Интерфейс rs-232

Что такое UART

UART означает универсальный асинхронный приемник-передатчик. Это периферийное оборудование, которое находится внутри микроконтроллера. Функция UART заключается в преобразовании входящих и исходящих данных в последовательный двоичный поток. Восьмибитные последовательные данные, полученные от периферийного устройства, преобразуются в параллельную форму с использованием последовательного преобразования в параллельное, а параллельные данные, полученные от ЦП, преобразуются с помощью преобразования из последовательного в параллельный. Эти данные представлены в модулирующей форме и передаются с определенной скоростью передачи.

Преобразование уровней RS-232 в TTL уровень с помощью MAX232

Предшественники RS-232

Два типа устройств RS-232, 1488 и 1489, используются и сейчас. Это ранние представители этого стандарта. Устройства того времени запитывались мощными источниками питания, поскольку согласно стандарту RS-232 передатчики должны были обеспечивать минимальный +5В сигнал низкого уровня и минимальный -5В сигнал высокого уровня. Эти уровни сигналов обеспечивали устойчивость к помехам после передачи по проводам к приемнику. Но это требувало наличие двуполярного источника питания, и поэтому многие материнские платы включали в себя источник отрицательного напряжения исключительно для питания устройств типа 1488 ии 1489.

Техническая документация

Семейство микросхем MAX220-MAX249 линейных приемо-передатчиков предназначены для интерфейсов EIA/TIA-232E и V.28/V.24, особенно в устройствах, где отсутствуют напряжения ±12В.

Альтернативная микросхема ICL232. Это сдвоенный приемо-передатчик соответсвующая спецификациям RS-232C и V.28. Для питания мс требуется только напряжение +5В. Напряжения +10В и -10В преобразуются из 5В-го при помощи двух емкостных преобразователях напряжения.

Микросхема MAX232

Микросхема MAX232 быстро стала индустриальным стандартом. Многие разработчики используют ее, несмотря на то, что параметры микросхем с однополярным питанием значительно улучшились со временем.

Конфигурация выводов MAX232: представлена на рис.

Структурная схема MAX232A

На структурной схеме MAX232A изображены удвоитель напряжения и инвертор напряжения +10В в -10В. Эти напряжения используются для формирования сигналов соответсвующих RS-232. MAX232A позволяет подключить два последовательных порта.

Как работает UART

Передатчик и приемник используют стартовый бит, стоповый бит и параметры синхронизации для взаимодействия друг с другом. Исходные данные находятся в параллельной форме. Например есть 4-х битные данные, и чтобы преобразовать их в последовательную форму нужен преобразователь из параллельного в последовательный. Обычно для проектирования преобразователей используются D-триггеры.

D-триггер, также известный как триггер данных, сдвигает один бит со стороны входа на сторону выхода только тогда, когда таймер изменяет переход из высокого состояния в низкое или из низкого состояния в высокое. Точно так же, если надо передать 4 бита данных, понадобится 4 триггера.

  • D – входные данные.
  • CLK – тактовые импульсы.
  • Q – выходные данные.

Теперь спроектируем преобразователь из параллельного в последовательный и из последовательного в параллельный.

Аппаратура [ править | править код ]

Разъём имеет контакты:

DTR (Data Terminal Ready — готовность к приёму данных) — выход на компьютере, вход на модеме. Означает готовность компьютера к работе с модемом. Сброс этой линии вызывает почти полную перезагрузку модема в первоначальное состояние, в том числе бросание трубки (некоторые управляющие регистры выживают после такого сброса). В UNIX это происходит в случае, если все приложения закрыли файлы на драйвере последовательного порта. Мышь использует этот провод для получения питания.

DSR (Data Set Ready — готовность к передаче данных) — вход на компьютере, выход на модеме. Означает готовность модема. Если эта линия находится в нуле — то в ряде ОС становится невозможно открыть порт как файл.

RxD (Receive Data — приём данных) — вход на компьютере, выход на модеме. Поток данных, входящий в компьютер.

TxD (Transmit Data — передача данных) — выход на компьютере, вход на модеме. Поток данных, исходящих из компьютера.

CTS (Clear to Send — готовность передачи) — вход на компьютере, выход на модеме. Компьютер обязан приостановить передачу данных, пока этот провод не будет выставлен в единицу. Используется в аппаратном протоколе управления потоком для предотвращения переполнения в модеме.

RTS (Request to Send — запрос на передачу) — выход на компьютере, вход на модеме. Модем обязан приостановить передачу данных, пока этот провод не будет выставлен в единицу. Используется в аппаратном протоколе управления потоком для предотвращения переполнения в оборудовании и драйвере.

DCD (Carrier Detect — наличие несущей) — вход на компьютере, выход на модеме. Взводится модемом в единицу после установления соединения с модемом с той стороны, сбрасывается в ноль при разрыве связи. Аппаратура компьютера может издавать прерывание при наступлении такого события.

RI (Ring Indicator — сигнал вызова) — вход на компьютере, выход на модеме. Взводится модемом в единицу после обнаружения вызывного сигнала телефонного звонка. Аппаратура компьютера может издавать прерывание при наступлении такого события.

SG (Signal Ground — сигнальная земля) — общий сигнальный провод порта, не является общей землёй, как правило, изолирован от корпуса ЭВМ или модема.

В нуль-модемном кабеле используются две перекрещенные пары: TXD/RXD и RTS/CTS.

Исходно в IBM PC и IBM PC/XT аппаратура порта была построена на микросхеме UART 8250 фирмы National Semiconductor, затем микросхема была заменена на 16450, программно совместимой с предыдущими, но позволявшей использовать скорости вплоть до 115200 бит в секунду, затем появилась микросхема 16550, содержавшая двунаправленный FIFO буфер данных для снижения нагрузки на контроллер прерываний. В настоящее время включена в SuperIO микросхему на материнской плате вместе с рядом иных устройств.

Схема переходника для COM с USB на PL2303

Следующая схема построена на микросхеме PL2303HX, которая является преобразователем интерфейса USB в RS232. Производитель PL2303HX — Тайваньская фирма Prolific. В данной схеме также используется приемо-передатчик MAX232, преобразующий сигналы RX, TX.

Для правильной работы необходимо установить драйвер для виртуального COM-порта. Для этого скачиваем и устанавливаем драйвер по нижеприведенной ссылке.

Скачать драйвер для PL2303HX (3,5 Mb, скачано: 2 662)

Затем настраиваем виртуальный порт: выставляем в окошке «управление потоком» — НЕТ. Затем выбираем свободный номер порта.

Распиновка COM порта RS232

Правильная распиновка СOM-порта RS232

Распиновка COM порта — RS232 интерфейс был сконструирован более пятидесяти лет тому назад. А после этого был стандартизирован. В различных периодах усовершенствования технических возможностей компьютеров успешно применялся для подключения к телефонной линии с помощью модема. На данный момент такой интерфейс считается как уже вчерашний день. В основном его невостребованность заключается слишком низким быстродействием. Так как там задействованы линейные сигналы в однофазной форме. То-есть не дифференциальные.

Наружный вид девяти-контактного коннектора RS232

В современных устройствах на смену интерфейсу RS-232 пришел новый, отличающейся существенным быстродействием — USB. Тем не менее, и до настоящего времени их можно встретить в действительности огромное количество в различных аппаратах. Последовательный порт, цоколевка которого описана ниже, очень востребован в изделиях предназначенных для промышленных целей, а также для медицинского оборудования.

В бытовых условиях необходимость в применении стыковочных проводов для соединения с COM-портом в большинстве случаев появляется в определенные моменты. Например: когда возникает необходимость работы с периферией ранних лет изготовления, и требующих создать взаимосвязь с персональным компьютером. Помимо этого, его можно часто обнаружить в девайсах для загрузки программы в микроконтроллер.

Характерные особенности порта

Что касается самой контактной колодки интерфейса RS-232 и ее кабельной составляющей, то они собраны на 9-пиновом разъеме D-Sub. Штыревые контакты размещенные в двухрядном варианте, для обеспечения точности подсоединения вилки к разъему, форма колодки имеет несимметричную конструкцию. Все контактные штырьки обозначены номерами, подробнее как делается распиновка COM порта обозначено в приведенной ниже таблице.

Таблица

Номер контакта Назначение Обозначение
1 Активная несущая DCD
2 Прием компьютером RXD
3 Передача компьютером TXD
4 Готовность к обмену со стороны приемника DTR
5 Земля GND
6 Готовность к обмену со стороны источника DSR
7 Запрос на передачу RTS
8 Готовность к передаче CTS
9 Сигнал вызова RI

Множество устройств во время своей работы задействует не все контакты, а только необходимую им часть, поэтому исходя из этого обусловливается реальная распиновка COM-порта. Необходимая информация об это имеется прилагаемой документации к соответствующему оборудованию.

Соединительный кабель

Если нет необходимости задействования все контактной группы, то в таком случае можно использовать обычную витую пару. При этом ее отдельные провода припаиваются к вилке и контактам в колодке разъема. Ввиду ограниченного пространства в самой колодке, в местах пайки провода желательно помещать в кембрик.

Наибольшее расстояние связи относительно стандарта должна быть более 15 метров. Если требуется ее увеличение, тогда для этого нужно использовать экранированный провод.

Кабели подключения

Нуль модемные кабели RS-232

3-проводный минимальный

Совместимость

Рассмотрим сначала DSR сигнал (конт.6). Этот вход сигнала готовности от аппаратуры передачи данных. В схеме соединений вход замкнут на выход DTR (конт.4). Это означает, что программа не видит сигнала готовности другого устройства, хотя он есть. Аналогично устанавливается сигнал на входе CD (конт.1). Тогда при проверке сигнала DSR для контроля возможности соединения будет установлен выходной сигнал DTR.

Это соответствует 99% коммуникационного программного обеспечения. Под этим подразумевается, что 99% программного обеспечения с этим нуль-модемным кабелем примут проверку сигнала DSR.

Аналогичный трюк применяется для входного сигнала CTS. В оригинале сигнал RTS (конт.7) установливается и затем проверяется CTS (конт.8). Соединение этих контактов приводит к невозможности зависания программ по причине неответа на запрос RTS.

7-проводный полный

Совместимость

Самый дорогой полный нуль-модемный кабель с семью проводами. Только сигналы индикатора вызова и определения несущей не подключены.

Этот кабель не разрешает использовать предыдущий метод контроля предачи данных. Основная несовместимость перекрестное соединение сигналов RTS и CTS. Первоначально эти сигналы использовались для контроля потоком данных по типу запрос/ответ. При использовании полного нуль-модемного кабеля более нет запросов. Эти сигналы применяются для сообщения другой стороне есть ли возможность соединения.

Особенность

Контакты 2 и 3 на 9-ти выводном разъеме D типа противоположны этим же контактам на 25-ти контатном разъеме. Поэтому, если соединить контакты 2-2 и 3-3 между разъемами D25 и D9, получится коммуникационный кабель. Контакты сигнальной земли Signal Ground (SG) также должны быть подключены между собой. См. таблицу ниже.

5-проводный с управлением потоком

Описание

Можно найти или изготовить много типов кабелей для связи по интерфейсу RS-232. В этом нуль- модемном кабеле используется только 5 проводов: сигналы данных TXD, RXD, сигнал GND и управляющие сигналы RTS CTS для управления потоком.

Обозначение кабелей

Все DTE-DCE кабели прямого соединения, контакты соединяются один к одному. Кабели DTE-DTE и DCE-DCE кросс-кабели.

  1. DTE — DCE называется ‘прямой кабель’
  2. DTE — DTE называегся ‘нуль-модемный кабель’
  3. DCE — DCE называется ‘Tail Circuit Cable’

Описание полного нуль-модемного кабеля

Соединение D9- D9

DB9-1 DB9-2
Receive Data 2 3 Transmit Data
Transmit Data 3 2 Receive Data
Data Terminal Ready 4 6+1 Data Set Ready + Carrier Detect
System Ground 5 5 System Ground
Data Set Ready + Carrier Detect 6+1 4 Data Terminal Ready
Request to Send 7 8 Clear to Send
Clear to Send 8 7 Request to Send

Соединение D25-D25

DB25-1 DB25-2
Receive Data 3 2 Transmit Data
Transmit Data 2 3 Receive Data
Data Terminal Ready 20 6+8 Data Set Ready + Carrier Detect
System Ground 7 7 System Ground
Data Set Ready + Carrier Detect 6+8 20 Data Terminal Ready
Request to Send 4 5 Clear to Send
Clear to Send 5 4 Request to Send

Соединение D9-D25

DB9 DB25
Receive Data 2 2 Transmit Data
Transmit Data 3 3 Receive Data
Data Terminal Ready 4 6+8 Data Set Ready + Carrier Detect
System Ground 5 7 System Ground
Data Set Ready + Carrier Detect 6+1 20 Data Terminal Ready
Request to Send 7 5 Clear to Send
Clear to Send 8 4 Request to Send

Заглушка тестирования RS-232

Заглушка для эмуляции терминала

Данный соединитель RS-232 может быть использован для проверки последовательного порта кмпьютера. Сигналы данных и управления соединены. В этом случае передаваемые данные сразу возвращаются. Компьютер проверяет собственный поток. Это может быть использовано для проверки функционирования порта RS-232 со стандартным терминальным программным обеспечением.

DB 9 мама

DB 25 мама

Кабель контроля (мониторинга) RS-232

Полудуплексная работа

Контроль связи по RS-232 между двумя устройствами с помощью компьютера возможен при помощи кабеля, изображенного на рисунке выше. Два разъема подключаются к устройствам, а третий подключается к наблюдающему компьютеру. Этот кабель принимает информацию от двух источников только на один приемный порт RS-232. Поэтому, если оба устройства начнут одновременную работу, контролируемая информация на входе компьютера будет нарушена. В большинстве случаев связь осуществляется в полудуплексном режиме. Для этих режимов этот кабель будет работать без проблем.

Распиновки кабелей RS-232

Условные обозначения:

  • F — «мама»;
  • M — «папа»;
  • «-» — соединение;
  • «х» — нет соединения;
  • «+» — линии объединяются.

DTE 9 F <—> DCE 9 MСоединение прямое:

  • 1 — 1
  • 2 — 2
  • 3 — 3
  • 9 — 9

Примечание: Экраны соединяются.

DTE 9 F <—> DTE 9 F (Null-modem 9)Соединение:

  • 1+7- 8
  • 2 — 3
  • 3 — 2
  • 4 — 6
  • 5 — 5
  • 6 — 4
  • 7+1 — 8
  • 8 — 1+7

Примечание: 1 и 7 контакты на разъемах соединены между собой. 9 не используется. Экраны соединяются.

DTE 25 F <—> DCE 9 MСоединение:

  • 2 — 3
  • 3 — 2
  • 4 — 7
  • 5 — 8
  • 6 — 6
  • 7 — 5
  • 8 — 1
  • 20 — 4
  • 22 – 9

Примечание: Остальные не используются. Экраны соединяются.

DTE 9 F <—> DCE 25 MСоединение:

  • 1 — 8
  • 2 — 3
  • 3 — 2
  • 4 — 20
  • 5 — 7
  • 6 — 6
  • 7 — 4
  • 8 — 5
  • 9 — 22

Примечание: Остальные не используются. Экраны соединяются.

DTE 25 F <—> DCE 25 MСоединение прямое:

  • 1 — 1
  • 2 — 2
  • 3 — 3
  • 4 — 4
  • 24 — 24
  • 25 – 25

Примечание: Экраны соединяются.

DTE 25 F <—> DTE 25 F (Null-modem Универсальный 25)

Соединение:

  • 1 — 1
  • 2 — 3
  • 3 — 2
  • 4 — 5
  • 5 — 4
  • 6+8 — 20
  • 7 — 7
  • 20 — 6+8

Примечание: Остальные не используются. Экраны соединяются.

Заглушка на COM-порт 9 pin FСоединение:

  • 2+3
  • 1+6+4
  • 7+8

Примечание: Остальные не используются.

Заглушка на COM-порт 25 pin FСоединение:

  • 2+3
  • 4+5
  • 6+8+20

Примечание: Остальные не используются.

Описание интерфейса RS-422

Интерфейс RS-422 похож на RS-232, т.к. позволяет одновременно отправлять и принимать сообщения по отдельным линиям (полный дуплекс), но использует для этого дифференциальный сигнал, т.е. разницу потенциалов между проводниками А и В.

Скорость передачи данных в RS-422 зависит от расстояния и может меняться в пределах от 10 кбит/с (1200 метров) до 10 Мбит/с (10 метров).

В сети RS-422 может быть только одно передающее устройство и до 10 принимающих устройств.

Линия RS-422 представляет собой 4 провода для приема-передачи данных (2 скрученных провода для передачи и 2 скрученных провода для приема) и один общий провод земли GND.

Скручивание проводов (витая пара) между собой позволяет избавиться от наводок и помех, потому что наводка одинаково действует на оба провода, а информация извлекается из разности потенциалов между проводниками А и В одной линии.

Напряжение на линиях передачи данных может находится в диапазоне от -6 В до +6 В.

Логическому 0 соответствует разница между А и В больше +0,2 В.

Логической 1 соответствует разница между А и В меньше -0,2 В.

Стандарт RS-422 не определяет конкретный тип разъема, обычно это может быть клеммная колодка или разъем DB9.

Распиновка RS-422 зависит от производителя устройства и указывается в документации на него.

При подключении устройства RS-422 нужно сделать перекрестие между RX и TX контактами, как показано на рисунке.

Т.к. расстояние между приемником и передатчиком RS-422 может достигать 1200 метров, то для предотвращения отражения сигнала от конца линии ставится специальный 120 Ом согласующий резистор или «терминатор». Этот резистор устанавливается между RX+ и RX- контактами в начале и в конце линии.

Как проверить работу RS-422?

Для проверки устройств с RS-422 лучше воспользоваться конвертером из RS-422 в RS-232 или USB (I-7561U). Тогда вы сможете воспользоваться ПО для работы с СОМ портом.

USB — COM переходник на микроконтроллере Attiny2313

Питание микроконтроллера Attiny2313 осуществляется непосредственно от шины питания USB. Вся схема собрана на односторонней плате (SMD и ТН варианты). Устройство поддерживает только сигналы Rx и Tx.

Прошивку к переходнику, рисунок печатной платы (SMD и TH), а также программу терминал для проверки адаптера можно скачать по ниже приведенной ссылке:

Скачать файлы для USB переходника (1,4 Mb, скачано: 2 612)

При программировании Attiny2313, фьюзы необходимо выставить следующим образом:

Для работы устройства необходимо установить драйвер виртуального COM порта. Для этого скачиваем его:

Скачать драйвер (1,1 Mb, скачано: 2 808)

Теперь вставляем в USB порт компьютера наш адаптер, компьютер должен выдать сообщение «Найдено новое устройство», а затем предложит установить для него драйвер. Выбираем пункт «Установить с указанного места» и нажимаем на кнопку «Далее». Затем в новом окне выбираем путь к папке скаченного и распакованного драйвера и опять жмем кнопку «Далее». Спустя несколько секунд драйвер будет установлен и устройство будет готово к работе.

Для проверки работоспособности устройства, временно замыкаем Rx и Tx выводы и с программы терминала, так же находящегося в архиве, выставляем номер COM порта и отправляем любое сообщение. Для этого пишем например «Привет» и нажимаем кнопку «Send». Если переходник рабочий, то написанное сообщение появится в верхнем окне программы.

Передача данных

Передача данных осуществляется по одной линии передачи (TxD). Здесь «0» рассматривается как пробел, а «1» – как состояние отметки.

Передатчик отправляет по одному биту за раз. После отправки одного бита отправляется следующий. Таким образом, все биты данных отправляются на приемник с заранее определенной скоростью передачи. При передаче каждого бита будет определенная задержка. Например, чтобы отправить один байт данных со скоростью 9600 бод, каждый бит отправляется с задержкой 108 мкс. Данные добавляются с битом четности. Таким образом для отправки 7 бит требуется 10 бит данных.

Обзор RS422

Полное название стандарта RS-422 — «электрические характеристики схемы цифрового интерфейса со сбалансированным напряжением», который определяет характеристики схемы интерфейса. На самом деле есть сигнальный провод заземления, всего 5 проводов. Поскольку приемник имеет высокий входной импеданс, а драйвер передачи имеет более сильную управляемую способность, чем RS232, разрешается подключать несколько приемных узлов к одной линии передачи, можно подключить до 10 узлов. Одно ведущее устройство (Master), а остальные являются ведомыми устройствами (Slave). Подчиненные устройства не могут обмениваться данными, поэтому RS-422 поддерживает двустороннюю связь «точка-многие». Входное сопротивление приемника составляет 4 кОм, поэтому максимальная допустимая нагрузка передатчика составляет 10 Ом.TImes; 4k + 100Ω (оконечное сопротивление).

  Принцип работы цепей RS-422 и RS-485 в основном одинаковый, оба из которых отправляются и принимаются дифференциальным способом, без цифрового заземления., Дифференциальная работа является основной причиной большого расстояния передачи при одинаковых скоростях.Это фундаментальное различие между ними и RS232, поскольку RS232 является несимметричным входом и выходом, и для дуплексной работы требуется по крайней мере цифровое заземление. Три линии (асинхронная передача) линии отправки и линии приема, а также другие линии управления также могут быть добавлены для полной синхронизации и других функций.

RS-422 может работать в полнодуплексном режиме через две пары проводов витой пары, не влияя друг на друга, в то время как RS485 может работать только в полудуплексном режиме, отправка и прием не могут выполняться одновременно, для этого требуется только пара витых пар. RS422 и RS485 могут передавать 1200 метров со скоростью менее 19 кбит / с. Новый тип линии трансивера может быть подключен к части оборудования.

Электрические характеристики RS-422 точно такие же, как у RS-485. Основное отличие: RS-422 имеет 4 сигнальные линии: две отправляющие (Y, Z) и две принимающие (A, B). Поскольку прием и отправка RS-422 разделены, он может принимать и отправлять одновременно (полный дуплекс); RS-485 имеет 2 сигнальные линии: отправку и прием.

Особенности RS422:

Четырехпроводной интерфейс RS-422 использует отдельные каналы отправки и приема, поэтому нет необходимости контролировать направление данных. Любой необходимый обмен сигналами между устройствами может выполняться программно (квитирование XON / XOFF) или аппаратно (пара отдельных двойных Многожильный провод). Максимальное расстояние передачи RS-422 составляет 4000 футов (около 1219 метров), а максимальная скорость передачи составляет 10 Мбит / с. Длина сбалансированной витой пары обратно пропорциональна скорости передачи, а максимальное расстояние передачи возможно только при скорости ниже 100 кбит / с. Только на небольшом расстоянии можно получить самую высокую скорость передачи. Как правило, максимальная скорость передачи данных по кабелю витой пары длиной 100 метров составляет всего 1 Мбит / с.

RS-422 требует оконечного резистора, и его сопротивление должно быть приблизительно равным характеристическому сопротивлению кабеля передачи. При передаче на короткие расстояния оконечные резисторы не требуются, то есть оконечные резисторы, как правило, не требуются ниже 300 метров. Согласующий резистор подключается к дальнему концу кабеля передачи.

Контроль четности

Четность в RS-232 (Parity)

При передаче по последовательному каналу контроль четности может быть использован для обнаружения ошибок при передаче данных. При использовании контроля четности посылаются сообщения подсчитывающие число единиц в группе бит данных. В зависимости от результата устанавливается бит четности. Приемное устройство также подсчитывает число единиц и затем сверяет бит четности.

Типы четности

Для обеспечения контроля четности приемное и передающее устройства должны одинаково производить подсчет бита четности. То есть, определиться устанавливать бит при четном (even) или нечетном (odd) числе единиц. При контроле на четность биты данных плюс бит четности всегда должны содержать четное число единиц. В противоположном случае осуществляется контроль на нечетность.

Mark и Space биты четности

Часто в драйверах доступны еще две опции на четность: Mark и Space. Эти опции не влияют на возможность контроля ошибок. Mark означает, что устройство всегда устанавливает бит четности в 1, а Space — всегда в 0.

Обнаружение ошибок

Проверка на четность — это простейший способ обнаружения ошибок. Он может определить возникновение ошибок в одном бите, но при наличии ошибок в двух битах уже не заметит ошибок. Также такой контроль не отвечает на вопрос какой бит ошибочный. Другой механизм проверки включает в себя Старт и Стоп биты, циклические проверки на избыточность, которые часто применяются в соединениях Modbus.

Пример

В этом примере показана структура передаваемых данных со синхронизирующим тактовым сигналом. В этом примере используется 8 бит данных, бит четности и стоп бит. Такая структура также обозначается 8Е1.

Примечание: Тактовый сигнал — для асинхронной передачи это внутренний сигнал

Старт бит

Сигнальная линия может находится в двух состояниях: включена и выключена. Линия в состоянии ожидания всегда включена. Когда устройство или компьютер хотят передать данные, они переводят линию в состояние выключено — это установка Старт бита. Биты сразу после Старт бита являются битами данных.

Стоп бит

Стоп бит позволяет устройству или компьютеру произвести синхронизацию при возникновении сбоев. Например, помеха на линии скрыла Старт бит. Период между старт и стоп битами постоянен, согласно значению скорости обмена, числу бит данных и бита четности. Стоп бит всегда включен. Если приемник определяет выключенное состояние, когда должен присутствовать стоп бит, фиксируется появление ошибки.

Установка Стоп бита

Стоп бит не просто один бит минимального интервала времени в конце каждой передачи данных. На компьютерах обычно он эквивалентен 1 или 2 битам, и это должно учитываться программой драйвера. Хотя, 1 стоп бит наиболее встречающийся вариант, выбор 2 бит в худшем случае немного замедлит передачу сообщения.

(Есть возможность установки значения стоп бита равным 1.5. Это используется при передаче менее 7 битов данных. В этом случае не могут быть переданы символы ASCII, и поэтому значение 1.5 используется редко.)

Управление потоком

Управление потоком

Управление потоком представляет управлять передаваемыми данными. Иногда устройство не может обработать принимаемые данные от компьютера или другого устройства. Устройство использует управление потоком для прекращения передачи данных. Могут использоваться аппаратное или программное управление потоком.

Аппаратное управление потоком

Аппаратный протокол управления потоком RTS/CTS. Он использует дополнительно два провода в кабеле, а не передачу специальных символов по линиям данных. Поэтому аппаратное управление потоком не замедляет обмен в отличие от протокола Xon-Xoff. При необходимости послать данные компьютер устанавливает сигнал на линии RTS. Если приемник (модем) готов к приему данных, то он отвечает установкой сигнала на линии CTS, и компьютер начинает посылку данных. При неготовности устройства к приему сигнал CTS не устанавливается.

Программное управление потоком

Программный протокол управления потоком Xon/Xoff использует два символа: Xon и Xoff. Код ASCII символа Xon — 17, а ASCII код Xoff — 19. Модем имеет маленький буфер, поэтому при его заполнении модем посылает символ Xoff компьютеру для прекращения посылки данных. При появлении возможности приема данных посылается символ Xon и компьютер продолжит пересылку данных.
Этот тип управления имеет преимущество в том, что не требует дополнительных линий, т.к. символы передаются по линиям TD/RD. Но на медленных соединениях это может привести к значительному замедлению соединения, т.к. каждый символ требует 10 битов.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: