Графит (углерод). коэффициент теплового линейного расширения, удельная (массовая) теплоемкость, коэффициент теплопроводности, сопротивление разрыву, модуль упругости графита, удельное электрическое со

Где используется

Графит почти универсален. В этом нет ничего необычного: необходимые характеристики закладываются на стадии его обработки. Так, одним требуется повышенная теплопроводность, другим – электропроводность. Третьих интересуют прочностные свойства графита.

С учетом кондиций готового продукта минерал востребован для следующих целей:

  • Производство тугоплавких емкостей.
  • Смазка при выплавке стали, сплавов.
  • Стержни ядерных реакторов на АЭС, других агрегатах.

    Сувенирный графитовый блок

  • Добавка к составу пластиковых изделий, огнеупоров (керамики, кирпича).
  • Исходник частей электроприборов, подшипников, автомобильных рессор.
  • Краска, используемая промышленностью и в быту как защитное покрытие от ржавчины.
  • Сырье при изготовлении искусственных алмазов.
  • Ингредиент лекарств, пищевых парафинов, эфирных субстанций, спиртов, сахара.

Самое известное применение графита – сердцевина карандашей.

Применение

Агрегатное состояние материалов имеет отличительную структуру строения молекул и атомов. Именно это оказывает большое влияние на металлические изделия и их свойства, в зависимости от назначения.

Отличающийся химический состав узлов и деталей из железа, позволяет обладать различной теплопроводностью. Это связано со структурой таких металлов как чугун, сталь, медь и алюминий. Пористость чугунных изделий способствует медленному нагреванию, а плотность медной структуры – наоборот, ускоряет процесс теплоотдачи. Эти свойства используют для быстрого отвода тепла или постепенного нагревания продукции инертного назначения. Примером использования свойств металлических изделий является:

  • кухонная посуда с различными свойствами;
  • оборудование для пайки труб;
  • утюги;
  • подшипники качения и скольжения;
  • сантехническое оборудование для подогрева воды;
  • приборы отопления.

Медные трубки широко используют в радиаторах автомобильных систем охлаждения и кондиционеров, применяемых в быту. Чугунные батареи сохраняют тепло в квартире, даже при непостоянной подаче теплоносителя требуемой температуры. А радиаторы из алюминия, способствуют быстрой передаче тепла отапливаемому помещению.

При возникновении высокой температуры, в результате трения металлических поверхностей, также важно учитывать теплопроводность изделия. В любом редукторе или другом механическом оборудовании, способность отводить тепло, позволит деталям механизма сохранить прочность и не быть подвергнутыми разрушению, в процессе эксплуатации

Знание свойств теплопередачи различных материалов, позволит грамотно применить те или иные сплавы из цветных или черных металлов.

Источники

  • https://tokar.guru/metally/stal/teploprovodnost-stali-alyuminiya-latuni-medi.html
  • http://thermalinfo.ru/svojstva-materialov/metally-i-splavy/svojstva-medi-plotnost-teploemkost-teploprovodnost
  • https://smolgelios.ru/provodka/teplo-elektroprovodnost-medi.html
  • https://ometalledo.ru/teploprovodnost-medi-i-alyuminiya-tablica.html
  • https://vse-otoplenie.ru/teplootdaca-aluminia
  • http://thermalinfo.ru/svojstva-materialov/metally-i-splavy/teploprovodnost-splavov-medi-temperatura-plavleniya-bronzy-i-latuni
  • https://kangen.ru/raznoe/temperatura-plavleniya-latuni-v-domashnih-usloviyah.html
  • http://thermalinfo.ru/svojstva-materialov/metally-i-splavy/teploprovodnost-metallov-teploemkost-i-plotnost-splavov
  • http://zaozmi.ru/polezno/tablica_teploprovodimosti_metallov.html
  • https://tpspribor.ru/vidy-metalla/teploprovodnost-medi-dve-storony-odnoy-medali.html
  • https://ectrl.ru/provodka/elektro-i-teploprovodnost-medi.html
  • http://met-all.org/cvetmet-splavy/med/teploprovodnost-medi-i-ee-splavov.html
  • https://prompriem.ru/metally/teploprovodnost.html

ПРИМЕНЕНИЕ

Для изготовления плавильных тиглей, футеровочных плит — применение основано на высокой температурной стойкости графита (в отсутствие кислорода), на его химической стойкости к целому ряду расплавленных металлов.
Применяется в электродах, нагревательных элементах — благодаря высокой электропроводности и химической стойкости к практически любым агрессивным водным растворам (намного выше, чем у благородных металлов).
Для получения химически активных металлов методом электролиза расплавленных соединений, твёрдых смазочных материалов, в комбинированных жидких и пастообразных смазках, наполнитель пластмасс.

Является замедлителем нейтронов в ядерных реакторах, компонентом состава для изготовления стержней для чёрных графитовых карандашей (в смеси с каолином).
Используется для получения синтетических алмазов, в качестве эталона длины нанометрового диапазона для калибровки сканеров сканирующего туннельного микроскопа и атомно-силового микроскопа, для изготовления контактных щёток и токосъёмников для разнообразных электрических машин, электротранспорта и мостовых подъёмных кранов с троллейным питанием, мощных реостатов, а также прочих устройств, где требуется надёжный подвижный электрический контакт, для изготовления тепловой защиты носовой части боеголовок баллистических ракет и возвращаемых космических аппаратов.

Графит (англ. Graphite) – C

Молекулярный вес 12.01 г/моль
Происхождение названия от др.-греч. γράφω — записывать, писать
IMA статус действителен, описан впервые до 1959 (до IMA)

Теплопроводность материалов

Ярко выраженной способностью проводить тепло обладают металлы. Для полимеров свойственна невысокая теплопроводность, а некоторые из них практически не проводят тепло, например, стекловолокно, такие материалы называются теплоизоляторами. Чтобы существовал тот или иной поток тепла через пространство, необходимо наличие некоторой субстанции в этом пространстве, поэтому в открытом космосе (пустое пространство) теплопроводность равна нулю.

Каждый гомогенный (однородный) материал характеризуется коэффициентом теплопроводности (обозначается греческой буквой лямбда), то есть величиной, которая определяет, сколько тепла нужно передать через площадь 1 м², чтобы за одну секунду, пройдя через толщу материала в один метр, температура на его концах изменилась на 1 К. Это свойство присуще каждому материалу и изменяется в зависимости от его температуры, поэтому этот коэффициент измеряют, как правило, при комнатной температуре (300 К) для сравнения характеристики разных веществ.

Если материал является неоднородным, например, железобетон, тогда вводят понятие полезного коэффициента теплопроводности, который измеряется согласно коэффициентам однородных веществ, составляющих этот материал.

В таблице ниже приведены коэффициенты теплопроводности некоторых металлов и сплавов во Вт/(м*К) для температуры 300 К (27 °C):

  • сталь 47—58;
  • алюминий 237;
  • медь 372,1—385,2;
  • бронза 116—186;
  • цинк 106—140;
  • титан 21,9;
  • олово 64,0;
  • свинец 35,0;
  • железо 80,2;
  • латунь 81—116;
  • золото 308,2;
  • серебро 406,1—418,7.

Читать также: Газовый редуктор для газовой колонки

В следующей таблице приведены данные для неметаллических твердых веществ:

  • стекловолокно 0,03—0,07;
  • стекло 0,6—1,0;
  • асбест 0,04;
  • дерево 0,13;
  • парафин 0,21;
  • кирпич 0,80;
  • алмаз 2300.

Из рассматриваемых данных видно, что теплопроводность металлов намного превышает таковую для неметаллов. Исключение составляет алмаз, который обладает коэффициентом теплопередачи в пять раз больше, чем медь. Это свойство алмаза связано с сильными ковалентными связями между атомами углерода, которые образуют его кристаллическую решетку. Именно благодаря этому свойству человек чувствует холод при прикосновении к алмазу губами. Свойство алмаза хорошо переносить тепловую энергию используется в микроэлектронике для отвода тепла из микросхем. А также это свойство используется в специальных приборах, позволяющих отличить настоящий алмаз от подделки.

В некоторых индустриальных процессах стараются увеличить способность передачи тепла, чего достигают либо за счет хороших проводников, либо за счет увеличения площади контакта между составляющими конструкции. Примерами таких конструкций являются теплообменники и рассеиватели тепла. В других же случаях, наоборот, стараются уменьшить теплопроводность, чего достигают за счет использования теплоизоляторов, пустот в конструкциях и снижения площади контакта элементов.

Справочный материал

Характеристики графита

Электропроводность

Графит обладает хорошей электропроводностью. При повышении температуры электропроводность увеличивается. В связи с этим температурный коэффициент сопротивления графита, в отличие от металлов, для графита отрицателен.

Удельное Электрическое Сопротивление

УЭС-физическая величина, характеризующая способность вещества препятствовать прохождению электрического тока. Чем выше плотность графита, тем ниже УЭС. Единица Измерения: Ом*м

Теплопроводность

Теплопроводность у графита выше, чем у многих металлов, и уменьшается по мере повышения температуры. Теплопроводность графита зависит от конечной температуры обработки. Единица Измерения: Вт/(м*К)

Термостойкость

Графит не плавится, а сублимирует при температуре ~3900°К и выдерживает резкие перепады температур.

Смачиваемость

Графит не смачивается большинством расплавленных металлов и расплавленным стеклом.

Окисляемость

В присутствии избытка воздуха графит начинает окисляться при температуре 750°К. Графит не растворяется в растворителях органического и неорганического происхождения, не взаимодействует со многими кислотами, растворами щелочей и солей.

Механическая прочность

Прочность графита при растяжении, сжатии и изгибе повышается при повышении температуры до 2700°С, и только после этого начинает снижаться.

Механическая Прочность Графита характеризуют такие величины, как Предел прочности на изгиб

иПредел Прочности на сжатие . С увеличение плотности, обе эти величины увеличиваются. Единица измерения: МПа.

Чистота

Все графиты содержат в своем составе в большем или меньшем количестве минеральные примеси (золу). Специальная технология очистки графита позволяет снижать содержание золы до 10-4-10-5 % веса при содержании золы до 0,5% в исходных материалах.

Обрабатываемость

Графит хорошо поддается механической обработке; его свойства и структура позволяют изготавливать изделия сложных форм, с малыми допусками и с высокой точностью. Сочетание такого количества положительных свойств в одном материале предопределило его исключительно широкое применение.

Анизотропия физических свойств

Физические свойства графита зависят от ориентации зерен кокса, из которых составляется рецепт. В свою очередь, на физические свойства графита влияет способ прессования. Графиту, прессование которого осуществляется методом экструзии, присуща четко выраженная анизотропия свойств. Зерна ориентированы перпендикулярно направлению прессования. Графиты, изготовленные методом штамповки и изостатического прессования, более изотропны, чем полученные методом экструзии.

Искусственный графит

Для производства очень важно учитывать, какова плотность графита. Физика дает понять, что чем больше плотность этого вещества, тем больше его теплопроводность

Искусственный графит характеризуется высокой чистотой (до 99%). Это также значительно увеличивает плотность материала.

Производство очищенного графита осуществляется путем термохимических и термомеханических воздействий. Для каждой отрасли производства изготавливается вещество с определенным набором качеств. Это позволяет удовлетворить потребности промышленности в графите с заданными физическими характеристиками.

Маркировка веществ, созданных искусственно, включает в себя разбивку типов материала по сфере назначения. Различают литейный, электроугольный, аккумуляторный, элементный, смазочный и карандашный графит. Существуют также специальные марки, применяемые в ядерных реакторах.

Структура


α-графит


β-графит Каждый атом углерода ковалентно связан с тремя другими окружающими его атомами углерода.

Различают две модификации графита: α-графит

(гексагональный P63/mmc) иβ-графит (ромбоэдрический R(-3)m). Различаются упаковкой слоёв. У α-графита половина атомов каждого слоя располагается над и под центрами шестиугольника (укладка …АВАВАВА…), а у β-графита каждый четвёртый слой повторяет первый. Ромбоэдрический графит удобно представлять в гексагональных осях, чтобы показать его слоистую структуру.

β-графит в чистом виде не наблюдается, так как является метастабильной фазой. Однако, в природных графитах содержание ромбоэдрической фазы может достигать 30 %. При температуре 2500-3300 К ромбоэдрический графит полностью переходит в гексагональный.

Применение в пищевой промышленности

Представленное вещество также широко применяется в пищевой промышленности. Для этого при производстве оно подвергается определенной обработке. Плотность железа, этилового спирта, графита и сахара, по понятным причинам, различна. Но представленный материал может как содержать в себе, так и входить в состав некоторых веществ. Он находится в парафинах, эфирах, спирте и даже в сахаре.

В этом можно убедиться, если провести несложный опыт. Сначала нужно взять кусочек сахара. Его кладут на твердую крышку и накрывают колпачком (можно наперстком). Затем металл, которым накрыт сахар, сильно нагревают. Из-под наперстка со временем станет выделяться едкий дым. Если к нему поднести спичку, газ станет гореть.

Когда дым перестанет выделяться, можно снять наперсток. На крышке остается черная масса. Это уголь. Он представляет собой углерод, из которого и состоит графит.

Оптические свойства

Коэффициент светопоглощения графита постоянен для всего спектра и не зависит от температуры лучеиспускания тела; для тонких графитовых нитей он равен 0,77, с увеличением кристаллов графита светопоглащение уже находится в пределах 0,52-0,55.

Жирность и пластичность графита являются важнейшими свойствами, которые дают возможность широко применять его в промышленности. Чем выше жирность графита, тем меньше коэффициент трения. От жирности графита зависит использование его в качестве смазочного материала, а также способность прилипания к твердым поверхностям.

Благодаря этим свойствам имеется возможность создавать тонкие пленки при натирании графитом поверхности твердых тел.

Низкий коэффициент теплового расширения графита и связанная с этим высокая стойкость к температурным напряжениям, является решающим фактором применения его, как важного и незаменимого вспомогательного материала в металлообрабатывающей, чугунолитейной и сталелитейной промышленности, т.е. всюду, где рабочие поверхности должны предохраняться от прямого воздействия расплавленного металла

Важным преимуществом при таком использовании является также его несмачиваемость, полностью восстановленными металлами и нейтральными шлаками, прочность при высоких температурах. Применение графита при отливе деталей повышает качество отливов, уменьшает количество брака, и предупреждает образование пригара, на удаление которого требуется большие усилия и затраты.

Сырые литейные формы и стержни покрываются слоем сухого графитового порошка. Чистый графит имеет низкий коэффициент поглощения нейтронов и самый высокий коэффициент замедления, благодаря чему он незаменим в атомных реакторах. Без графитовых электродов немыслимо развитие черной и цветной, химической промышленности.

Графит прекрасный футеровочный материал электролизеров для получения алюминия. Углеродосодержащие материалы применяются для строительства электропечей и других тепловых агрегатов.

Из графита готовятся тигли, лодочки для производства сверхтвердых сплавов.В химической промышленности материалы из графита незаменимы для производства теплообменников, работающих в агрессивных средах.

А так же для изготовления нагревателей, конденсаторов, испарителей, холодильников, скрубберов, дистилляционных колонн, форсунок, сопел, кранов, деталей для насосов, фильтров.Отечественная промышленность в большом ассортименте выпускает графитовые электрощетки для различных электрических машин, электрические осветительные угли для прожекторов и для демонстрации и съемок кинофильмов, элементные — гальванических батарей, сварочные и для спектрального анализа, изделия для электровакуумной техники и техники связи.

В машиностроении графит используется как антифрикционный материал для подшипников, колец трения, торцевых и поршневых уплотнений, подпятников.

Методы измерения

Для измерения теплопроводности металлов используют два метода: стационарный и нестационарный. Первый характеризуется достижением постоянной величины изменившейся температуры на контролируемой поверхности, а второй – при частичном изменении таковой.

Стационарное измерение проводится опытным путем, требует большого количества времени, а также применения исследуемого металла в виде заготовок правильной формы, с плоскими поверхностями. Образец располагают между нагретой и охлажденной поверхностью, а после прикосновения плоскостей, измеряют время, за которое заготовка может увеличить температуру прохладной опоры на один градус по Кельвину. Когда рассчитывают теплопроводность, обязательно учитывают размеры исследуемого образца.

Нестационарную методику исследований используют в редких случаях из-за того, что результат, зачастую, бывает необъективным. В наши дни никто, кроме ученых, не занимается измерением коэффициента, все используют, давно выведенные опытным путем, значения для различных материалов. Это обусловлено постоянством данного параметра при сохранении химического состава изделия.

Что такое теплопроводность и для чего нужна

Процесс переноса энергии атомов и молекул от горячих предметов к изделиям с холодной температурой, осуществляется при хаотическом перемещении движущихся частиц. Такой обмен тепла зависит от агрегатного состояния металла, через который проходит передача. В зависимости от химического состава материала, теплопроводность будет иметь различные характеристики. Данный процесс называют теплопроводностью, он заключается в передаче атомами и молекулами кинетической энергии, определяющей нагрев металлического изделия при взаимодействии этих частиц, или передается от более теплой части – к той, которая меньше нагрета.

Способность передавать или сохранять тепловую энергию, позволяет использовать свойства металлов для достижения необходимых технических целей в работе различных узлов и агрегатов оборудования, используемого в народном хозяйстве. Примером такого применения может быть паяльник, нагревающийся в средней части и передающий тепло на край рабочего стержня, которым выполняют пайку необходимых элементов. Зная свойства теплопроводности, металлы применяют во всех отраслях промышленности, используя необходимый параметр по назначению.

Теплопроводность нескольких различных видов сталей

Тут будут представлены сухие цифры для того, чтобы пользователь мог сразу найти нужные для себя показатели коэффициента данной величины для некоторых марок сталей:

  • Коэффициент теплопроводности низкоуглеродистых сталей, которые применяются в производстве обычных труб, равен 54, 51, 47 (Вт/(м*гр. С) для 25, 125, 225 градусов по Цельсию соответственно.
  • Средний коэффициент углеродистых сталей, который можно высчитать при комнатной температуре, находится в диапазоне от 50 до 90 Вт/(М*гр. С).
  • Коэффициент теплопроводности для обычной стали, которая не содержит различных примесей, которые, в свою очередь, не могут никак повлиять на этот коэффициент, равен 64 Вт/(м*гр. С). Этот коэффициент несущественно изменяется при изменении термического воздействия, но точно не так сильно, как в случае с углеродистыми и легированными сталями.

Искусственный синтез

Искусственный графит получают разными способами:

  • Ачесоновский графит : нагреванием смеси кокса и пека до 2800 °C;.
  • Рекристаллизованный графит : термомеханической обработкой смеси, содержащей кокс, пек, природный графит и карбидообразующие элементы.
  • Пиролитический графит : пиролизом из газообразных углеводородов при температуре 1400—1500 °C в вакууме с последующим нагреванием образовавшегося пироуглерода до температуры 2500—3000 °C при давлении 50 МПа (образовавшийся продукт — пирографит; в электротехнической промышленности применяется наименование «электрографит»).
  • Доменный графит : выделяется при медленном охлаждении больших масс чугуна.
  • Карбидный графит : образуется при термическом разложении карбидов.

Что такое теплопроводность

Данный термин означает способность различных материалов к обмену энергией, которая в этом случае представлена теплом. При этом передача энергии проходит от более нагретой части к холодной и происходит за счет:

  1. Молекул.
  2. Атомов.
  3. Электронов и других частиц структуры металла.

Теплопроводность нержавеющей стали будет существенно отличаться от аналогичного показателя другого металла — например, коэффициент теплопроводности меди будет иным, нежели у стали.

Для обозначения этого показателя используется специальная величина, именуемая коэффициентом теплопроводности. Она характеризуется количеством теплоты, которое может пройти через материал за определенную единицу времени.

Показатели для стали

Теплопроводность может существенно отличаться в зависимости от химического состава металла. Коэффициент данной величины у стали и меди будет разным. Кроме этого, при повышении или уменьшении концентрации углерода изменяется и рассматриваемый показатель.

Существуют и другие особенности теплопроводности:

  1. Для стали, которая не имеет примесей, значение составляет 70 Вт/(м* К).
  2. У углеродистых и высоколегированных сталей проводимость намного ниже. За счет увеличения концентрации примесей она существенно снижается.
  3. Само термическое воздействие также может оказывать воздействие на структуру металла. Как правило, после нагрева структура меняет значение проводимости, что связано с изменением кристаллической решетки.

Коэффициент теплопроводности алюминия значительно выше, что связано с более низкой плотностью этого материала. Теплопроводность латуни также отличается от соответствующего показателя стали.

https://youtube.com/watch?v=Aa90TIZ6Pa0

Графит

Главная / Кейсы / Графит

Практическое значение:

Графит используется очень широко. Можно сказать, что нет ни одной отрасли, где бы он в той или иной степени ни применялся. Необходим графит главным образом в металлургической промышленности для изготовления огнеупорных тиглей и для покрытия поверхности литейных форм с целью предохранения отливки от пригара формовочной земли; кроме того, в электропромышленности — в производстве электродов и дуговых углей, в производстве карандашей, черных красок, черной копировальной бумаги, типографской краски или же китайской туши. Используется также как смазочное вещество (в тех случаях, когда вследствие высокого нагрева нельзя применять масла) и в паровых котлах в качестве антинакипного средства. В последнее время применяется для изготовления графитовых блоков «атомных котлов» и изготовления космической техники. Из графита получают искусственный алмаз. Графитовая жидкость применяется при объемном прессовании детален автомобилей. Штампы, обволакиваемые этим веществом, обеспечивают высокую чистоту поверхности стальных заготовок, что исключает их последующую обтирку на шлифовальных станках.

Свойства:

Хорошо проводит электрический ток. В отличие от алмаза обладает низкой твёрдостью (1 по шкале Мооса). Относительно мягкий. После воздействия высоких температур становится немного твёрже, и становится очень хрупким. Плотность 2,08—2,23 г/см³. Цвет тёмно-серый, блеск металлический. Неплавкий, устойчив при нагревании в отсутствие воздуха. Жирный (скользкий) на ощупь. Природный графит содержит 10—12 % примесей глин и окислов железа. При трении расслаивается на отдельные чешуйки (это свойство используется в карандашах).

Теплопроводность графита от 100 до 354,7 Вт/(м*К), зависит от марки графита, от направления относительно базисных плоскостей и от температуры.

Электрическая проводимость монокристаллов графита анизотропна, в направлении, параллельном базисной плоскости, близка к металлической, в перпендикулярном — в сотни раз меньше. Минимальное значение проводимости наблюдается в интервале 300—1300 К, причём положение минимума смещается в область низких температур для совершенных кристаллических структур. Наивысшую электрическую проводимость имеет рекристаллизованный графит.

Коэффициент теплового расширения графита до 700 К отрицателен в направлении базисных плоскостей (графит сжимается при нагревании), его абсолютное значение с повышением температуры уменьшается. Выше 700 К коэффициент теплового расширения становится положительным. В направлении, перпендикулярном базисным плоскостям, коэффициент теплового расширения положителен, практически не зависит от температуры и более чем в 20 раз выше среднего абсолютного значения для базисных плоскостей.

Теплоёмкость графита в диапазоне температур 300÷3000К хорошо согласуется с дебаевской моделью. В высокотемпературной области после Т>3500K наблюдается аномальное поведение теплоёмкости графита аналогично алмазу: экспериментальные данные по теплоёмкости резко отклоняются вверх от нормальной (дебаевской) кривой и аппроксимируются экспоненциальной функцией, что обуславливается больцмановской компонентой поглощения тепла кристаллической решеткой.

Монокристаллы графита диамагнитны, магнитная восприимчивость незначительна в базисной плоскости и велика в ортогональных базисным плоскостях. Коэффициента Холла меняется с положительного на отрицательный при 2400 К.

Гранулометрический анализ:

Фотографии под микроскопом:

Свойства алмаза и графита

Коротко об аллотропном углероде и карбине. В периодической таблице Менделеева этот тип неметалла расположен под номером 6. Валентное состояние углерода коренным образом влияет на свойства вещества, в котором он присутствует.

Несмотря на то, что алмаз от графита отличается по всем характеристикам, оба минерала построены из свободного углерода.

Химические свойства

Структура кристалла алмаза пространственная. Алмаз и графит – это прочно связанные между собой тетраэдры, внутри которых атомы с ковалентной связью удалены друг от друга на равные расстояния. Доля углерода приближается к 99,8%. Незначительные примеси влияют на «чистоту» и оттенок самородка. Известно о химической стойкости к воздействию кислот и щелочей.

Важно помнить о том, что при высокой температуре сжигания от 800 до 1000 градусов на воздухе молекулы алмаза превращаются в кучку графита. Сущность кристаллической решетки графита состоит из слоев

Отдельные слои выглядят как связанные между собой шестиугольники, похожие на пчелиные соты. Расположение слоев относительно друг друга не структурированное и может различаться в самородках. Атомы связаны прочно только в пределах одного пласта. Соседние слои жестких связей между атомами не имеют. Содержат различные включения. Графит не растворяется в кислотах. При высокой температуре сгорает до аморфного газа, взаимодействуя с кислородом. Щелочные металлы и соли могут образовывать с ним «соединения включения»

Сущность кристаллической решетки графита состоит из слоев. Отдельные слои выглядят как связанные между собой шестиугольники, похожие на пчелиные соты. Расположение слоев относительно друг друга не структурированное и может различаться в самородках. Атомы связаны прочно только в пределах одного пласта. Соседние слои жестких связей между атомами не имеют. Содержат различные включения. Графит не растворяется в кислотах. При высокой температуре сгорает до аморфного газа, взаимодействуя с кислородом. Щелочные металлы и соли могут образовывать с ним «соединения включения».

Физические свойства

Различие в строении алмаза и графита обуславливает и разные физические свойства:

  1. Твердость. Алмаз – это самый твердый и плотный из созданных природой минералов. Он обладает минимальным коэффициентом сжатия. Графит имеет мягкую структуру, на ощупь жирный. Несмотря на разное значение плотности, оба они хрупкие и рассыпаются при падении или ударе.
  2. Прозрачность. Непрозрачный, серый или темно-серый графит поглощает свет. При трении отслаивается и оставляет темные следы на поверхности. Металлические включения дают самородку блеск. Строение кристаллов в алмазе дает прозрачность. Природные самоцветы не всегда абсолютно прозрачные и бесцветные. Некоторые имеют цветной оттенок. Мутные кристаллы ценятся ниже.
  3. Теплопроводность. Алмаз обладает самым высоким показателем, в сравнении с другими твердыми телами. Отличный полупроводник, способный работать при высоких температурах. У графита этот показатель теплопроводности крайне низкий.
  4. Электропроводность. Если замерять этот параметр вдоль слоев графита, результат окажется довольно высоким, приближенным к металлу. Поперек плоскостей он в сотни раз меньше, а самый высокий – у рекристаллизованного графита. Алмаз не проводит электричество, он – диэлектрик.

Производство искусственного графита

Искусственный графит отличается от натурального тем, что при синтезе можно получить материал с заранее заданными параметрами. Кроме того, его изготавливают из отходов производства: каменноугольного пека и нефтяного кокса.

Смесь мелких фракций формуют (пропорции зависят от марки графита), полученные заготовки обжигают при температуре 800–1200°C. Процесс обжига и последующего охлаждения занимает 3–5 недель. Чтобы увеличить плотность графита, заготовки дополнительно пропитывают пеком. Последний этап – графитация: термическая обработка заготовок в специальной печи при температуре 2400–3000°C. При графитации формируется кристаллическая решетка материала. Такой графит обладает максимальной электропроводностью и теплопроводностью.

Анизотропность свойств присуща искусственному графиту полученному методом экструзии. Более новая технология: изостатическое прессование, – позволяет изготовить материал с изотропными свойствами и низким коэффициентом трения. Если плотность графита, синтезированного по методу экструзии, составляет 2,0–2,23 г/см³, то аналогичный показатель для изостатического рекристаллизованного графита может, в зависимости от марки, варьироваться от 1,85 до 5 г/см³. Из такого материала производят крупногабаритные заготовки (длиной свыше 1000 мм, диаметром более 500 мм) для изготовления литейных форм и деталей, обладающих антифрикционными свойствами.

СТРУКТУРА

Гексагональная кристаллическая полиморфная (аллотропная) модификация чистого углерода, наиболее устойчивая в условиях земной коры. Слои кристаллической решетки могут по-разному располагаться относительно друг друга, образуя целый ряд политипов, с симметрией от гексагональной сингонии (дигексагонально-дипирамидальный вид симметрии), до тригональной (дитригонально-скаленоэдрический в.с.). Кристаллическая решетка графита — слоистого типа. В слоях атомы С расположены в узлах гексагональных ячеек слоя. Каждый атом С окружен тремя соседними с расстоянием 1,42Α

Различают две модификации графита: α-графит (гексагональный P63/mmc) и β-графит (ромбоэдрический R(-3)m). Различаются упаковкой слоёв. У α-графита половина атомов каждого слоя располагается над и под центрами шестиугольника (укладка …АВАВАВА…), а у β-графита каждый четвёртый слой повторяет первый. Ромбоэдрический графит удобно представлять в гексагональных осях, чтобы показать его слоистую структуру.

β-графит в чистом виде не наблюдается, так как является метастабильной фазой. Однако, в природных графитах содержание ромбоэдрической фазы может достигать 30 %. При температуре 2500-3300 К ромбоэдрический графит полностью переходит в гексагональный.

Условия нахождения в природе

Сопутствующие минералы: пирит, гранаты, шпинель. Образуется при высокой температуре в вулканических и магматических горных породах, в пегматитах и скарнах. Встречается в кварцевых жилах с вольфрамитом и др. минералами в среднетемпературных гидротермальных полиметаллических месторождениях. Широко распространён в метаморфических породах — кристаллических сланцах, гнейсах, мраморах. Крупные залежи образуются в результате пиролиза каменного угля под воздействием траппов на каменноугольные отложения (Тунгусский бассейн). Акцессорный минерал метеоритов. С помощью ионной масс-спектрометрии российским учёным удалось обнаружить в составе графита золото, серебро и платиноиды (платина, палладий, иридий, осмий и проч.) в форме металлоорганических нанокластеров.

Применение графита

Как известно такой материал, как графит обладает большим количеством уникальных качеств. Именно они обуславливают сферы его применения. Благодаря тому. что данный материал обладает устойчивостью к высоким температурам его применяют для производства футеровочных плит.

Применение графита используется и в сфере ядерной промышленности. Там он играет важную роль при замедлении нейтронов.

Получение алмаза из графита тоже возможно. В современном мире есть возможность получать синтетический алмаз, который по своим качествам и внешнему виду будет напоминать природный материал.

Пиролитический графит представляет собой особую форму такого элемента, как графит. Данная его разновидность нашла широкое применение в сфере микроскопических исследований. Его применяют в качестве калибровочного материала. Чаще всего его используют в сканирующей туннельной микроскопии и в атомно-силовой микроскопии. Данная разновидность графита относится к разряду синтетических. Его получение возможно при нагревании кокса и пека.

Благодаря графиту можно получать активные металлы с химической точки зрения путем электролиза. Данный метод использования элемента объясняется тем, что у графита достаточно хорошая электропроводность.

При производстве пластмассовых изделий графит тоже нашел свое применение. Его используют для наполнения пластмассы.

Самым известным методом использования графита является производство стержней для обычных простых карандашей, к которым так привыкли люди.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: