Усилитель lm386. описание, datasheet, схема включения

Содержание / Contents

  • 1 Схема
  • 2 Плата
  • 3 Реализация
  • 4 Файлы

В диспетчерской службе (где мне приходится частенько бывать) пользуются рациями Motorola P080. Всё бы хорошо, но увесистую рацию надо брать в руки несколько сотен раз в сутки, чтобы сказать одну фразу или слово. Кроме того, приходится использовать выносную антенну, рацию периодически роняют, антенный кабель выдирают…


Купили выносную гарнитуру. Рацию жестко закрепили на столе, и ронять перестали, стали ронять гарнитуру, а шнур гарнитуры периодически выдирали и ломали. Кроме того, надо отвлекаться, чтобы правильно взять в руки гарнитуру, что неудобно. Использовать ушную гарнитуру дежурные не могут — приходится часто вставать, отвечать на телефон и т. п.

Напрашивалось решение — внешний электретный микрофон с кнопкой. Раздраконив штатную выносную гарнитуру, я перерисовал ее схему. Она очень проста.


На рации есть разъемы 3,5 мм для телефонов и 2,5 мм для микрофона. Я купил дешевый микрофон фирмы Genius (в быту – Говениус), собрал схему аналогичную гарнитурной и всё заработало. Микрофон удобен длинным экранированным шнуром и шарообразным шарниром, свои $3,5 он стоит. Кстати, с кнопкой получились проблемы — удобной и надёжной короткой кнопки я не нашел. Пришлось делать подставку, чтобы утопить в ней кнопку. Способные дежурные нажимали кнопку ногтем, а потом сдвигали его и крышечки китайских кнопок выстреливали вверх. Поставил кондовую советскую кнопку МП-1, сломать ее голыми руками невозможно, но мне с удовольствием показывали, что если ее нажать с определенным усилием и под определенным углом, рация не включается…

Другая проблема — недостаточная чувствительность, приходилось нагибаться к микрофону. Я пробовал разные капсюли, но запаса чутья не было. Напрашивался микрофонный усилитель. Вроде бы всё элементарно, но несколько опробованных усилителей мне не понравились. Кроме того, ВЧ-излучение от рации создавало проблемы. В поисках решения я натолкнулся на усилитель на микросхеме LM386. Включение типовое, а печатную плату я делал на базе публикации с сайта robozone.ru

. Достоинства — простота, некритичность к питанию, устойчивость к радиопомехам, мощный выход (я подключал на выход наушники), экономичность, усиление до 26 или 46 дБ.

Оказалось, что для рации и Skype достаточно усиления около 26 дБ. Рация включается на передачу при шлейфе на микрофонном входе, и я с удивлением убедился, что даже 100 кОм для этого достаточно, пришлось поставить разделительную ёмкость С2. Кроме того нужен индикатор того, что кнопка нажата правильно и питание на усилитель подано, для этого пришлось поставить светодиод, который одновременно является индикатором разрядки батареи типа «Крона». Ток светодиода 4…5 мА, столько же потребляет и усилитель, но индикатор необходим. Усилитель работает от 3 В, поэтому ресурс «Кроны» используется полностью.

↑ Характеристики, функциональная схема и выбор внешних элементов усилителей на ИС LM386

Усилитель мощности звуковой частоты LM386 применяется в портативной радиоэлектронной аппаратуре.

Аналогом LM386 является KA386 фирмы Samsung, отечественный аналог – КР1438УН2. У российских любителей интегральная схема LM386 стала популярна с падением «железного занавеса», до этого времени тогда ещё советские электронщики облюбовали в качестве массового усилителя микросхему К157УД1, предназначенную для применения в аппаратуре магнитной записи.

На рис. 1 изображена функциональная схема LM386. На ней транзисторы структуры p-n-p VT1, VT2 и VT5, VT6 образуют дифференциальный усилитель, в котором каждый из входов соединён с общим проводом через резисторы R1 и R2, собственно и определяющие типовое входное сопротивление 50 кОм.

Нагрузкой дифференциального усилителя является токовое зеркало на транзисторах VT3, VT4, а выход (транзистор VT5) соединён с входом усилителя напряжения VT7, включённого по схеме с общим эмиттером. В цепь коллектора VT7 последовательно включены диоды VD1, VD2, служащие для создания смещения на базах выходного каскада, и источник тока Io.

Усилитель мощности работает в классе АВ и выполнен на транзисторах VT8 – VT10, включённых по схеме с общим коллектором, поэтому коэффициент усиления выходного каскада по напряжению близок к единице.

Обратите внимание, что для минимизации падения напряжения на транзисторах выходного каскада и получения максимальной выходной мощности в схеме не предусмотрены элементы защиты от перегрузок. Резисторы R2 и R3 задают ток транзисторов дифференциального усилителя

Точка соединения резисторов R2 и R3 выведена на внешний вывод микросхемы (вывод 7), предназначенный для подключения внешнего фильтрующего конденсатора

Резисторы R2 и R3 задают ток транзисторов дифференциального усилителя. Точка соединения резисторов R2 и R3 выведена на внешний вывод микросхемы (вывод 7), предназначенный для подключения внешнего фильтрующего конденсатора.

Эмиттеры транзисторов дифференциального каскада VT2 и VT5 включены несколько нестандартно: не соединены вместе, а содержат резисторы отрицательной обратной связи. Два из них — R4 и R5 последовательно включены между эмиттерами VT2 и VT5, а третий — R6, подключён к эмиттеру VT5 и выходу выходного каскада (эмиттеры VT8, VT9).

Коэффициент усиления по напряжению при таком включении равен удвоенному отношению сопротивления R6 к сумме сопротивлений резисторов, установленных между эмиттерами транзисторов VT2 и VT5 (R4 + R5):

Вывод эмиттера VT5 и точка соединения резисторов R4, R5 выведены на внешние выводы микросхемы (выводы 1 и 8 соответственно) и предназначены для установки требуемого коэффициента усиления, который может варьироваться в диапазоне от 20 до 200. Если закоротить выводы 1 и 8 по переменному току с помощью внешнего конденсатора, то в выражении (1) сопротивление внутреннего резистора R5 принимаем равным нулю, и полное усиление по напряжению составит 200.

Схемотехника

Для наших экспе­римен­тов мы соберем отно­ситель­но нес­ложную конс­трук­цию, сос­тоящую из двух бло­ков: бло­ка управле­ния и бло­ка при­емни­ка. Блок управле­ния соберем на STM32F030, добавим к нему энко­дер, дис­плей OLED и восемь кно­пок. От кно­пок мож­но вов­се отка­зать­ся, но с ними управлять при­емни­ком нам­ного удоб­нее. За кла­виату­ру будет отве­чать PCF8574, очень удоб­ная мик­росхе­ма — рас­ширитель пор­тов с I2C-интерфей­сом. Вве­дение рас­ширите­ля пор­тов хоть и усложня­ет схе­му, но упро­щает раз­водку пла­ты и опрос кно­пок. Питать все это дело удоб­но с помощью LiPO-акку­муля­тора, поэто­му добавим туда еще кон­трол­лер заряда и DC/DC-пре­обра­зова­тель на RT9136 для питания кон­трол­лера. Исполь­зование активно­го пре­обра­зова­теля целесо­образно в пла­не повыше­ния КПД.

Схе­ма при­емни­ка

Вы­ход­ной мощ­ности SI4735 недос­таточ­но для рас­качки стан­дар­тных 32-омных науш­ников, поэто­му нужен ауди­оуси­литель, даже два, так как у нас сте­рео. В качес­тве уси­лите­ля исполь­зована мик­росхе­ма TDA2822 (PDF) в стан­дар­тном вклю­чении. Это не луч­ший вари­ант по двум при­чинам: во‑пер­вых, у нее слиш­ком высок коэф­фици­ент уси­ления, а во‑вто­рых, на мой вкус, она слиш­ком шумит. Луч­ше на эту роль подой­дет LM4863 (PDF), но у меня ее не ока­залось под рукой. Тем не менее TDA2822 недур­но справ­ляет­ся со сво­ей задачей.

В завод­ских решени­ях обыч­но исполь­зует­ся УВЧ и маг­нитная антенна, мы же пос­тупим про­ще: пос­тавим на вход филь­тр 5-го поряд­ка с час­тотой сре­за и будем исполь­зовать пол­нораз­мерную антенну — все рав­но на штырь в квар­тире мож­но ловить толь­ко помехи, FM и пару китай­ских стан­ций в хороший день. Что же каса­ется FM-вхо­да, то ему ком­фор­тно и без вход­ных цепей. Кро­ме того, саму SI4734 вмес­те со вход­ными цепями мы помес­тим в экран из жес­ти (пла­та двух­сто­рон­няя, вто­рая сто­рона — сплош­ная медь), бла­го это сов­сем не слож­но. Исполь­зование внеш­ней пол­нораз­мерной антенны силь­но сни­зит навод­ки от циф­ровой час­ти и изба­вит от УВЧ.

Что каса­ется этой самой циф­ровой час­ти, то тут каких‑либо осо­бен­ностей нет. Схе­ма, пла­ты и про­чее лежат на GitHub. Вешать пос­тоян­но обновля­ющий­ся дис­плей и кла­виату­ру на одну шину с SI4734 — не очень хорошая идея из‑за воз­можных помех, одна­ко оста­нов­ка кон­трол­лера и вык­лючение дис­плея на слух не вно­сит изме­нений. Отсю­да мож­но сде­лать вывод, что в городе гораз­до боль­ший вклад в качес­тво при­ема вно­сит зашум­ленность эфи­ра.

Офор­мле­но это в дос­таточ­но минима­лис­тичном сти­ле, впро­чем, кор­пуса я делать никог­да не любил. У меня получи­лось что‑то сред­нее меж­ду макетом и закон­ченным устрой­ством, но тран­спор­тиров­ку и полевое исполь­зование при­емник пережил не помор­щившись.

info

Пред­видя воп­росы, ска­жу сра­зу, что управля­ющий блок мож­но соб­рать и на Blue Pill, и на ARDUINO, в пос­леднем слу­чае на Али мож­но купить уже соб­ранную пла­ту. Обой­дет­ся это при­мер­но в 3000 руб­лей. А за допол­нитель­ные день­ги к это­му делу мож­но докупить кор­пус. Но это не наш метод, мы же соб­рались поковы­рять­ся с SI4734!

DataSheet

Микросхема LM386, представляет собой усилитель мощности, который можно использовать в устройствах с низким напряжением питания. Например при питании от батареи. По умолчанию её внутренняя схема ограничивает усиление по напряжению в районе 20. Но подключая внешние резистор и конденсатор можно изменять усиление от 20 до 200, а выходное напряжение автоматически устанавливается равным половине напряжения питания. Потребление электроэнергии в холостом режиме составляет всего 24 милливатта, при питании от 6 В.

Особенности

  • Возможность работы от батарей
  • Минимум подключаемых наружных компонентов
  • Широкий диапазон питания: от 4 до 12 В или от 5 до 18 В
  • Низкий потребляемый ток: 4 мА
  • Усиление по напряжению от 20 до 200
  • Вход относительно земли
  • Самоустанавливающееся выходное напряжение
  • Низкий коэффициент искажений: 0.2% (при AV = 20, VS = 6 В, RL = 8 Ом, PO = 125 мВт, f = 1 кГц)

Примениение

  • Усилители радиопремников
  • Усилители портативных проигрывателей
  • Домофоны
  • Звуковые системы тв-приемников
  • Линейные приводы
  • Ультразвуковые приводы
  • Небольшие сервоприводы
  • Преобразователи


Рис. 1 Внутренняя принципиальная схема LM386 На Рис. 1 показана внутренняя принципиальная схема LM386. Транзисторы Q1 и Q2 образуют дифференциальный усилитель. В нем оба выхода соединены с общим проводом резисторами R1 и R2 номиналом 50 кОм. Выход дифференциального усилителя (транзистор Q3) подключен к входу усилителя с общим эмиттером(транзистор Q7). Сигнал с коллектора транзистора Q7 напрямую по дается на выход ИС через усилитель мощности класса АБ, имеющий единичное усиление и выполненный на транзисторах Q8-Q9-Q10. которые для минимизации внутреннего падения напряжения и для получения максимальной выходной мощности не снабжены схемой защиты от перегрузки.


Рис. 2 Расположение выводов LM386

Электрические характеристики

Параметр Условия Мин. Тип. Макс. Ед. изм.
Рабочее напряжение питания (VS) для LM386N-1, -3, LM386M-1, LM386MM-1 4 12 В
Рабочее напряжение питания (VS) для LM386N-4 5 18 В
Потребляемый ток (IQ) VS = 6 В, VIN = 0 4 8 мА
Выходная мощность (POUT) для LM386N-1, LM386M-1, LM386MM-1 VS = 6 В, RL = 8 Ом, THD = 10% 250 325 мВт
Выходная мощность (POUT) для LM386N-3 VS = 9 В, RL = 8 Ом, THD = 10% 500 700 мВт
Выходная мощность (POUT) для LM386N-4 VS = 16 В, RL = 32 Ом, THD = 10% 700 1000 мВт
Усиление по напряжению (AV) VS = 6 В, f = 1 кГц 26 дБ
при 10 мкФ подключенных между выводами 1 и 8 46 дБ
Полоса пропускания (BW) VS = 6 В, выводы 1 и 8 отключены 300 кГц
Коэффициент нелинейных искажений (THD) VS = 6 В, RL = 8 Ом, POUT = 125 мВт f = 1 кГц, выводы 1 и 8 отключены 0.2 %
Ослабление помех по питанию (PSRR) VS = 6 В, f = 1 кГц, CBYPASS = 10 мкФ 50 дБ
Входное сопротивление (RIN) VS = 6 В, выводы 1 и 8 отключены 50 кОм
Входной ток смещения (IBIAS) 250 нА

Схемы включения


Схема усилителя на LM386 с минимальным количеством, подключаемых элементов и коэффициентом усиления 20


Схема усилителя на LM386 с коэффициентом усиления 200


Усилитель с коэффициентом усиления 50


Схема генератора с низким коэффициентом искажений на мосте Вина


Схема с дополнительным усилением низких частот


Зависимость коэффициента усиления от частоты для схемы с дополнительным усиление НЧ


Схема генератора Меандра


Усилитель мощности для АМ приемника Примечание:

  • Ферритовое кольцо Ferroxcube К5—001—001/3Б с 3 витков провода.
  • R1C1 должны быть в пределах диапазона входных сигналов.
  • Все компоненты должны быть расположены как можно ближе к ИС.


Купить LM386 на алиэкспресс или купить с кэшбэком! Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

↑ Усилительные схемы на ИС LM386

↑ Усилитель с коэффициентом усиления 200

Резистор R1 служит регулятором громкости, конденсатор C1 является фильтрующим

Конденсатор C2 шунтирует выводы 1 и 8 микросхемы DA1 по переменному току, благодаря чему достигается максимальный коэффициент усиления; конденсатор C4 служит для развязки по питанию, что важно в условиях работы с разряженной батареей, когда её внутреннее сопротивление увеличивается

Цепочка C3, R2 предназначена для повышения стабильности при работе усилителя на ёмкостную нагрузку. Иногда её установкой пренебрегают, что не является преступлением, но нежелательно, поскольку может преподнести «сюрприз» в самый неподходящий момент. Нагрузка ВА1 подключена к выходу ИС через разделительный конденсатор С5.

↑ Усилитель с коэффициентом усиления 50

По сравнению с предыдущей схемой добавлено три элемента: два конденсатора и резистор. В табл. 2 приведены значения резистора R2 для получения других коэффициентов усиления по напряжению.

↑ Усилитель с подъёмом низких частот

Примером усилителя, в котором производится формирование требуемой частотной характеристики, является схема, показанная на рис. 5.

Здесь усиление по напряжению изменено шунтированием внутреннего резистора обратной связи (R6), доступного через выводы 1 и 5 микросхемы LM386. Шунтирование цепочкой R2, C2 позволяет получить подъем частотной характеристики около 6 дБ на частоте 85 Гц, что может быть использовано для улучшения звучания малогабаритных акустических систем.

Коэффициент усиления по напряжению усилителя на частоте 1 кГц составляет Ku=10 (20 дБ).

↑ Принципиальная схема усилителя для АМ радиоприёмника

Сигнал со среднего вывода R1 поступает на неинвертирующий вход микросхемы DA1 через развязывающую цепочку – фильтр нижних частот R2, C2, устраняющий попадание остатков высокочастотного напряжения. Для этих же целей на выходе усилителя включена цепочка L1, C7. Дело в том, что усилитель на микросхеме DA1 довольно широкополосный (полоса пропускания составляет около 300 кГц) и без принятия подобных мер служит отличным источником радиоизлучений в длинноволновом и средневолновом диапазонах волн.

Резистор R3, включённый параллельно катушке L1, служит для устранения нежелательных резонансов в звуковом диапазоне частот. Коэффициент усиления по напряжению усилителя максимален (Ku=200).

Наряду с оксидным конденсатором С6 включён керамический конденсатор С5, используемый для высокочастотной развязки по цепи источника питания; не забыт в этой схеме и фильтрующий конденсатор, подключаемый к выводу 7 микросхемы (С3).

Катушка L1 представляет собой ферритовую бусинку с пропущенным проводом внутри (Ferrite Bead).

↑ Универсальный усилитель на ИС LM386

↑ Детали универсального усилителя и монтажная плата

Применены резисторы типа МЛТ, МОН, С2-33Н мощностью 0,25 или 0,125 Вт. Конденсаторы керамические КМ-5, КМ-6, К10-17, К10-47, а также плёночные К73-9, К73-17 или К73-24; оксидные конденсаторы К50-35. Динамическая головка – широкополосная, с сопротивлением 8 Ом, мощностью 0,5…3 Вт, например 1ГДШ-6-8. Все детали могут быть заменены импортными аналогами.

Для экспериментов с усилителем подходит лабораторный источник питания на основе аккумуляторной батареи .

Микросхема LM386 позволяет собрать множество надёжных конструкций, в которых нужна небольшая выходная мощность. В настоящее время появились достойные преемники LM386, содержащие минимум навесных элементов. К ним можно отнести LA4525, LA4534 фирмы SANYO, выпускаемые в корпусе DIP8 или MFP105 под поверхностный монтаж; AP4890, TDA7050, TDA7052, KA2209, КР174УН31 и др. .

Прошивка

В сети дос­таточ­но руководств по сбор­ке при­емни­ков на SI4735, одна­ко боль­шинс­тво авто­ров дела­ют акцент на схе­мотех­нику и сбор­ку на макете, пос­ле чего туда залива­ют один из вари­антов готовой про­шив­ки. Мы же поп­робу­ем разоб­рать­ся, как написать такую про­шив­ку самос­тоятель­но поч­ти с нуля, поэто­му все нижес­казан­ное дос­таточ­но лег­ко перенес­ти на любой дру­гой мик­рокон­трол­лер, лишь бы у него хва­тало памяти для хра­нения пат­ча.

Итак, что же за зверь SI4734 и с чем его едят? Этот чип управля­ется по шине I2C, и каж­дая посыл­ка пред­став­ляет собой адрес мик­росхе­мы (с битом перек­лючения запись/чте­ние), 1 байт коман­ды и до 7 байт аргу­мен­тов. У каж­дой коман­ды свое количес­тво аргу­мен­тов, впро­чем, даташит говорит, что посыл­ки мож­но сде­лать и фик­сирован­ной дли­ны, если вмес­то неис­поль­зуемых аргу­мен­тов слать . Для наших целей понадо­бит­ся не так мно­го команд, поэто­му мы можем поз­волить себе написать для каж­дой свою фун­кцию. Резуль­татом выпол­нения коман­ды мож­но счи­тать ответ, сос­тоящий из бай­та ста­туса и до 7 байт собс­твен­но отве­та, при­чем и здесь допус­кает­ся уни­фика­ция дли­ны: мож­но читать по 8 байт, все неис­поль­зуемые будут .

Но тут есть нюанс: коман­да выпол­няет­ся не мгно­вен­но, а с задер­жкой, до исте­чения которой мик­росхе­ма будет отве­чать толь­ко нулями. Поэто­му, ког­да нам необ­ходим ответ, мы с некото­рой пери­одич­ностью будем его счи­тывать, пока пер­вый байт отве­та не будет равен , что сви­детель­ству­ет о завер­шении исполне­ния коман­ды. Сле­дом мож­но счи­тать бай­ты отве­та и/или отправ­лять сле­дующую коман­ду.

Для отправ­ки и чте­ния пакетов по I2C мы будем исполь­зовать уже извес­тную нам коман­ду биб­лиоте­ки LibopenCM3 , где  — исполь­зуемая шина I2C (I2C1), а  — семибит­ный адрес . О бите записи/чте­ния за нас позабо­тит­ся биб­лиоте­ка. В ито­ге работа с мик­росхе­мой вкрат­це будет пред­став­лять собой сле­дующую пос­ледова­тель­ность дей­ствий: ини­циали­зация, нас­трой­ка режима работы, нас­трой­ка на нуж­ную час­тоту. Все опи­сан­ное ниже опи­рает­ся на содер­жание докумен­тов AN332 «Si47XX Programming Guide» и AN332SSB.

Инициализация

Преж­де все­го SI4734 нуж­но ини­циали­зиро­вать. Сде­лать это мож­но в одном из трех режимов: AM, FM или SSB. Перед началом ини­циали­зации докумен­тация рекомен­дует выпол­нить сброс. Дела­ется это три­виаль­но: надо ненадол­го под­тянуть к зем­ле REST-пин SI4734. Для задер­жки исполь­зует­ся совер­шенно ленивая фун­кция, бла­го точ­ность тут не име­ет осо­бого зна­чения.

Для ини­циали­зации исполь­зует­ся коман­да , которая тре­бует два парамет­ра. Пер­вый вклю­чает так­тирова­ние и опре­деля­ет режим работы, а вто­рой нас­тра­ивает ауди­овы­ходы. Мы исполь­зуем часовой кварц и ана­лого­вые выходы, поэто­му для FМ при­меня­ются парамет­ры , , а для АM — , . Пос­ле отправ­ки коман­ды, опра­шивая чип, дожида­емся отве­та . Обыч­но на это ухо­дит один‑два зап­роса.

В ответ на коман­ду чип может выдать еще 8 байт, которые даташит рекомен­дует про­верять, одна­ко на это мож­но забить и даже их не счи­тывать. На дан­ном эта­пе уже мож­но про­верить качес­тво работы мик­росхе­мы: исправ­ная вер­нет ответ и запус­тит квар­цевый генера­тор, что про­веря­ется осциллог­рафом. Если коман­ды отправ­лены вер­но, а генера­тор не запус­тился, то, веро­ятно, чип битый.

Почему SI4734

SI4735 отли­чает­ся от дру­гих упо­мяну­тых чипов тем, что под­держи­вает пат­чи про­шив­ки, а это откры­вает дос­туп к допол­нитель­ным фун­кци­ям. Так, в сети есть патч, который поз­воля­ет при­нимать сиг­налы с SSB-модуля­цией. Что в ней такого, спро­сишь ты? Да в общем, ничего осо­бен­ного, прос­то на ней работа­ют любите­ли в КВ‑диапа­зонах, и их порой инте­рес­но пос­лушать. И это, навер­ное, самый прос­той вари­ант такого при­емни­ка.

Хо­рошо, с SI4735 разоб­рались, а почему в заголов­ке зна­чит­ся SI4734? Дело в том, что все мик­росхе­мы SI473X сов­мести­мы «pin в pin» и отли­чают­ся толь­ко набором фун­кций. Млад­шие модели (SI4730, SI4731) под­держи­вают длин­ные вол­ны и FM, а стар­шие модели (SI4732, SI4735) под­держи­вают еще и корот­кие вол­ны и RDS. SI4734 под­держи­вает КВ, но не уме­ет RDS. Кро­ме все­го про­чего, они здо­рово раз­лича­ются по цене: SI4730 сто­ит при­мер­но 100 руб­лей, SI4734 — 150, SI4735 — поряд­ка 500 руб­лей. Прав­да, все­го год назад они были минимум в три раза дешев­ле, ну да это извес­тная сей­час проб­лема.

Патч офи­циаль­но под­держи­вает толь­ко SI4735, на ней я и хотел экспе­римен­тировать. Но куп­ленный мною экзем­пляр ока­зал­ся нерабо­чим, поэто­му я пос­тавил SI4734-D60, который имел­ся в загаш­нике. А заод­но поп­робовал скор­мить это­му чипу патч, и, к моему удив­лению, он сра­ботал. Так что, если тебе не нужен RDS, мож­но сэконо­мить.

Об­радовав­шись такому успе­ху, я поп­робовал поковы­рять SI4730-D60, тем более что в сети прос­каль­зывала информа­ция, буд­то некото­рые из этих чипов могут работать на КВ. Одна­ко у меня они не зарабо­тали и патч на них тоже не встал. Очень веро­ятно, что патч сра­бота­ет и на SI4732, пос­коль­ку китай­цы час­то добав­ляют эту мик­росхе­му в наборы сво­их при­емни­ков и заяв­ляют о под­дер­жке SSB.

Чипы-усилители

Все привыкли к тому, что усилители звука зависят от множества отдельных компонентов или от энергоёмких электронных ламп, чтобы звучание было качественным. Как и в других отраслях, появление интегральных микросхем вызвало прорыв в мире аудиосистем, позволив использовать любое количество операционных усилителей, созданных для звуковых систем.

Такие интегральные схемы называют усилитель аудиосигнала на ИС, чипы усиления звука или чиповые усилители. Обычно они требуют несколько дополнительных компонентов, схемы с ними просты по своей конструкции, и потребляют чипы-усилители меньше тока, чем их дискретные и ламповые аналоги.

Все это подводит нас к усилителю ЛМ386, созданным «Texas Instruments» в 1983 году. Его можно найти в низковольтных аккумуляторных устройствах по всему миру.

Его характеристики:

  • легко питать (использует одностороннее электропитание)
  • низкая теплоотдача (не требует теплоотвода)
  • производительный/эффективный
  • существует вариант с двухрядным расположением выводов/существует двухрядный вариант

А это значит, что этот чип в фаворе у любителей мастерить по всему миру и является отличным полигоном для экспериментов с чиповыми усилителями. И не забывайте о его низкой стоимости. Сегодня мы с вами попробуем собрать простой мини усилитель звука для колонок на основе этого чипа.

Схемы включения усилителя LM386

На рисунке ниже показано типовое включение микросхемы LM386 из datasheet. В данном случае коэффициент усиления схемы ограничено до 20, поскольку к выводам 1 и 8 не подключены внешние элементы.

Данный коэффициент усиления (20) обеспечивается внутренними резисторами обратной связи на 1,35 кОм (к выводам 8 и 1) и 15 кОм (к выводам 1 и 5). Параллельное подключение внешних резисторов к данным резисторам приводит к изменению коэффициента усиления.

Формула расчета коэффициента усиления

Без каких-либо внешних компонентов усиление составляет 20:

А = 2 × 15000 / (150 + 1350) = 20

Конденсатор, подключенный между контактами 1-8 микросхемы, позволяет игнорировать резистор на 1,35 кОм, и следовательно коэффициент усиления будет:

А = 2 × 15000/150 = 200

Выход микросхемы подключен к громкоговорителю с помощью конденсаторного фильтра, который обычно используется в линейных усилителях. Переменный резистор на входе используется для настройки желаемого уровня громкости.

Вторая схема показывает, как можно повысить коэффициент усиления выше базовой установки (20) вплоть до 200 путем добавления конденсатора к контактам 1 и 8 микросхемы. Емкость конденсатора не должна превышать 10 мкФ.

Подбор коэффициента усиления в диапазоне от 20 до 200 может быть осуществлен, в том числе и с применением переменного резистора на 4,7 кОм, подключенного последовательно с конденсатором.

Избыток смещения может быть уменьшен путем соединения неиспользуемого вывода резистора с землей. Однако все вопросы смещения отпадают если активный вход соединен через конденсатор.

В варианте с коэффициентом усиления 200, необходимо соединить вывод 7 с помощью конденсатора емкостью 0,1мкФ с минусом питания для поддержания стабильной работы и предотвращения нелинейных искажений.

Простой, но интересный усилитель басов может быть получен путем подключения цепи из резистора и конденсатора к выводам 1 и 5

Скачать datasheet LM386 (211,2 Kb, скачано: 3 639)

Статистика

Собираем усилитель 1W на LM386.

Собираем усилитель 1W на LM386

В статье рассмотрен проект простого компактного и легкого для повторения усилителя на микросхеме LM386. Питание схемы осуществляется от однополярного источника питания, напряжение которого может лежать в пределах от 4 до 12 Вольт. Низкое потребление дает возможность применения данной схемы для конструирования аудио-устройств с питанием от батареек или малогабаритных аккумуляторов. Ток режима покоя составляет всего 4 мА.

При выборе LM386 внимательно смотрите с каким она индексом, микросхемы LM386N-1, -3, LM386M-1, LM386MM-1 имеют диапазон питающего напряжения 4. 12 Вольт, а у LM386N-4 питание может быть чуть выше: от 5 до 18 Вольт. Соответственно и мощность на выходе у них будет различна. Для справки смотрите таблицу электрических характеристик ниже:

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: