Интегрированные модули компании NXP/Freescale
Ассортимент продукции широкополосных усилителей компании NXP (до 2015 года Freescale) включает предоконечные и оконечные каскады усилителей Догерти, в том числе для использования в фемтосотах, и блоки основного усиления для систем беспроводной связи. Оригинальной продукцией этой компании являются усовершенствованные модули выравнивания для усилителей Догерти (Advanced Doherty Alignment Module ADAM) – это класс высокоинтегрированных схем управления, разработанный специально для оптимизации характеристик современных усилителей Догерти. Они предназначены для использования в передатчиках базовых станций вместе с мощными усилителями Догерти. В сочетании с силовыми транзисторами Airfast эти сложные изделия улучшают такие характеристики передающих устройств, как КПД, коэффициент усиления, линейность. Их основное предназначение – точное выравнивание фазы и амплитуды в усилителе несущей и пиковом усилителе для обеспечения согласованности их характеристик, в частности для асимметричных реализаций. Модули обеспечивают хорошие показатели линейности и КПД при увеличенной выходной мощности.
Линейка ADAM представлена четырьмя модулями: MMDS09254H, MMDS20254H, MMDS25254H и MMDS36254H. Все микросхемы содержат 90-канальный аналого-цифровой преобразователь и ступенчатый аттенюатор и работают от одного источника питания (рис. 6) . Модули подходят для основных стандартов беспроводных систем связи, таких как WCDMA, UMTS и LTE. Они применяются в диапазонах от 700 до 3800 МГц и управляются с использованием последовательного периферийного интерфейса (SPI). Основные характеристики модулей представлены в табл. 5 .
Рисунок 6 – Структура модулей ADAM компании NXP
Модель | Диапазон частот, МГц |
Максимальная входная мощность, дБм |
Шаг/максимальное значение ослабления программируемого аттенюатора, дБ |
Шаг/максимальное абсолютное значение фазового сдвига, градус |
Напряжение питания, В |
Потребляемый ток, мА |
Тип корпуса |
---|---|---|---|---|---|---|---|
MMDS09254H | 700-1000 | 25 | 0,5/7,5 | 7/49 | 5 | 12 | HVQFN32 (6 × 6 × 0,85 мм) |
MMDS20254H | 1800-2200 | 25 | 0,5/7,5 | 7/49 | 5 | 12 | HVQFN32 (6 × 6 × 0,85 мм) |
MMDS25254H | 2300-2700 | 25 | 0,5/7,5 | 7/49 | 5 | 12 | HVQFN32 (6 × 6 × 0,85 мм) |
MMDS36254H | 3400-3800 | 25 | 0,25/7,75 | 6,5/45,5 | 5 | 12 | HVQFN32 (6 × 6 × 0,85 мм) |
Особенности данных микросхем: делитель мощности с низким энергопотреблением, программируемые аттенюаторы с шагом 0,5 дБ и диапазоном регулировки от 0 до 7,5 дБ, фазовращатели с цифровой регулировкой с шагом 7° на бит и диапазоном регулировки от 0 до –49°, интерфейсы TTL / CMOS / SPI (логика 1,8 и 3,3 В), 32-контактный, 6-мм пластиковый корпус QFN для поверхностного монтажа.
На рис. 7 приведен пример использования модуля ADAM в усилителе мощности базовой станции системы сотовой связи диапазона 1 800 МГц. Сигнал после МШУ с большим динамическим диапазоном MMG15241H поступает на модуль MMDS20254H, в котором происходит деление мощности и выравнивание фазы и амплитуды сигнала перед его подачей на усилительные приборы MW7IC2020N и AFT18S230S, включенные по схеме Догерти.
Рисунок 7 – Усилитель мощности с использованием модуля ADAM
Ориентируясь на будущие стандарты 5G, компания NXP расширяет линейку усилителей мощности для рынка сотовой инфраструктуры, к которой относятся мощные LDMOS-транзисторы с напряжением питания 28 и 48 В, а также GaN-транзисторы с напряжением питания 48 В. Частота работы этих транзисторов варьируется от 450 до 5000 МГц, что позволяет поддерживать различные стандарты сотовой связи, включая 5G. Кроме того, компания выпускает серию широкополосных линейных усилителей (MMZ) на основе технологии InGaP HBT, которые могут использоваться как предварительные усилители в двухкаскадных усилителях Догерти.
Как правильно травить плату?
Для изготовления усилителя своими руками необходимо нанести на плату все используемые дорожки под радиодетали. Выполнить эту работу можно при помощи маркера CD, а после травить плату хлорным железом. К сожалению, хлорное железо имеет высокую стоимость, поэтому многие заменяют его приготовленным самостоятельно раствором из поваренной соли и медного купороса.
Пропорции приготавливаемой смеси:
- Кухонная соль – 200 грамм.
- Медный купорос – 100 грамм.
- 1 литр тёплой воды.
Размешав все компоненты опустите в ёмкость обезжиренные и чистые гвозди или металлические изделия.
Далее вам понадобится компрессор от аквариума, который активизирует реакцию. Кладём в ёмкость плату и выдерживаем около 20 – 30 минут.
Собираем усилитель
На первоначальном этапе выполняется установка используемых радиодеталей на печатной плате. Учитывайте полярность и мощность всех используемых компонентов. Данную работу выполняйте в полном соответствии с имеющейся схемой, что позволит избежать опасности появления короткого замыкания.
Завершив сборку платы можно переходить к изготовлению корпуса. Размеры будущего усилителя зависят от габаритов платы и используемого блока питания. Вы также можете использовать уже готовые заводские корпуса от старых усилителей.
Можем порекомендовать вам изготовить корпус вручную из ДСП. В последующем вы можете с лёгкостью отделать изготовленный корпус шпоном или же самоклеящейся плёнкой.
Перед окончательной сборкой необходимо произвести тестовый запуск усилителя. Производится установка блока питания, платы и всех используемых составляющих. На этом работа по изготовлению усилителя своими руками полностью завершена, и вы можете наслаждаться качественным звуком.
Бестрансформаторный транзисторный усилитель мощности
Трансформаторы, несмотря на успехи в их миниатюризации, остаются все же самыми громоздкими, тяжелыми и дорогими ЭРЭ. Поэтому был найден путь устранения трансформатора из двухтактной схемы путем выполнения ее на двух мощных комплементарных транзисторах разных типов (n-p-n и p-n-p). Большинство современных усилителей мощности используют именно этот принцип и предназначены для работы в классе «В». Схема такого усилителя мощности показана на рисунке ниже.
Оба ее транзистора включены по схеме с общим коллектором (эмиттерного повторителя). Поэтому схема передает входное напряжение на выход без усиления. Если входного сигнала нет, то оба транзистора находятся на границе включенного состояния, но при этом они выключены.
Когда гармонический сигнал подан на вход, его положительная полуволна открывает TR1, но переводит p-n-p транзистор TR2 полностью в режим отсечки. Таким образом, только положительная полуволна усиленного тока протекает через нагрузку. Отрицательная полуволна входного сигнала открывает только TR2 и запирает TR1, так что в нагрузку подается отрицательная полуволна усиленного тока. В результате на нагрузке выделяется полный усиленный по мощности (за счет усиления по току) синусоидальный сигнал.
Результаты
Таким образом, как показали наши тесты, даже без доработок усилитель звучит хорошо. Но если вы хотите улучшить звучание, то мы показали вам, какие характеристики можно поменять. Выходные транзисторы в наборе — это лотерея, поэтому часто можно услышать противоположное мнение при прослушивании собранного набора.
С новыми транзисторами усилитель играет лучше и нет опасности, что они выйдут из строя во время работы. Поэтому рекомендуем сразу заменить выходные транзисторы на оригинальные 2N3055 или MJ15003G.
Недостатки усилителя — это, в первую очередь, большое энергопотребление из-за работы в классе А и относительно небольшая мощность.
Достоинства этого усилителя — это легкая сборка и настройка, а также небольшая цена и отличный звук.
На нашем форуме есть довольно большая ветка, где многие пользователи повторили усилитель JLH1969 и делятся своим опытом. Если вы хотите повторить этот усилитель или у вас есть что рассказать или спросить на эту тему, то вам сюда.
Дополнительные советы
Чтобы не запутаться, рекомендуется пользоваться программой Sprint Layout. Она обладает следующими функциями:
- проектирование схем слабой и средней степени сложности;
- проектирование разводки;
- просмотр моделей в трехмерном изображении;
- возможность создания библиотеки деталей.
Можно скачать и установить русифицированную программу с дополненным функционалом бесплатно. Для этого следует искать 6 версию ПО (не официальную, а именно переведенную). Она совместима со всеми версиями англоязычной вплоть до пятой.
Программа поможет создать наглядные планы, куда более полезные в деле, чем фото самодельных усилителей звука и их схем.
Разновидности усилителей мощности для согласующих трансформаторов
Здесь фигурируют такие устройства:
- Входные. Их задача – согласовывать выходное сопротивление входного сигнального источника с идущим после этого каскадом.
- Межкаскадные. Согласовывают это же сопротивление, но предыдущего каскада. При этом идёт входное сопротивление нового каскада.
- Выходные. Нормализуют обозначенное сопротивление, но оконечного каскада с сопротивлением его воздействия.
Входные данные обозначаются буквами:
- Т – первый компонент.
- ВТ – входной сигнал для транзисторных аппаратов.
- Нумерация разработки.
Пример: ТВТ-1 – это входной трансформатор для транзисторных агрегатов с числовым обозначением разработки 1.
Выходные СТ обозначаются так:
- компонент – Т,
- ОТ (оконечный вариант для транзисторных приборов)
- порядковая цифра разработки.
Пример: ТОТ-4 – выходной СТ для устройств с транзисторами, разработка №4.
Межкаскадные виды имеют такие обозначения:
- Т,
- М,
- число – показатель мощности,
- нумерация разработки.
Пример – ТМ15 – 45. Это миниатюрный СТ с каскадами, мощностью 15 А. Разработка №45.
Также существуют выходные модели ТОЛ. Здесь:
- Т – трансформатор,
- О – оконечный,
- Л – ламповый тип.
Они полностью удерживают заданные параметры в спектре от 300 до 10 000 Гц. Их рабочие мощности находятся в диапазоне 0,1…6 В*А. Допустимая неравномерность характеристик на предельных частотах составляет максимум 2 дБ. Наивысший показатель искажений – 5%.
УКВ ЧМ приемник на основе синхронно-фазового детектора
Этот простой приемник, работающий в диапазоне 65.8-73 МГц имеет минимум деталей и прост для повторения даже начинающими радиотехниками. Взглянем на принципиальную схему конструкции.
Схема однотранзисторного УКВ приемника
Сигнал, принятый антенной Ant1, поступает на колебательный контур С2, L1. Перестраивая контур конденсатором С2, мы можем выделить конкретную частоту из общего сигнала в диапазоне 65.8-73 МГц (УКВ ЧМ диапазон). Выделенный сигнал через конденсатор С3 подается на базу транзистора Т1. Резистор R1 задает начальное смещение этому транзистору, который одновременно является фазовым детектором, усилителем постоянного тока, фильтром низких частот и усилителем низкой частоты.
Детектирование происходит за счет n-p переходов, которые, по сути, являются диодами. Вместо конденсатора между эмиттером и коллектором, необходимого для обеспечения генерации, используется тот же транзистор, имеющий емкость коллекторного перехода порядка 8 пФ. Выделенный сигнал НЧ подается на головные телефоны.
В качестве антенны используется отрезок монтажного провода возможно большей длины. Головные телефоны – любые электромагнитные с максимально возможным сопротивлением. Катушка L1 бескаркасная. Ее наматывают на подходящей оправке проводом ПЭВ диметром 0.5 мм. Количество витков – 14.
Настройка приемника сводится к подстройке индуктивности катушки L1 путем сжатия и растяжения витков. Она должна быть такой, чтобы рабочий диапазон приемника лежал в той области, где число станций максимально. Это легко проконтролировать, использовав любой УКВ приемник как контрольный. После настройки катушку нужно залить парафином во избежание микрофонного эффекта. Чтобы приемник смог принимать станции так называемого FM диапазона 87-108 МГц, количество витков L1 нужно уменьшить до 8-10.
При повторении конструкции необходимо расположить элементы на плате так же, как они расположены на принципиальной схеме.
Собираем усилитель JLH1969
Какие параметры мы выбрали для нагрузки 4 Ом:
- Питание усилителя классическое с использованием трансформатора, без стабилизации, питание раздельное на каждую плату, 19 Вольт с отдельных обмоток трансформатора;
- Ток покоя: 1.3А;
- Входной конденсатор: 1 мФ;
- Выходной конденсатор: 6900 мФ.
Почему не использовался импульсный блок питания? Мы решили проверить, каких параметров можно добиться при использовании классического питания. В дальнейшем мы соберем еще одну версию с импульсным блоком.
Трансформатор:
- Тип трансформатора: тороидальный
- Напряжение питания: 220В;
- 2 Выхода по 15В (6А);
- 2 Выхода по 9В (1А).
Чтобы знать, какое примерно напряжение будет на выходе после выпрямителя, умножьте его на 1.4(например 15*1.4=21).
В выпрямителе на каждый канал мы использовали по два конденсатора с напряжением 25В и ёмкостью 33000 мкФ. Для улучшения фильтрации мы также использовали CRC фильтр, поставив между конденсаторами резистор на 0.5 Ом.
Перед входом на плату выпрямителя рекомендуем поставить предохранители. Также можно зашунтировать конденсаторы ёмкостью 0.047 кмФ, поставив их параллельно выводам конденсаторов на 33000 мкФ.
Часто, при борьбе с фоном, начинающие радиолюбители забывают, что наводки можно уменьшить, изменив положение трансформатора.
Для уменьшения помех от трансформатора мы выставим такое положение, вращая его, при котором будет наименьшее количеством помех. А также накроем его металлической крышкой толщиной 1мм.
Бестрансформаторные УНЧ
Усилитель НЧ на транзисторе, выполненный с использованием трансформатора, невзирая на то, что конструкция может иметь малые габариты, все равно несовершенен. Трансформаторы все равно тяжелые и громоздкие, поэтому лучше от них избавиться. Намного эффективнее оказывается схема, выполненная на комплементарных полупроводниковых элементах с различными типами проводимости. Большая часть современных УНЧ выполняется именно по таким схемам и работают в классе «В».
Два мощных транзистора, используемых в конструкции, работают по схеме эмиттерного повторителя (общий коллектор). При этом напряжение входа передается на выход без потерь и усиления. Если на входе нет сигнала, то транзисторы на грани включения, но все равно еще отключены. При подаче гармонического сигнала на вход происходит открывание положительной полуволной первого транзистора, а второй в это время находится в режиме отсечки.