Вторичные источники электропитания

Производители и поставщики источников постоянного питания

Среди производителей источников постоянного питания можно выделить:

  • завод «РИАП» (радиоизмерительной аппаратуры), г. Нижний Новгород;
  • ООО «Синергия+» (подразделение компании «Группа ЭНЭЛТ»), г. Москва;
  • АО «Литий-Элемент», г. Саратов.

Востребованы на рынке блоки питания таких фирм, как «Аимтек». Лидером по объему выпуска источников постоянного питания считается фирма «Викор». Второе место занимает тайваньская фирма «Арч». Продукцию этих компаний можно заказать у официальных дилеров и поставщиков.

Например, ООО «ВЭК» является официальным партнером компании EATON, специализирующейся на резервном электроснабжении и источникам бесперебойного питания.

Больше о источниках питания постоянного тока и напряжения можно узнать на выставке «Электро».

Регулированные источники питанияАвтономные источники питанияИсточники бесперебойного питания

Польза от справочных источников

Полученное напряжение можно использовать хотя бы для нужд компаратора напряжения. Мы сравниваем напряжение (например, аналогового датчика) с другим, точно установленным тогда, когда мы уверены, что порог переключения находится на привычном и неизменном уровне.

Более того, для стабилизации напряжения нужны источники напряжения, то есть всевозможные источники питания, в том числе регулируемые. Каждый из них должен содержать встроенный опорный источник, к которому он сможет соотнести текущее значение напряжения на своем выходе. Еще одно применение — для различных измерений. Каждый замер должен быть оснащен источником, который (аналогично стабилизированному источнику питания) сравнивает напряжение, подаваемое на его вход, и преобразует его в реальное значение.

Любая другая величина (ток, сопротивление) также преобразуется в напряжение и измеряется таким же образом. Так что точность окончательных измерений зависит от точности этого источника!

Инженеры-электрики во всем мире борются с этой проблемой, потому что решить ее не так уж и просто. Особенно, если готовое устройство должно быть маленьким, легким и дешевым. На протяжении многих лет использовались различные изобретения. В этой статье мы рассмотрим два элемента, которые сохранились до наших дней и очень популярны — стабилитрон и встроенный источник опорного напряжения. Однако прежде чем продолжить, убедитесь, что вы прочитали материал по выпрямительным диодам из нашей статьи опубликованной ранее.

Типы источников питания

Подробности Категория: Школа радиофанатика Существует много типов источников питания. Большинство разработано, чтобы преобразовать высокое напряжение электрической сети переменного тока (AC) в соответствующее низкое напряжение, для электроснабжения электронных схем и других устройств. Источник питания может быть разделен на ряд блоков, каждый из которых выполняет специальную функцию. Например, стабилизированный источник питания 5В:

Блок-схема стабилизированного источника питания

Каждый из блоков описан более подробно ниже:

Трансформатор — понижает высокое напряжение сети переменного тока (AC) к низкому напряжению AC. Выпрямитель — преобразовывает переменное напряжение в выпрямленное, но выходное DC является переменным. Фильтр – фильтрует DC, преобразуя большие помехи в маленькие. Стабилизатор — устраняет помехи, устанавливая выходное DC в постоянное напряжение.

Электрическая схема и график выходного напряжения источников питания, построенные на основе этих блоков, описаны ниже :

Только трансформатор Трансформатор + выпрямитель Трансформатор + выпрямитель + фильтр Трансформатор + выпрямитель + фильтр + стабилизатор

Характеристики

Батареи и аккумуляторы характеризуются такими основными параметрами:

  1. номинальное напряжение;
  2. номинальная емкость. Измеряется в ампер-часах (А*ч) или миллиампер-часах (мА*ч);
  3. номинальный ток нагрузки;
  4. саморазряд. Обозначает, как быстро уменьшается заряд в батарее при ее бездействии. К примеру, саморазряд литий-ионного аккумулятора при температуре +250С составляет 1,6% в мес.;
  5. температура эксплуатации.

Для автомобильных аккумуляторов важны:

  1. резервная емкость. Время, в течение которого источник при падении напряжения до 10,5 В способен выдавать ток в 25 А. В норме составляет не менее 90 мин;
  2. ток холодной прокрутки. Сила тока, генерируемая аккумулятором при температуре -180С в течение 10 сек. с напряжением на клеммах не ниже 7,5 В. Этот параметр характеризует способность устройства запустить двигатель автомобиля зимой.

Пульсирующий ток на выходе выпрямителя принято раскладывать на постоянную и переменную составляющую, при этом он характеризуется:

  • максимальным и минимальным значением Imax и Imin;
  • амплитудой переменной составляющей Iac;
  • величиной постоянной составляющей Idc;
  • коэффициентом пульсаций (отношение амплитуды переменной составляющей к величине постоянной).

Интегрированный источник на практике

Пришло время проверить, как этот источник обрабатывает изменение входного напряжения. В предыдущей схеме достаточно заменить стабилитрон на LM385Z-2.5. При такой замене помните, что средний контакт является катодом, а два других контакта закорочены и рассматриваются как анод.

Схема со встроенным источником напряжения

На практике все это может выглядеть так (при построении этой схемы необходимо обращать внимание на нумерацию и описание выводов встроенного источника опорного напряжения!):

Источник опорного напряжения на практике Схема на макетной плате

После запуска схемы вы можете проверить стабильность полученного источника:

Кнопка отпущена — измерение при более низком напряжении

Когда кнопка отпускается, напряжение батареи снижается примерно на 0,7 В, с помощью кремниевого диода, примерно, на 5,3 В. В этих условиях через встроенный источник проходит примерно 8,5 мА. В свою очередь, кнопка после контакта кремниевого диода закорочена и схема питания увеличивается до 6 V. Следовательно, ток, протекающий через проверенный источник опорного напряжения, увеличивается примерно до 10,5 мА.

Нажата кнопка — измерение при более высоком напряжении

Изменение тока и напряжения не влияет на показания вольтметра, значит схема работает правильно. В результате использования встроенного источника опорного напряжения мы получили постоянное напряжение.

Встроенный драйвер, хит 2016

В начале 2016 года стали набирать популярность светодиодные модули и COB диоды с интегрированным драйвером. Они включаются сразу в сеть 220В, идеальный вариант для сборки светотехники своими руками. Все элементы находятся на одной теплопроводящей пластине. ШИМ контроллеры миниатюрные, благодаря хорошему контакту с системой охлаждения. Тестировать надежность и стабильность еще не приходилось, первые отзывы появятся минимум через полгода использования. Уже заказал самую дешевую и доступную модель COB на 50W. Чтобы найти такие на китайском базаре Алиэкспресс, укажите в поиске «integrated led driver».

БЕСПЕРЕБОЙНЫЕ И РЕЗЕРВНЫЕ ИСТОЧНИКИ

Источники бесперебойного и резервного энергоснабжения необходимы при краткосрочных и длительных отключениях электроэнергии. При отсутствии таких устройств частный дом может остаться без света, отопления и всей электротехники на неопределенный срок.

Бесперебойные.

Эти устройства обеспечивают работоспособность подключенных электроприборов и техники при кратковременных перебоях в поставках электроэнергии. Также они выполняют функцию защиты от скачков напряжения и помех.

Бесперебойники делятся на три категории:

Оff-line.

Имеют самую простую конструкцию, высокий КПД и низкую стоимость. При отключении электроэнергии или выходе параметров напряжения за допустимые пределы источник автоматически включает встроенный аккумулятор.

Line-interactive.

Имеют аналогичную конструкцию плюс встроенный стабилизатор. Аккумулятор включается только тогда, когда стабилизатор неспособен справиться со стабилизацией входного напряжения. Его основные недостатки, как и у предыдущего устройства – это наличие промежутка времени, требуемого на переключение режимов работы, и невозможность корректировать частоту сети.

Оnline.

У таких источников самое высокое качество и стоимость. Они работают по принципу двойного преобразования: входное напряжение сначала преобразуется в постоянное, а затем с помощью инвертора обратно в переменное. Здесь не требуется время на переключение на питание от внешнего аккумулятора, он подключен в цепь и при стабильном энергоснабжении находится в буферном режиме.

Бесперебойные источники могут обеспечить кратковременную работу электротехники на протяжении от нескольких минут до суток и используются:

  • для безопасного отключения устройств при перебоях в сети;
  • в охранно пожарной сигнализации, видеонаблюдении, контроле доступа;
  • для оборудования системы умный дом.

Резервные источники питания.

Эти устройства необходимы для питания электроприборов при длительных отключениях электроэнергии или когда объект находится далеко от линии электропередач.

Автономные электростанции бывают следующих видов:

Бензиновые генераторы.

Эффективны, но потребляют много топлива. Работают бесшумно, хорошо запускаются в зимний период.

Дизельные генераторы.

Работают практически в любых условиях, но также требуют значительных финансовых вложений. Целесообразно их использование при суммарной потребляемой мощности свыше 6 кВт.

Используют природный источник энергии – солнечный свет. Их применение выгодно в условиях климата с большим количеством солнечных дней. Станции не имеют подвижных частей и отличаются высокой надежностью.

Ветряные генераторы.

Они должны размещаться на возвышенности и в местности с регулярным движением воздуха, желательно в одном направлении. Конструкция имеет большой вес, осложняет ситуацию наличие подвижных частей.

Использование солнечных и ветряных генераторов целесообразно при их постоянной эксплуатации как альтернативных систем электроснабжения, так как они требуют значительных затрат на приобретение и установку и окупаются не сразу.

  *  *  *

2014-2022 г.г. Все права защищены.Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.

Схемы включения TL431

Разберемся как работает TL431 на примере простейшей схемы стабилизации, состоящей из самого стабилитрона и одного резистора. К катоду подключается положительный, а к аноду отрицательный полюс питания. Для включения микросхемы, на её управляющий электрод подается опорное напряжение (Vref). 

Если его значение будет больше 2.5 В, то стабилитрон почти сразу откроется и начнет пропускать через себя ток (IKA), которым можно запитать соответствующую нагрузку. Его значение будет расти вместе с повышением уровня Vin . IKA можно определить по формуле IKA = (Vin— Vref)/R. При этом, выходное напряжение схемы будет стабилизировано на уровне опорного (VКА = Vref), не превышающего 2.5 В и независимо от подаваемого на входе Vin.

Расчет параметрической схемы стабилизации

Для получения на выходе микросхемы большего по величине напряжения (вплоть до 36 В), к её управляющему электроду дополнительно подсоединяют резистивный делитель. Он состоит из двух резисторов (R1 и R2) подключаемых между катодом и анодом. В этом случае внутреннее сопротивление стабилитрона возрастает на (1 + R1/R2) раз.

Для расчета схемы стабилизации на TL431 необходимы начальные данные о входном(VIN) и выходном (VКА) напряжениях, а также токах: стабилизации (IKA) и нагрузки (IL). Имея эти данные можно рассчитать значения других электронных компонентов, представленных на рисунке ниже.

Выходное напряжение и номиналы сопротивлений связаны между собой следующей формулой VКА= Vref *(1 + R1/R2)+ Iref *R1. Где Vref = 2495 мВ и Iref = 2 мкА -это типовые величины, они указаны в электрических параметрах из даташит на устройство.

Сопротивление R1 также можно взять из datasheet. Чаще всего берут с номиналами от 10 до 30 кОм. Значение R1 ограничено небольшим опорным током (Iref = 2 мкА), которым часто пренебрегают для расчетов схем стабилизации на TL431. Поэтому для вычисления значения R2, без учета Iref, можно использовать следующую формулу R2=R1/((VКА/Vref)-1).

Регулировка напряжения стабилизации

Для построения схем с возможностью ручной регулировки напряжения на выходе, вместо обычного R1 ставят потенциометр. Номинал ограничительного резистора R, оказывающего сопротивление току на входе (IIN), рассчитывают по формуле R=(VIN-VКА)/ IIN. Здесь IIN = IKA+ IL.

Несмотря на достоинства микросхемы TL431, есть у неё и весьма существенный недостаток– это маленький ток в нагрузке, который она способна выдержать. Для решения этой проблемы в схему включают мощные биполярные или полевые транзисторы.

Примеры различных схем на основе стабилитрона TL431 можно посмотреть в следующем видео.

Преимущество блока питания как аналога батареек

Установка газовой колонки – отличная перспектива перехода на метод индивидуального нагрева воды. Кроме того, это позволяет существенно сэкономить на оплате коммунальных услуг. Монтаж газового проточного нагревателя делает вас независимым от котельной и водоканала и позволяет получить горячую воду в любой момент. Так, регулярное отключение горячей воды из-за летних профилактических работ будет уже не страшно.

Батарейки для проточного газового водонагревателя на 1,5 VИсточник sat-oskol.ru

Существующие газовые колонки работают при наличии подключенного газа и батареек:

  • D-R-20 – солевые.
  • D-LR20 – щелочные.

Наличие независимого источника делает их независимыми от того, есть ли в доме электричество или нет. Горячая вода будет всегда, даже в том случае, если будет отключено центральное электроснабжение.

Недостаток метода заключается в возникновении необходимости регулярной замены комплекта батареек. Причём качественные щелочные элементы стоят около 200 руб, а хватает их не более, чем на 12 месяцев. Дешевые солевые приходят в негодность ещё раньше. Кроме того, в большинстве случаев, батарейки «садятся» в самый неподходящий момент. Например, вечером или в выходные, когда вы планировали отдохнуть, а не бежать в ближайший магазин.

Причины быстрого разряда батареек

Как уже упоминалось, срок службы батареек зависит от их вида, солевые – 2-5 недель, алкалиновые – до 1 года. Тем не менее, существует несколько причин, существенно сказывающихся на их быстром разряде:

  • Повышенная влажность. Чаще всего наблюдается на устройствах, установленных в ванных и санузлах. На контактах образуется влага, способствующая окислению и ухудшению токопропускной способности.
  • Неверная работа ионизационного сенсора. В большинстве случаев он просто смещается в сторону, искра вырабатывается долго, что приводит к тому, что энергия заряда расходуется напрасно.
  • Смещение расположения разжигающего электрода. Причина аналогична, решается корректировкой контакта
  • Сбой в работе блока управления. При проблемах данного характера рекомендуется вызвать мастера.

Блок, в который устанавливаются батарейкиИсточник Avito

Мостовой выпрямитель

Мостовой выпрямитель может быть сделан, используя четыре индивидуальных диода, или комплексную сборку, содержащую эти четыре требуемые диода. Он называется двухполупериодным выпрямителем, потому что он использует всю волну переменного напряжения (и положительную и отрицательную части). 1.4В расходуется в мостовом выпрямителе, потому что каждый диод потребляет по 0.7В, когда проводит и всегда есть два проводниковых диода, как показано на рисунке ниже. Мостовые выпрямители оцениваются по максимальному току, который они могут пропустить и максимальному обратному напряжению, которому они могут противостоять (это должно быть равно, по крайней мере, тремя значениям действующего значения поставляемого напряжения, таким образом, выпрямитель может противостоять максимальным напряжениям).

Пары чередующихся диодных соединений, соединены попарно так ,что переменное напряжение AC, преобразуется к одному значению DC. Выход: две полуволны переменного выпрямленного напряжения DC (используются все волны переменного напряжения).

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Упрощенная структурная схема аналогового БП

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.

Понижающий трансформатор ОСО-0,25 220/12

Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.

Рисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Здесь мы поговорим об импульсных блоках питания (ИБП), которые на сегодняшний день получили самое широкое распространение и с успехом используются во всех современных радиоэлектронных устройствах.

Прежде всего, эта статья посвящена для начинающих специалистов по ремонту электронной техники, поэтому материал будет изложен в упрощенной форме и поможет понять основные принципы работы ИБП.

Основной принцип, положенный в основу работы ИБП заключается в преобразовании сетевого переменного напряжения (50 Гц) в переменное высокочастотное напряжение прямоугольной формы, которое трансформируется до требуемых значений, выпрямляется и фильтруется.

Преобразование осуществляется с помощью мощного транзистора, работающего в режиме ключа и импульсного трансформатора, вместе образующих схему ВЧ преобразователя. Что касается схемного решения, то здесь возможны два варианта преобразователей: первый –выполняется по схеме импульсного автогенератора (например, такой использовался в ИБП телевизоров 3 – 4 УСЦТ) и второй – с внешним управлением (используется в большинстве современных радиоэлектронных устройств).

Поскольку частота преобразователя обычно выбирается от 18 до 50 кГц, то размеры импульсного трансформатора, а, следовательно, и всего блока питания достаточно компактны, что является немаловажным параметром для современной аппаратуры.

В ИБП используются два принципа реализации цепей слежения – «непосредственный» и «косвенный». Выше описанный метод называется «непосредственный», так как напряжение обратной связи снимается непосредственно с вторичного выпрямителя. При «косвенном» слежении напряжение обратной связи снимается с дополнительной обмотки импульсного трансформатора (рисунок 2).

Уменьшение или увеличение напряжения на обмотке W2, приведет к изменению напряжения и на обмотке W3, которое через резистор R2 также приложено к выводу 1 ШИМ контроллера.

Подключение от 12В

Одно из самых распространенных напряжений это 12 Вольт, они присутствуют в бытовой  технике, в автомобиле и автомобильной электронике. Используя 12V можно полноценно подключить 3 лед диода. Примером служит светодиодная лента на 12V, в которой 3 штуки и резистор подключены последовательно.

Пример на диоде 1W,  его номинальный ток 300мА.

  • Если на одном LED падает 3,2В, то для 3шт получится 9,6В;
  • на резисторе будет 12В – 9,6В = 2,4В;
  • 2,4 / 0,3 = 8 Ом номинал нужного сопротивления;
  • 2,4 * 0,3 = 0,72W будет рассеиваться на резисторе;
  • 1W + 1W + 1W + 0,72 = 3,72W полное энергопотребление всей цепи.

Аналогичным образом можно вычислить и для другого количества элементов в цепи.

Терминология и классификация

В русскоязычной литературе понятие «стабилитрон» без уточняющего «полупроводниковый» применяется именно к полупроводниковым стабилитронам. Уточнение необходимо, если нужно противопоставить стабилитроны полупроводниковые устаревшим газонаполненным стабилитронам тлеющего и коронного разряда. Катодом стабилитрона обозначается вывод, в который втекает обратный ток (n-область обратно-смещённого p-n-перехода), анодом — вывод, из которого ток пробоя вытекает (p-область p-n-перехода). Двуханодные (двусторонние) стабилитроны состоят из двух стабилитронов, включённых последовательно во встречных направлениях, «катод к катоду» или «анод к аноду», что с точки зрения пользователя равнозначно.

Полупроводниковые стабилитроны вошли в промышленную практику во второй половине 1950-х годов. В прошлом в номенклатуре стабилитронов выделялись функциональные группы, впоследствии потерявшие своё значение, а современные полупроводниковые стабилитроны классифицируются по функциональному назначению на:

  • Дискретные стабилитроны общего назначения — силовые и малой мощности. В СССР стабилитроны классифицировались по рассеиваемой мощности на четыре группы: 0—0,3 Вт, 0,3—5 Вт, 5—10 Вт и свыше 10 Вт;
  • Прецизионные стабилитроны, в том числе термокомпенсированные стабилитроны и стабилитроны со скрытой структурой;
  • Подавители импульсных помех («ограничительные диоды», «супрессоры», «TVS-диоды»).

Название «зенеровский диод» (калька с английского zener diode, по имени первооткрывателя туннельного пробоя Кларенса Зенера), согласно ГОСТ 15133—77 «Приборы полупроводниковые. Термины и определения», в технической литературе не допустимо. В англоязычной литературе словом stabilitron или stabilotron называют стабилотрон — не получивший широкого распространения тип вакуумной генераторной лампы СВЧ-диапазона , а понятие zener или zener diode («зенеровский диод») применяется к стабилитронам всех типов независимо от того, какой механизм пробоя (зенеровский или лавинный) преобладает в конкретном приборе. Английское avalanche diode («лавинный диод») применяется к любым диодам лавинного пробоя, тогда как в русскоязычной литературе лавинный диод, или «ограничительный диод» по ГОСТ 15133—77  — узко определённый подкласс стабилитрона с лавинным механизмом пробоя, предназначенный для защиты электроаппаратуры от перенапряжений. Ограничительные диоды рассчитаны не на непрерывное пропускание относительно малых токов, а на краткосрочное пропускание импульсов тока силой в десятки и сотни А. Так называемые «низковольтные лавинные диоды» (англ. low voltage avalanche, LVA), напротив, предназначены для работы в непрерывном режиме. Это маломощные стабилитроны с необычно низким дифференциальным сопротивлением; в промышленной практике различие между ними и «обычными» стабилитронами стёрлось.

Некоторые «прецизионные стабилитроны» несут обозначения, характерные для дискретных приборов, но в действительности являются сложными интегральными схемами. Внутренними источниками опорного напряжения таких микросхем могут служить и стабилитроны, и бандгапы. Например, двухвыводной «прецизионный стабилитрон» 2С120 (аналог AD589) — это бандгап Брокау. На структурной схеме микросхемы TL431 изображён стабилитрон, но в действительности TL431 — это бандгап Видлара.

Не являются стабилитронами лавинно-пролётные диоды, туннельные диоды и стабисторы. Стабисторы — это маломощные диоды, предназначенные для работы на прямом токе в стабилизаторах напряжения и как датчики температуры. Характеристики стабисторов в обратном включении не нормировались, а подача на стабистор обратного смещения допускалась только «при переходных процессах включения и выключения аппаратуры». Обращённые диоды в различных источниках определяются и как подкласс стабилитронов, и как подкласс туннельных диодов. Концентрация легирующих примесей в этих диодах настолько велика, что туннельный пробой возникает при нулевом обратном напряжении. Из-за особых физических свойств и узкой области применения они обычно рассматриваются отдельно от стабилитронов и обозначаются на схемах особым, отличным от стабилитронов, символом.

Электрические аккумуляторы

Это источник постоянного тока многоразового использования, который действует не постоянно, а до следующего заряда. Они по своей химической природе подразделяются на типы:

  • свинцово-кислотные;
  • литий-ионные (литиевые);
  • никель-кадмиевые;
  • никелево-железные.

Свинцово-кислотные модели применяются в автомобилях, источниках бесперебойного питания, транспорте, промышленности, в отрасли связи и телекоммуникаций.

Литий-ионные батареи нашли широкое применение в мобильной связи, электроинструментах, системах телекоммуникаций, а также автономном и аварийном электроснабжении. Вот только небольшой перечень спектра их составов:

  • литий-титанатовый;
  • тионилхлоридный;
  • литий-кобальтовый;
  • литий-марганцевый;
  • литий-фосфат железный;
  • литий-полимерный;
  • литий-диоксид серный;
  • литий-диоксид марганцевый.


Литий-ионные источники тока


Никель-кадмиевые аккумуляторы

Никелево-железные щелочные – очень надёжный тип источника. Пагубные для свинцово-кислотных батарей глубокие разряды, частые недозаряды не выводят их из строя. Они используются в тяговых транспортных цепях, в цепях резервного питания.


Тяговый никель-железный аккумулятор

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: