Параметрический параллельный стабилизатор напряжения. схема, конструкция, устройство, проектирование, расчет, применение. рассчитать

Основные параметры стабилитрона

Стабилизатор тока на транзисторе

Для создания рабочей схемы применяют обратное включение полупроводникового прибора. На анод подают «минус» источника питания. На катод – «плюс».

ВАХ стабилитрона

С помощью измерительной аппаратуры можно составить по точкам распределение электрических величин. На рисунке отмечены основные характеристики стабилитрона, которые нужно учитывать при расчете стабилизатора напряжения. Показаны уровни, определяющие:

  • начало пробоя;
  • рабочий режим (Uст, Iст);
  • максимально допустимое значение (Uобр, Imax).

Серийные приборы рассматриваемой категории способны стабилизировать напряжение в диапазоне от 0,6 до 210 V. Допустимый ток (Imax) ограничен мощностью рассеивания. Для улучшения этого параметра применяют монтаж на радиаторе через слой термопасты, эффективную пассивную и принудительную вентиляцию. Отмеченное на графике значение Imin соответствует уровню сохранения работоспособности перехода в обычном режиме. Для стабилизации используют участок ΔU, который характеризуется незначительным изменением напряжения при достаточно большом увеличении силы тока в обратном направлении (ΔI).

Основные параметры стабилитрона

Рассмотрим основные параметры стабилитрона

по его вольт-амперной характеристике.


Вольт-амперная характеристика стабилитронаНапряжение стабилизации Uст

определяется напряжением на стабилитроне при протеканиитока стабилизации Iст . В настоящее время выпускаютя стабилитроны с напряжением стабилизации от 0,7 до 200 В.

Максимально допустимый постоянный ток стабилизации Iст.max

ограничен значениеммаксимально допустимой рассеиваемой мощности Pmax , зависящей в свою очередь от температуры окружающей среды.

Минимальный ток стабилизации Iст.min

определяется минимальным значением тока через стабилитрон, при котором ещё полностью сохраняется работоспособность прибора. Между значениями Iст.max и Iст.min вольт-амперная характеристика стабилитрона наиболее линейна и напряжение стабилизации изменяется незначительно.

Дифференциальное сопротивление стабилитрона rСТ

– величина, определяемая отношением приращения напряжения стабилизации на приборе ΔUCT к вызвавшему его малому приращению тока стабилизации ΔiCT.

Стабилитрон, включённый в прямом направлении, как обычный диод, характеризуется значениями постоянного прямого напряжения Uпр

имаксимально допустимого постоянного прямого тока Iпр.max .

Компенсационный стабилизатор

Прибор, рассмотренный ранее очень простой по конструкции, но дает возможность подключать питание прибора с током, который не превышает наибольшего тока стабилитрона. Вследствие этого используют приборы, стабилизирующие напряжение, и получившие название компенсационных. Они состоят из двух видов: параллельные и последовательные.

Называется прибор по методу подключения элементу регулировки. Обычно используются компенсационные стабилизаторы, относящиеся к последовательному виду. Его схема:

Элементом регулировки выступает транзистор, соединенный последовательно с нагрузкой. Напряжение выхода равняется разности значения стабилитрона и эмиттера, которое составляет несколько долей вольта, поэтому считается, что выходное напряжение равно стабилизирующему напряжению.

Рассмотренные приборы обоих типов имеют недостатки: невозможно получить точную величину напряжения выхода и производить регулировку во время работы. Если нужно создать возможность регулирования, то стабилизатор компенсационного вида изготавливают по схеме:

В этом приборе регулировка осуществляется транзистором. Основное напряжение выдает стабилитрон. Если напряжение выхода повышается, база транзистора получается отрицательной в отличие от эмиттера, транзистор откроется на большую величину и ток возрастет. Вследствие этого, напряжение отрицательного значения на коллекторе станет ниже, так же как и на транзисторе. Второй транзистор закроется, его сопротивление повысится, напряжение выводов повысится. Это приводит к снижению напряжения выхода и возвращению к бывшему значению.

При снижении напряжения выхода проходят подобные процессы. Отрегулировать точное напряжение выхода можно резистором настройки.

↑ Анализ работы параметрического стабилизатора [1 – 5]

Исходные данные анализа следующие: Uн, Iн, ΔIн, ΔUвх, R0. Также для анализа необходимы параметры стабилитрона: Uст= Uн, rд, Iст max и Iст min.

Анализ сводится к вычислению рабочего тока стабилитрона Iст р=(Uвх-Uст)/R0-Iн; коэффициента передачи Nст= Uвх/Uст; мощности Po балластного резистора, коэффициента стабилизации Kст, КПД и коэффициента фильтрации Kф.

Важной является проверка режима работы стабилитрона в схеме стабилизатора, которая выполняется по формулам, аналогичным приведенным в первом варианте расчета

↑ Пример анализа №1

Проанализируем номиналы балластных резисторов R3 и R4 компенсационных стабилизаторов напряжения усилителя «Ланзар» в зависимости от используемого напряжения питания. Заявлен диапазон питающих напряжений усилителя от Uп=±30 В до ±65 В, в то время как на принципиальной схеме указаны сопротивления балластных резисторов R0=R3=R4=2,2 кОм (1 Вт) .

В другой публикации рекомендуется выбирать величину сопротивления балластных резисторов в зависимости от напряжения питания усилителя по формуле R0=(Uп-15)/I, где I=8…10 мА. В таблице 1 выполнен расчет по указанной формуле для диапазона питающих напряжений усилителя с шагом в 5 В.


Исходные данные для анализа: стабилизированное напряжение на нагрузке Uн=15 В, ток в нагрузке Iн=(15-0,5)/R5=14,5/6,8=2,13 мА, ΔIн=0,213 мА, изменение входного напряжения ΔUвх=10%.

Выберем стабилитрон 1N4744A, имеющий следующие параметры: Uст= Uн=15 В; rд=14 Ом; Iст max=61 мА; Iст min=5 мА.

Анализ работы параметрических стабилизаторов в усилителе «Ланзар» показал, что минимальный ток стабилизатора Iст р min выбран на пределе с запасом всего 3…14% вместо требуемых 20% (рис. 5).

Рис. 5. Режимы работы стабилизаторов в усилителе «Ланзар» в зависимости от выбранного напряжения питания

Используя средство анализа данных электронной таблицы Microsoft Excel «Подбор параметра», уточним сопротивления балластных резисторов. Для этого перейдем в ячейку с формулой для Iст р min (ячейка C26

) и в меню выберемДанные -> «Анализ «что-если »->Подбор параметра .

Установим в ячейке C26

значение 6,0 (запас 20% от Iст min), изменяя значение ячейки, в которой занесено сопротивление балластного резистора ($C$15 ).

Получим R0=1,438 кОм. Занесем в эту ячейку ближайшее значение сопротивления из стандартного ряда R0=1,3 кОм.

Проведя в таблице указанную операцию для всех значений питающих напряжений, получим следующий результат (рис. 6).

Рис. 6. Уточнение режимов работы параметрических стабилизаторов усилителя «Ланзар»

Итоги анализа сведены также в таблицу 2.


Мощность резисторов для напряжений питания усилителя от ±30 В до ±40 В – 0,5 Вт, для остальных напряжений – 1 Вт.

Основные технические характеристики LM338

Простой регулируемый источник питания

Первая схема — типовое подключение обвязки LM338. Схема обеспечивает регулируемое выходное напряжение от 1,25 до максимума подаваемого входного напряжения, которое не должно быть более 35 вольт.

Переменный резистор R1 используется для плавного регулирования выходного напряжения.

Простой 5 амперный регулируемый источник питания

Эта схема создает выходное напряжение, которое может быть равно напряжению на входе, но ток хорошо изменяется и не может превышать 5 ампер. Резистор R1 точно подобран таким образом, чтобы поддерживать безопасные 5 ампер предельного тока ограничения, которые могут быть получены из цепи.

Регулируемый источник питания на 15 ампер

Как уже было сказано ранее микросхема LM 338 в одиночку может осилить только 5А максимум, однако, если необходимо получить больший выходной ток, в районе 15 ампер, то схема подключения может быть модифицирована следующим образом:

В данном случае используются три LM338 для обеспечения высокой токовой нагрузки с возможностью регулирования выходного напряжения.

Переменный резистор R8 предназначен для плавной регулировки выходного напряжения

Источник питания с цифровым управлением

В предыдущей схеме источника питания, для осуществления регулировки напряжения использовался переменный резистор. Ниже приведенная схема позволяет посредством цифрового сигнала подаваемого на базы транзисторов получать необходимые уровни выходного напряжения.

Величина каждого сопротивления в цепи коллектора транзисторов подобрана в соответствии с необходимым выходным напряжением.

Схема контроллера освещения

Кроме питания, микросхема LM338 также может быть использована в качестве светового контроллера. Схема показывает очень простую конструкцию, где фототранзистор заменяет резистор, который используется в качестве компонента для регулировки выходного напряжения.

Лампа, освещенность которой необходимо держать на стабильном уровне, питается от выхода LM338. Ее свет падает на фототранзистор. Когда освещенность возрастает сопротивление фоторезистора падает и выходное напряжение уменьшается, а это в свою очередь уменьшает яркость лампы, поддерживая ее на стабильном уровне.

Зарядное устройство 12В на LM338

Следующую схему можно использовать для зарядки 12 вольтовых свинцово-кислотных аккумуляторов. Резистором RS можно задать необходимый ток зарядки для конкретного аккумулятора.

Схема плавного включения (мягкий старт) блока питания

Некоторые чувствительные электронные схемы требуют плавного включения электропитания. Добавление в схему конденсатора С1 дает возможность плавного повышения выходного напряжения до установленного максимального уровня.

Схема термостата на LM338

LM338 также может быть настроен для поддержания температуры обогревателя на определенном уровне.

Здесь в схему добавлен еще один важный элемент — датчик температуры LM334. Он используется как датчик, который подключен между adj LM338 и землей. Если тепло от источника возрастает выше заданного порога, сопротивление датчика понижается, соответственно, и выходное напряжение LM338 уменьшается, впоследствии уменьшая напряжение на нагревательном элементе.

Информация взята с joyta.ru

Купить Регулируемые стабилизаторы напряжения LM338 за $2.65

Вы здесь

Главная › Инженеру-конструктору › 3. Электрооборудование, электроустановки › 3. Раздел 3.

        Для получения более постоянного напряжения на нагрузке при изменении потребляемого тока к выходу выпрямителя подключают стабилизатор, который может быть выполнен по схеме, приведенной на рис. 1. В таком устройстве работают стабилитрон V5 и регулирующий транзистор V6. Расчет позволит выбрать все элементы стабилизатора, исходя из заданного выходного напряжения Uн и максимального тока нагрузки Iн. Однако оба эти параметра не должны превышать параметры уже рассчитанного выпрямителя. А если это условие нарушается, тогда сначала рассчитывают стабилизатор, а затем – выпрямитель и трансформатор питания. Расчет стабилизатора ведут в следующем порядке.

1. Определяют необходимое для работы стабилизатора входное напряжение (Uвып) при заданном выходном (Uн):

Uвып = Uн + 3,

Здесь цифра 3, характеризующая минимальное напряжение между коллектором и эмиттером транзистора, взята в расчете на использование как кремниевых, так и германиевых транзисторов. Если стабилизатор будет подключаться к готовому или уже рассчитанному выпрямителю, в дальнейших расчетах необходимо использовать реальное значение выпрямленного напряжения Uвып.

2. Рассчитывают максимально рассеиваемую транзистором мощность:

Рmах = 1,3 (Uвып – Uн) Iн,

3. Выбирают регулирующий транзистор. Его предельно допустимая рассеиваемая мощность должна быть больше значения Рmax, предельно допустимое напряжение между эмиттером и коллектором – больше Uвып, а максимально допустимый ток коллектора – больше Iн.

4. Определяют максимальный ток базы регулирующего транзистора:

Iб.макс = Iн / h21Э min,

где: h21Эmin – минимальный коэффициент передачи тока выбранного (по справочнику) транзистора..

5. Подбирают подходящий стабилитрон. Его напряжение стабилизации должно быть равно выходному напряжению стабилизатора, а значение максимального тока стабилизации превышать максимальный ток базы Iб max.

6. Подсчитывают сопротивление резистора R1:

R1 = (Uвып – Uст) / (Iб max + Iст min),

Здесь R1 – сопротивление резистора R1, Ом; Uст – напряжение стабилизации стабилитрона, В; Iб.max – вычисленное значение максимального тока базы транзистора, мА; Iст.min – минимальный ток стабилизации для данного стабилитрона, указанный в справочнике (обычно 3…5 мА). .

7. Определяют мощность рассеяния резистора R1:

PR1 = (Uвып – Uст)2 / R1,

        Может случиться, что маломощный стабилитрон не подойдет по максимальному току стабилизации и придется выбирать стабилитрон значительно большей мощности – такое случается при больших токах потребления и использовании транзистора с малым коэффициентом h21Э. В таком случае целесообразно ввести в стабилизатор дополнительный транзистор V7 малой мощности (рис. 2), который позволит снизить максимальный ток нагрузки для стабилитрона (а значит, и ток стабилизации) примерно в h21Э раз и применить, соответственно, маломощный стабилитрон.

        В приведенных здесь расчетах отсутствует поправка на изменение сетевого напряжения, а также опущены некоторые другие уточнения, усложняющие расчеты. Проще испытать собранный стабилизатор в действии, изменяя его входное напряжение (или сетевое) на ± 10 % и точнее подобрать резистор R1 по наибольшей стабильности выходного напряжения при максимальном токе нагрузки.

Принцип работы стабилитрона

Полупроводниковые приборы отличаются нелинейной реакцией при работе с разными токами (напряжениями). Для изучения функциональности пользуются вольтамперной характеристикой (ВАХ), которая наглядно демонстрирует взаимное влияние базовых параметров и особенности определенной конструкции.


ВАХ диода

Так как стабилитрон является одной из разновидностей диода, изучение принципов работы можно начать с рассмотрения типичного электронно-дырочного (n-p) полупроводникового перехода. В правой части показано включение диода в прямом направлении. Хорошо видно, как от порогового уровня Uп дальнейшее повышение напряжения сопровождается практически линейным увеличением тока в цепи. Определенные потери можно учесть при составлении электрической схемы.

При обратном включении источника питания (левая часть рисунка) увеличение напряжения до показанного значения незначительно изменяет ток. Далее (при значении Uпр) возникает пробой, который определяется особенностями перехода:

  1. тепловой,
  2. лавинный;
  3. туннельный.

Первый из отмеченных в перечне вариантов означает чрезмерное повышение температуры и разрушение полупроводникового прибора. Третий – сопровождается увеличением тока, образованного парными зарядами. Для стабилизации подходит лавинная реакция в переходе. Как показано на графике, напряжение в этом режиме изменяется незначительно.

Стабилизаторы на микросхемах

Такие устройства в интегральном варианте имею повышенные характеристики параметров и свойств, которые отличаются от подобных приборов на полупроводниках. Также они обладают повышенной надежностью, небольшими габаритами и весом, а также небольшой стоимостью.

Последовательный стабилизатор

  • 1 – источник напряжения;
  • 2 – Элемент регулировки;
  • 3 – усилитель;
  • 4 – источник основного напряжения;
  • 5 – определитель напряжения выхода;
  • 6 – сопротивление нагрузки.

Элемент регулировки выступает в качестве изменяемого сопротивления, подключенного по последовательной схеме с нагрузкой. При колебании напряжения меняется сопротивление элемента регулировки так, что происходит компенсация таких колебаний. Воздействие на элемент регулировки производится по обратной связи, которая содержит элемент управления, источник основного напряжения и измеритель напряжения. Этот измеритель является потенциометром, с которого приходит часть напряжения выхода.

Обратная связь регулирует напряжение выхода, использующееся для нагрузки, напряжение выхода потенциометра становится равным основному напряжению. Колебания напряжения от основного создает некоторое падение напряжения на регулировке. Вследствие этого, измеряющим элементом в определенных границах можно осуществлять регулировку напряжения выхода. Если стабилизатор планируется изготовить на определенную величину напряжения, то измеряющий элемент создается внутри микросхемы с компенсацией температуры. При наличии большого интервала напряжения выхода, измеряющий элемент выполняется за микросхемой.

Параллельный стабилизатор

  • 1 – источник напряжения;
  • 2 –элемент регулирующий;
  • 3 – усилитель;
  • 4 – источник основного напряжения;
  • 5 – измерительный элемент;
  • 6 – сопротивление нагрузки.

Если сравнить схемы стабилизаторов, то прибор последовательного вида имеет повышенный КПД при неполной загрузке. Прибор параллельного вида расходует неизменную мощность от источника и выдает ее на элемент регулировки и нагрузку. Стабилизаторы параллельные рекомендуется использовать при неизменных нагрузках при полной загруженности. Стабилизатор параллельный не создает опасности при КЗ, последовательный вид при холостом ходе. При неизменной нагрузке оба прибора создают высокий КПД.

↑ Второй вариант расчета параметрического стабилизатора [3 — 5]

Итак, исходными данными являются: стабилизированное напряжение на нагрузке Uвых, токи нагрузки Iн min, Iн max, номинальное входное напряжение Uвх и его отклонения ΔUвх н и ΔUвх в.

Параметры стабилитрона те же, что и в предыдущем расчете: Uст= Uвых, Iст max, Iст min, rд.

Вычисляем максимальное и минимальное значения рабочего тока стабилитрона:

Iст р max=0,8 Iст max,Iст р min=1,2 Iст min.

Если стабилизатор должен работать режиме холостого хода (Iн min=0), выбираем Iст р min=Iст min.

Проверяем пригодность выбранного по напряжению стабилизации стабилитрона заданных пределах тока нагрузки и питающего напряжения:

(Iст р max+ Iн min)(1- ΔUвх н)-(Iст min+ Iн max)(1+ ΔUвх в)>0,где ΔUвх н=(Uвх- Uвх min)/ Uвх, ΔUвх в=(Uвх max-Uвх)/ Uвх.

Номинальное напряжение Uвх, которое должен обеспечить выпрямитель, вычисляем по формуле:

Uвх= Uст/.

Сопротивление балластного резистора:

R= Uвх(ΔUвх в+ΔUвх н)/.

Также вычисляем мощность резистора с двукратным запасом:

Po=2(Uвх(1+ ΔUвх н)- Uст) 2 /R.

По приведенным в первом варианте расчета формулам находим Kст, КПД и Kф.

↑ Пример расчета №3

Рассчитаем параметрический стабилизатор напряжения со следующими характеристиками: стабилизированное напряжение на нагрузке Uн=9 В; ток Iн min =0, Iн max =10 мА; изменение входного ΔUвх н=10%, ΔUвх в=15%.

Выберем стабилитрон типа Д814Б, для которого Uст= Uн; rд=10 Ом; Iст max=36 мА, Iст min=3 мА.

После занесения исходных данных листе таблицы «Второй вариант расчета» получаем следующие результаты (рис. 4):

Uвх=14 В, R=221 Ом, Po=0,45 Вт, Kст=14,2.

Выбираем резистор сопротивлением 220 Ом мощностью 0,5 Вт.

Стабилизатор приобретается для одновременной защиты трех однофазных потребителей

Не будем акцентировать внимание на конкретном виде устройств, назовем их просто: потребитель 1, потребитель 2 и потребитель 3

Согласно заводским паспортам:

  • номинальная мощность потребителя 1 составляет 600 Вт, потребителя 2 – 130 Вт, потребителя 3 – 700 Вт;
  • коэффициент мощности потребителей 1 и 2 равен 0,7, потребителя 3 – 0,95.

Определяем мощность нагрузки. Пусть потребитель 1 относится к категории оборудования, характеризующегося наличием высоких пусковых токов. При расчёте используем не его номинальную мощность, а максимальную – пусковую, равную согласно технической документации 1800 Вт. Используя вышеуказанную формулу, переведём мощность каждого потребителя из Вт в ВА:

  • 1800 / 0,7 = 2571,4 ВА – для потребителя 1;
  • 130 / 0,7 = 185,7 ВА – для потребителя 2;
  • 700 / 0,95 = 736,8 ВА – для потребителя 3.

Теперь определим суммарную потребляемую мощность планируемой нагрузки в Вт и ВА:

  • 1800 + 130 + 700 = 2630 Вт;
  • 2571,4 + 185,7 + 736,8 = 3493,9 ВА.

Дальнейший выбор стабилизатора будем проводить, учитывая, что полная мощность нагрузки на устройство составит 3493,9 ВА, а активная – 2630 Вт (обратите внимание на разницу значений в Вт и ВА). Далее определяем запас мощности

Примем рекомендованную величину запаса мощности в 30% от энергопотребления нагрузки – для получения численного значения необходимого запаса умножим на 0,3 ранее рассчитанные суммарные мощности планируемой нагрузки:

Далее определяем запас мощности. Примем рекомендованную величину запаса мощности в 30% от энергопотребления нагрузки – для получения численного значения необходимого запаса умножим на 0,3 ранее рассчитанные суммарные мощности планируемой нагрузки:

  • 2630 х 0,3 = 789 Вт – запас активной мощности;
  • 34,939 х 0,3 = 1048,17 ВА – запас полной мощности.

Следовательно мощность нагрузки с учётом запаса составит:

  • 2630 + 789 = 3419 Вт;
  • 3493,9 + 1048,17 = 4542,07 ВА.

Теперь выберем модели однофазного стабилизатора с необходимой мощностью для электропитания нашей нагрузки (с учетом запаса), используя стандартный мощностной ряд однофазных инверторных стабилизаторов производства ГК «Штиль»:

Полная мощность, ВА Активная мощность, Вт
350 300
550 400
1000 750
1500 1125
2500 2000
3500 2500
6000 5400
8000 7200
10000 8000
15000 13500
20000 16000

Ближайшая с большей стороны к расчётным значениям мощность – 6000 ВА и 5400 Вт, следовательно, именно такой стабилизатор подходит для подключения потребителя 1, потребителя 2 и потребителя 3.

Если взять модель с мощностью, ближайшей к расчетному значению в меньшую сторону (3500 ВА/ 2500 В), то стабилизатор окажется перегружен, так как выходная активная мощность устройства окажется меньше потребляемой активной мощности нагрузки: 2500 Вт

Схема номер 2

В новой схеме также присутствует трёхвыводной эл. компонент (но это уже не транзистор) постоянный и переменный резисторы, светодиод со своим ограничителем. Добавлено только два электролитических конденсатора. Обычно на типовых схемах указаны минимальные значения C1 и C2 (С1=0,1 мкФ и С2=1 мкФ) которые необходимы для устойчивой работы стабилизатора. На практике значения емкостей составляют от десятков до сотен микрофарад. Ёмкости должны располагаться как можно ближе к микросхеме. При больших емкостях обязательно условие C1>>C2. Если ёмкость конденсатора на выходе будет превышать ёмкость конденсатора на входе, то возникает ситуация при которой выходное напряжение превышает входное, что приводит к порче микросхемы стабилизатора. Для её исключения устанавливают защитный диод VD1.

У этой схемы уже совсем другие возможности. Входное напряжение от 5 до 40 вольт, выходное 1,2 – 37 вольт. Да, имеется падение напряжения вход – выход равное примерно 3,5 вольтам, однако роз без шипов не бывает. Зато микросхема КР142ЕН12А именуемая линейным регулируемым стабилизатором напряжения имеет неплохую защиту по превышению тока нагрузки и кратковременную защиту от короткого замыкания на выходе. Её рабочая температура до + 70 градусов по Цельсию, работает с внешним делителем напряжения. Выходной ток нагрузки до 1 А при длительной работе и 1,5 А при непродолжительной. Максимально допустимая мощность при работе без теплоотвода 1 Вт, если микросхему установить на радиатор достаточного размера (100 см.кв.) то Р макс. = 10 Вт.

Литература

  • Вересов Г. П. Электропитание бытовой радиоэлектронной аппаратуры. — М.: Радио и связь, 1983. — 128 с.
  • Китаев В. В. и др. Электропитание устройств связи. — М.: Связь, 1975. — 328 с. — 24 000 экз.
  • Костиков В. Г., Парфенов Е. М., Шахнов В. А. Источники электропитания электронных средств. Схемотехника и конструирование: Учебник для ВУЗов. — 2. — М.: Горячая линия — Телеком, 2001. — 344 с. — 3000 экз. — ISBN 5-93517-052-3.
  • Штильман В. И. Микроэлектронные стабилизаторы напряжения. — Киев: Технiка, 1976.
  • Лепаев Д. А. Электрические приборы бытового назначения. — М.: Легпромбытиздат, 1991. — 272 с. — 20 000 экз.

КОМПЕНСАЦИОННЫЙ СТАБИЛИЗАТОР НАПРЯЖЕНИЯ

Предыдущие схемы для стабилизации использовали опорное напряжение. Можно ввести в схему обратную связь и получить компенсационный стабилизатор напряжения (рис.3).

Здесь наш транзистор VT, выступающий в роли стабилизатора, управляется операционным усилителем DA.


Как это работает.

На один вход «операционника» подается опорное напряжение, сформированное по рассмотренному выше принципу.

На второй вход через делитель напряжения поступает информация о величине Uст. При его изменении на выходе микросхемы получаем сигнал, который управляет транзистором. Кстати, это уже шаг на пути к интегральным стабилизаторам напряжения, которые широко используются в радиотехнике.

Кстати, если вместо постоянного резистора R3 использовать переменный, то мы получим стабилизатор с регулируемым выходным напряжением.

В завершение – не надо путать линейные стабилизаторы напряжения и бытовые, которые стабилизируют сетевое напряжение 220 Вольт для питания электроприборов. Принцип работы и назначение у них принципиально различаются.

Рекомендуемые материалы:

  • стабилизатор 220 В
  • электронные стабилизаторы
  • стабилизаторы для дома

  *  *  *

2014-2022 г.г. Все права защищены.Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: