см.

Использование каких – либо материалов этой страницы, допускается при наличии ссылки на сайт «Электрика это просто».

12 шт. из магазина г.Ижевск2328 шт. со склада г.Москва,срок 3-4 рабочих дня
− +

В корзину

PNP транзистор общего применения

ХарактеристикиТехнические ∙ Корпус TO-92 ∙ Распиновка CBE

Электрические ∙ Мощность 0.5Вт ∙ Ток коллектора -0.1А ∙ Обратный ток коллектор-база -0.015uA ∙ Напряжение эмиттер-база -5В ∙ Напряжение коллектор-эмиттер 45В ∙ Напряжение коллектор-база -50В ∙ Hfe min 420 ∙ Hfe max 800

Общие ∙ Производитель Semtech

Распиновка

Цоколевка 13003 у большинства производителей выполняется в пластиковым корпусом ТО-126. У компании STMicroelectronics (STM) этот корпус называется SOT-32. Фирменный MJE13003 у компании Motorola имел пластиковый корпус — ТО-225A. Это тот же, немного улучшенный ТО-126, согласно системы стандартизации полупроводниковых приборов Jedec. Три гибких вывода из корпуса ТО-126, если смотреть на маркировку, имеют следующее назначение: самый левый контакт – база; посередине – коллектор; крайний справа – эмиттер.

В статье рассмотрено назначение выводов, встречающееся у большинства производителей, однако бывает и другая – нетипичная распиновка 13003 в ТО-126. У той же STM, если смотреть на прибор как описано выше, эмиттер будет слева, база справа, а коллектор посередине. Аналогичная цоколевка у KSE13003 (Fairchild Semiconductor). Очень редко, но встречаются приборы в корпусе ТО-220. Для наглядности просмотрите рисунок с цоколевкой от разных компаний.

Транзистор, который включен по схеме с общим эмиттером

В данной конфигурации вывод эмиттера является общим между выводами входа и выхода, как показано на рисунке 9. Эта конфигурация обеспечивает среднее полное сопротивление на входе, среднее полное сопротивление на выходе, средний коэффициент усиления тока и коэффициент усиления напряжения.

Рисунок 9 Схема с общим эмиттером

Характеристики входа

Рисунок 10 показывает характеристики входа для данной конфигурации, которая объясняет изменение в IB в соответствии с VBE, где VCE является постоянной.

Рисунок 10 Характеристики входа

Исходя из рисунка, сопротивление на входе может быть представлено как:

Характеристики выхода

Характеристики выхода у такой конфигурации (Рисунок 11) также рассматриваются как характеристики коллектора. Этот график показывает изменение в IC с изменениями в VCE, когда IB удерживается постоянной. Исходя из графика, можно получить сопротивление на выходе следующим образом:

Рисунок 11 Характеристики выхода

Характеристики передачи тока

Эти характеристики данной конфигурации показывают изменение IC с IB, удерживающим VCE в качестве постоянной. Это может быть математически выражено как:

Это соотношение рассматривается как коэффициент усиления тока с общим эмиттером, и оно всегда больше единицы.

Рисунок 12 Характеристики передачи тока

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: