Маркировка шим контроллеров smd

Параметры микросхем

Некоторые из основных параметров микросхем (выходные параметры- для одного канала) следующие:

Микросхема Ucc min Ucc max IccO Bw RL Pout THD Au
DBL1034-A 5V 15V 10mA 30Hz-18KHz 4R 2,3W 0,5% 62dB
КА2206 5V 15V 10mA 30Hz-18KHz 4R 2,3W 0,5% 62dB
КА21061 6V 14V 12mA 30Hz-18KHz 4R 2,3W 0,5% 62dB
LA4180 4,5V 9V 10mA 30Hz-18KHz 4R 1W 0,3% 62dB
LA4182 4,5V 12V 15mA 30Hz-18KHz 4R 2,3W 0,3% 62dB
LA4183 4,5V 12V 15mA 30Hz-18KHz 4R 2,3W 0,15% 62dB
LA4190 4,5V 9V 10mA 30Hz-18KHz 4R 1W 0,5% 62dB
LA4192 4,5V 11V 12mA 30Hz-18KHz 4R 2,3W 0,5% 62dB
LA4550 4,5V 12V 10mA 30Hz-18KHz 4R 0,8W 0,5% 62dB
LA4555 6V 12V 15mA 30Hz-18KHz 4R 2,4W 0,5% 62dB
LA4558 7,5V 12V 15mA 30Hz-18KHz 3R 2,1W 0,5% 62dB

В микросхемы встроена защита выхода от короткого замыкания в нагрузке и термозащита. Для получения максимальной выходной мощности микросхемы необходимо установить на теплоотвод (радиатор).

  • PCBWay — всего $5 за 10 печатных плат, первый заказ для новых клиентов БЕСПЛАТЕН
  • Сборка печатных плат от $88 + БЕСПЛАТНАЯ доставка по всему миру + трафарет
  • Онлайн просмотрщик Gerber-файлов от PCBWay!

Если при мостовом включении сопротивление нагрузки оставить прежним, то мощность не удвоится, а учетверится. После чего она накроется медным тазом.

Михаил, насчет учетверения выходной мощности при включении УНЧ в мост все верно. Но это справедливо далеко не для всех микросхем: Мостовое включение микросхемы УНЧ — удвоение или учетверение мощности?

Насчет «медного таза» — это уже вопрос внимательности и уровня знаний того кто собирает аудиосистему.

Абсолютно для всех справедливо. Если, разумеется, сопротивление нагрузки и напряжение питания оставить прежними. Единственное, так как выходной каскад у нас не идеальный, в таком включении из-за возрастания выходного тока мы получим на каждом из выходов чуть меньшее переменное напряжение, чем при стандартном включении и, соответственно, мощность возрастёт немного меньше, чем в 4 раза. Но в большинстве случаев этим можно пренебречь.

Если взять для мостового включения удвоенное сопротивление нагрузки, то тепловой режим при правильном расчёте радиатора не выйдет за пределы допустимого. Но выходная мощность при этом возрастёт всего лишь в 2 раза, по сравнению с обычным включением.

И, да, если в микросхеме есть узел ограничения выходного тока, то учетверение выходной мощности не получим. Но это совершенно не означает, что в данном случае этот узел при ДОЛГОВРЕМЕННОЙ работе спасёт микросхему от выхода из строя.

Микросхема DBL1034A, KA2206, KA22061, LA4180, LA4182, LA4183, LA4190, LA4192, LA4550, LA4555, LA4558. Микросхемы-двухканальные УМЗЧ, имеют аналогичные принципиальные схемы и одинаковые схемы включения.

Выполнены в корпусах TABS7 с 12-ю выводами. Предназначены для работы в портативной аудиоаппаратуре среднего класса.

Включение по мостовой схеме допускается только с выходными конденсаторами. Микросхемы имеют защиту от КЗ в нагрузке, термозащиту. При работе необходим теплоотвод.

Технические параметры микросхем:

Технические характеристики

Согласно технических характеристик NE5532 является почти полностью биполярной, за исключением одного полевого транзистора в генераторе смещения. Сигнальный тракт включает два последовательных диффкаскада, каскада усиления по напряжению и двухтактного повторителя с защитой от перегрузки по току. Внутри так же есть четыре компенсационных конденсатора. Приведём значения предельно допустимых (максимальных) параметров .

Максимальные параметры

Максимальные значения параметров микросхемы NE5532:

  • напряжение питания (VS) до ± 22 В;
  • дифференциальное напряжение на входе (VDIFF) до ± 0,5 В;
  • входной ток (IIN) до 10 мА;
  • рабочая температура кристалла (TJ) до + 150 oC.

Максимальная рассеиваемая мощность (PD) и тепловое сопротивление ограничены характеристиками корпуса, в котором размещена микросхема. Их значения можно рассчитать по методике приведённой в стандарте JESD 51-7.

Все приведённые величины напряжений относятся к средней точке (между Vcc+ и Vcc-), т.е. для двуполярного питания. Защитные диоды на входе микросхемы ограничивают входное диффнапряжение до 0,6 В. Максимальный ток не должен превышать 10 мА.

Рекомендуемые условия эксплуатации

Стабильная работа ne5532 на максимальных значениях параметров невозможна. Они приводится производителями в техническом описании лишь для отражения предельных возможностей микросхемы. Например, даже кратковременная работа кристалла при температуре +150 oC может привести к перегреву и выходу устройства из строя. Поэтому в даташит также приводятся рекомендуемые условия эксплуатации.

Рекомендуемое производителем напряжение питания составляет от ±5 до ±15 В. Рабочая температура не должна превышать (TJ) до + 70 oC. Ниже приведем основные электрические характеристики.

Аналоги

Полный аналог NE5532 найти не сложно, в настоящее время их достаточно много. Например, таковыми являются следующие микросхемы и их модификации: AD823, AD712, LM833, OP275, RC4558. Иногда в поисках замены радиолюбители стремятся улучшить качество звучания. В этих целях в качестве альтернативы можно рассмотреть более современные ОУ: AD826, LM6172, LT1364, LM4562, THS4061.

Отечественных аналогов у NE5532 не существует.

Выбор ОУ

Выбор ОУ в предусилитель для микрофона сильно зависит от источника питания. Если предполагается питание от 9 вольтовой кроны, то в таком случае подойдет большинство распространенных ОУ. Но мне с самого начала хотелось использовать литиевый аккумулятор формата 18650. Во-первых у них хорошая емкость, во вторых их легко заряжать при помощи готовых модулей.

Поэтому на роль ОУ в предусилителе был выбран AD8616. Отличные, недорогие и доступные сдвоенные ОУ. Но главное это то, что работают они в диапазоне напряжений питания от 2.5 до 5 Вольт, что просто идеально для литиевого аккумулятора и портатива в целом.

Единственным минусом может стать то, что они не выпускаются в dip корпусе. Но тут мне на помощь пришли переходники SO-8 в DIP8, которые я когда-то заказывал с АлиЭксперсс. Заказывал в этом магазине.

Цоколевка

Как и большинство микросхем, ne5532 выпускается в стандартных пластиковых корпусах для дырочного или поверхностного монтажа на плату. Соответственно DIP или SO (SOIC). В большинстве случаев имеет восемь металлических выводов, но иногда встречаются и шестнадцатипиновые экземпляры. В последнем случае часть контактов не используется. Цоколевка представлена на рисунке.

Способы монтажа на плату можно определить по маркировке на микросхеме. У разных производителей она немного отличается. Например, у Texas Instruments устройства с суффиксом «D» предназначены для поверхностного монтажа, а с «P» для дырочного. On Semiconductor для обозначения DIP-корпуса использует символ «N».

Таким образом идентичные по характеристикам NE5532P от Texas Instruments и NE5532N (On Semiconductor) имеют одинаковые DIP-корпуса, но обозначаются по разному. Другие символы в маркировке, в большинстве случаев, уже никак не влияют на внешний вид, но все же подчёркивают отдельные технические характеристики микросхемы.

Усилитель для микрофона готовая схема

Но меня все подмывал тот факт, что практически все ОУ которые есть у меня в наличии – сдвоенные, а я не люблю, когда половина операционника висит в воздухе. Как-то это не кошерно…

Поэтому недолго думая я перешел к своей любимой схеме — схеме усилителя для наушников. Она по сути такой же неинвертирующий усилитель, однако дополненная хитро включенным повторителем.

Причина перехода не только в желании задействовать оба операционных усилителя в корпусе микросхемы.

  • Во-первых мне давно хотелось попробовать эту схему при однополярном питании.
  • Во-вторых эта схема способна выдавать вдвое больший ток, при том же выходном напряжении. Это гарантирует отсутствие просадок и искажений сигнала на пути от предусилителя до записывающего устройства. Кабель то может быть и 5 и 10 метров.

Поэтому оставалось просто добавить в нее входную цепь с микрофоном и изменить номиналы конденсаторов под нашу задачу. Вот так в итоге выглядит конечная схема.

Простая схема усилителя на LM324

Рассмотрим одну из простейших схем на LM324 с отрицательной обратной связью (ООС) -повторитель напряжения. Как правило, изучение темы по ОУ начинают с повторителя напряжения. Эту схему еще называют усилитель у которого имеет коэффициент усиления по напряжению равен единице. В идеале это означает, что операционный усилитель не обеспечивает какого-либо усиления сигнала и напряжение выходного сигнала совпадает с входным. То есть, если 5 В подается на вход операционного усилителя, то 5 В будет на его выходе.

Но это утверждение справедливо для идеального операционного усилителя, а не для рассматриваемого в статье LM324. Так как это не виртуальная, а реальная микросхема ее характеристики отличаются от идеальных. Рассмотрим график зависимости выходного напряжения от входного для lm324.

На графике, в области «A» показано изменение фазы на выходе. Такое может произойти при появлении отрицательного напряжения на входе микросхемы и может привести к нежелательным последствиям – выводу её из строя.

Так же, на графике видно, что напряжение на выходе усилителя растет с увеличением входного. Но оно не может расти бесконечно, и ограничено напряжением питания микросхемы 5 В и особенностями её работы. Так, напряжения на входах незначительно разнятся, через них течёт небольшой по величине ток, поэтому напряжение на выходе будет немного отличаться от подаваемого. На графике, в области “С”, видно предельное выходное напряжение 3.8 В для рассматриваемой схемы усиления, запитанной от 5 В.

На практике, повсеместно приходится работать с активными электронными компонентами, которые имеют достаточно слабый выходной ток. Например, такими как микрофон. Подключение к нему элемента с маленьким сопротивлением приведет к  снижению напряжения выходного сигнала, создаваемого с его помощью. В таких случаях можно использовать повторитель напряжения, который имеет большое входное и низкое выходное сопротивление, соответственно не будет уменьшать или искажать подаваемый на вход сигнал.

Повторитель напряжения далеко не самая распространенная типовая схема применения для этой микросхемы. На основе данного ОУ создаются и продолжают совершенствоваться другие типовые решения, на основе которых работают современные электронные устройства.

ММ-корректор.

Эта часть схемы построена довольно стандартно. Здесь настоятельно рекомендуется использование полистирольных конденсаторов из-за их малых нелинейных искажений. Параллельное включение резисторов и конденсаторов в этом узле призвано нивелировать отклонения номиналов от заданной величины, чтобы получить максимальную точность RIAA-характеристики корректора. С22 — полистирольный.

Здесь также под конкретный звукосниматель требуется подобрать значения элементов С8 (от 0 до 330 пкФ) и R13 (минимум 220 kOm ). На элементах IC4 собран «электронный резистор». Так как значение этого резистора должно быть достаточно велико — 47кОм, то обычный резистор существенно повысил бы уровень шумов. Электронная версия не добавляет в схему тепловых шумов. Преобразование номинала R16 в значение 47 кОм происходит за счёт подачи на его нижний по схеме вывод сигнала в противофазе к верхнему выводу.

Винил корректор, схема из даташита на TDA2320A

Схема позаимствована из даташита на микросхему TDA2320A. По сути это просто сдвоенный операционный усилитель который может быть заменен на любой другой сдвоенный операционный усилитель без изменения схемы .

Работа при однополярном напряжение питания обеспечивается подачей на неинвертирующие входы (3 и 5) половинного напряжения питания посредством применения делителей напряжения R1-R2-R5 и R3-R4-R6.

Емкости С1,С2 и С14,С15 на входах и выходах каждого канала нужны для отсечения постоянного напряжения. Конденсатор С13 в 0.1 мкФ, необходимый для фильтрации ВЧ помех по питанию, желательно расположить как можно ближе к ножке микросхемы, параллельно ему можно включить конденсатор емкостью 10-100мкФ

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: