Индуктивность и тиристоры
Проверка катушки на обрыв осуществляется замером ее сопротивления мультиметром. Элемент считается исправным, если сопротивление меньше бесконечности. Надо заметить, что не все мультиметры способны проверять индуктивность.
Проверка тиристора происходит следующим образом. Прикладываем красный щуп к аноду, а черный – к катоду. В окошке мультиметра должно отобразиться бесконечное сопротивление.
После этого управляющий электрод соединяем с анодом, наблюдая за падением сопротивления на дисплее мультиметра до сотен Ом. Управляющий электрод открепляем от анода – сопротивление тиристора не должно измениться. Так ведет себя полностью исправный тиристор.
↑ Налаживание и использование
Особого налаживания тестер не потребовал, но я настоятельно рекомендую быть осторожными с анодным напряжением, визуализация которого решена на неонке HL2. Также необходима хорошая изоляция ручки резистора R5. Учитывая, что меня пока интересовали только лампы ECC81 и EL 34, привожу их данные взятые на просторах интернета .
Тестер даёт дополнительную возможность судить об износе ламп по падению анодного тока при снижении напряжения накала. У хорошей лампы 10% снижение напряжения накала должно вызывать меньшее (в процентнтах) снижение тока анода при всех прочих равных условиях.
При этом известно, что 5% или даже 10% снижение напряжения накала способно значительно продлить ресурс ламп. Позже, когда эмиссия лампы ослабнет, можно будет вернуть накал на исходную. Правда изготовители не рекомендуют комбинировать предельный ток анода и минимальное напряжение накала. Ну так я этого и не советовал.
А что скажет уважаемое сообщество по-этому поводу: будем снижать накальное напряжение или не будем?
Стабилитроны, шлейфы/разъемы
Для тестирования стабилитрона понадобится блок питания, резистор и мультиметр. Соединяем резистор с анодом стабилитрона, через блок питания подаем напряжение на резистор и катод стабилитрона, плавно поднимая его.
На дисплее мультиметра, подключенного к выводам стабилитрона, мы можем наблюдать плавный рост уровня напряжение. В определенный момент напряжение перестает расти, независимо от того, увеличиваем ли мы его блоком питания. Такой стабилитрон считается исправным.
Для проверки шлейфов необходимо прозвонить контакты мультиметром. Каждый контакт с одной стороны должен звониться с контактом с другой стороны в режиме «прозвонки». В случае если один и тот же контакт звонится сразу с несколькими – в шлейфе/разъеме короткое замыкание. Если не звонится ни с одним – обрыв.
Иногда неисправность элементов можно определить визуально. Для этого придется внимательно осмотреть микросхему под лупой. Наличие трещин, потемнений, нарушений контактов может говорить о поломке.
Не все знают, как проверить микросхему на работоспособность мультиметром. Даже при наличии прибора не всегда удается это сделать. Бывает, выявить причину неисправности легко, но иногда на это уходит много времени, и в итоге нет никаких результатов. Приходится заменять микросхему.
Неполадки, связанные с проверкой сопротивлений
В данном режиме характерные неисправности, как правило, проявляются в измерительных диапазонах до 200 и до 2000 Ом. При попадании на вход постороннего напряжения, как правило, сгорают резисторы под обозначениями R5, R6, R10, R18, а также транзистор Q1. Кроме того, нередко пробивается и конденсатор C6. Последствия воздействия постороннего потенциала проявляются следующим образом:
- при полностью «выгоревшем» триоде Q1 при определении сопротивления мультиметр показывает одни нули;
- в случае неполного пробоя транзистора прибор с разомкнутыми концами должен показывать сопротивление его перехода.
Обратите внимание! В других режимах измерения этот транзистор замкнут накоротко и поэтому влияния на показания дисплея не оказывает. При пробое C6 мультиметр не будет работать на измерительных пределах 20, 200 и 1000 Вольт (не исключён и вариант сильного занижения показания)
При пробое C6 мультиметр не будет работать на измерительных пределах 20, 200 и 1000 Вольт (не исключён и вариант сильного занижения показания).
Транзисторы (полевые и биполярные)
Переводим мультиметр в режим «прозвонки», подключаем красный щуп к базе транзистора, а черным касаемся вывода коллектора. На дисплее должно отобразиться значение пробивного напряжения.
Схожий уровень будет показан и при проверке цепи между базой и эмиттером. Для этого красный щуп соединяем с базой, а черный прикладываем к эмиттеру.
Следующим шагом будет проверка этих же выводов транзистора в обратном включении. Черный щуп подключаем к базе, а красным щупом по очереди касаемся эмиттера и коллектора. Если на дисплее отображается единица (бесконечное сопротивление), то транзистор исправен. Так проверяются полевые транзисторы.
Биполярные транзисторы проверяются аналогичным методом, только меняются местами красный и черный щуп. Соответственно, значения на мультиметре также будут показывать обратные.
Характеристики MESTEK DM100
Режим | Диапазон | Разрешение | Погрешность |
Постоянное напряжение | 0~999.9mV/9.999V/99.99V/999.9V | 0.1mV/1mV/10mV/100mV | ±1.2%+3 |
Переменное напряжение | 0~999.9mV/9.999V/99.99V/750V | 0.1mV/1mV/10mV/100mV | ±1.5%+3) |
Постоянный ток | 0~999.9mA/99.99mA/600mA/10.00A | 0.1mA/0.01mA/0.1mA/10mA | ±1.0%+3) |
Переменный ток | 0~99.99mA/600mA/10.00A | 0.01mA/0.1mA/10mA | ±1.0%+3 |
Сопротивление | 0~999.9Ω | 0.1Ω | ±0.8%+3) |
0~9.999KΩ/99.99KΩ/999.9KΩ | 1Ω/10Ω/100Ω | ±0.8%+3 | |
0~9.999MΩ/99.99MΩ | 1KΩ/10KΩ | ±1.2%+5 | |
Емкость | 0~9.999nF/99.99nF/999.9nF | 0.001nF/0.01nF/0.1nF | ±4.0%+5 |
0~9.999μF/99.99μF/999.9μF | 1nF/10nF/100nF | ±4.0%+5 | |
0~9.999mF | 1μF | ±4.0%+0 | |
Диоды | 0,15 В ~ 3 В Прямой постоянный ток: около 1 мА; Напряжение: около 3,2 В | ||
Прозвонка | Сопротивление 0 ~ 100 Ом. При сопротивлении менее 15 Ом, встроенный зуммер звучит постоянно и горит зеленый индикатор. Если сопротивление составляет от 15 до 30 Ом сигнал зуммера прерывистый, индикатор горит зеленым. | ||
Характеристики | |||
Количество отсчетов | 10000 | ||
Дисплей | VA инверсный дисплей, аналоговая шкала + двойная цифровая шкала | ||
Окружающая температура | 0°C~60°C | 0.1°C | ±2°C |
Окружающая влажность | 20-95% | 1% | ±5.0% RH |
Тест батарей | 0~1.5 В(ток разряда 40mA) | ||
0~9 В(ток разряда 20mA) | |||
Проверка зуммера (Buzzer) | 2KHz/2.7KHz/3V(Проверка пассивных и активных зуммеров) | ||
True RMS | 1 кГц | ||
Измерение частоты переменного тока | Отображение частоты одновременно с измерением переменного напряжения | ||
Скорость выборки | Скорость выборки 10 раз/сек | ||
V.F.C | Voltage-Frequency converter. Действительное значение 40 Гц — 400 Гц (VFC: 2 кГц, демпфирование, 3 дБ) | ||
Сигнализация перегорания предохранителя | Сигнализация перегорания предохранителей 600mA/10A: надпись FUSE на экране со звуковой сигнализацией | ||
Сигнализация неправильного подключения | Сигнализация о неправильном подключении может предотвратить повреждение прибора из-за неправильной выбора режима работы | ||
Фиксация данных | Да | ||
Фонарик | Да | ||
Автоотключение | Автоматическое выключение при отсутствии манипуляций через 15 минут | ||
NCV | Бесконтактное обнаружение переменного напряжения | ||
LIVE (фаза) | Индикация фазы при подключении одного щупа | ||
Входное сопротивление | 10 MΩ | ||
Защита от перегрузки | Полная защита от перегрузки при входном напряжении менее 250 В | ||
Сигнализация разряда батареи | менее 2.4 В | ||
Общие параметры | |||
Питание | 2 шт. AA | ||
Уровень безопасности | CATIII 1000V |
Полезное: Лазерный дальномер SNDWAY: обзор и тестирование Стоит MESTEK DM100 с буквой С почти 40 долларов, простая версия чуть дешевле.
Питание всего 2 пальчиковые АА батарейки, что просто идеально, так как Крона 9 В садится очень быстро и стоит дорого, а севший литиевый АКБ не всегда есть время заряжать.
Три варианта действий
Проверка микросхем – достаточно сложный процесс, который, зачастую, оказывается невозможен. Причина кроется в том, что микросхема содержит большое число различных радиоэлементов. Однако даже в такой ситуации есть несколько способов проверки:
- внешний осмотр. Внимательно изучив каждый элемент микросхемы, можно обнаружить дефект (трещины на корпусе, прогар контактов и т.п.);
- проверка питания мультиметром. Иногда проблема кроется в коротком замыкании со стороны питающего элемента, его замена может помочь исправить ситуацию;
- проверка работоспособности. Большинство микросхем имеют не один, а несколько выходов, потому нарушение в работе хотя бы одного из элементов приводит к отказу всей микросхемы.
Самыми простыми для проверки являются микросхемы серии КР142. На них имеется всего три вывода, поэтому при подаче на вход любого уровня напряжения, на выходе мультиметром проверяется его уровень и делается вывод о состоянии микросхемы.
Следующими по сложности проверки являются микросхемы серии К155, К176 и т.п. Для проверки нужно использовать колодку и источник питания с конкретным уровнем напряжения, подбираемым под микросхему. Так же как и в случае с микросхемами серии КР142, мы подаем сигнал на вход и контролируем его уровень на выходе с помощью мультиметра.
Подручные материалы для проверки
Помимо мультиметра светильник, фонарь или прожектор на светодиодах можно проверять:
- Батарейкой. Подойдет батарейка CR2032 для материнской платы компьютера. Ее напряжения в 3 В хватает для всех типов диодов.
- Батарейкой на 4,5 и 9 В совместно с балластным сопротивлением. Оно даст падение напряжения до безопасной величины. На «Крону» подается 750 Ом, на изделия 4,5 В – от 150 до 200 Ом.
- Батарейкой от радиозвонка или пульта ДУ. Элементом на 12 В тестируется светодиодная лента. Ее контакты подкидываются на полюса, после чего находятся точки с перегоревшими светодиодами. Аналогично тестируются коннекторы.
- Специальным led-тестером, работающим на основе пальчиковых батареек с параллельным соединением.
- Старым зарядным устройством, с которого удаляется штекер на телефон и защищается контакт. Красный провод будет плюсом и пойдет на анод. Черный задействуется в качестве минуса и подсоединяется на катод. Если напряжения хватает, СД загорается.
Неудобства при использовании:
- При каждом измерении нужно сначала приложить деталь к контактным площадка, а потом нажимать кнопку «Тест», причем времени проходит от момента включения до измерения не так мало.
- Если тестируемый компонент сгорел с КЗ всех трех ножек, то в этом случае тестер перейдет в режим самотестирования.
- Нет подсветки индикатора. Я подозреваю что просто не впаяли самые правые два пина на плате индикатора. Они кстати помечаются как «А» и «К».
- Светодиодик индицирующий включение прибора горит очень ярко.
- В тестере прошита старая программа, на профильных форумах, есть более свежие, у которых более удобно показывается распиновка компонента по ножкам.
- Две клеммы непонятно какие, провод в них не зажмешь. Только штыри.
А вот и сама плата, маркировку Меги соскребли.
И вот не распаянная часть платы. На ней оказалась схема модуля обеспечивающей работу тестера от литиевого аккумулятора.
Собственно название редакции «Booster edition».
Что такое тестер непрерывности
Тестер непрерывности — это простое устройство, состоящее из двух измерительных зондов и светового (светодиодного) индикатора или зуммера. Он используется для обнаружения наличия непрерывности или обрыва между двумя концами проводника, который подключен к его измерительным зондам
Например, если два датчика тестера непрерывности касаются двух концов жгута проводов, его индикатор может активироваться, чтобы подтвердить, что нет прерывания в непрерывности провода и все в порядке, или, если индикатор показывает бездействие это будет означать, что есть разрыв в непрерывности провода и требуется внимание к проводке. Он также может быть использован для выявления неисправностей в сложных электронных печатных платах, автомобильной электрике и т.д
Так как он сам работает при очень низком напряжении и создает очень высокое сопротивление между своими выводами, риск повреждения сложных компонентов печатной платы исключается
Всегда важно отключить питание тестируемой цепи, иначе тестер может активироваться через питание цепи и выдать ложную тревогу
Визуально обнаруживаемые дефекты (заводской брак)
Проверить исправность прибора на начальной стадии ремонта удобнее всего путём осмотра его электронной схемы. Для данного случая разработаны следующие правила поиска неисправностей:
необходимо тщательно обследовать печатную плату мультиметра, на которой могут иметься хорошо различимые заводские недоработки и ошибки;
особое внимание должно уделяться наличию нежелательных замыканий и некачественной пайки, а также дефектам на выводах по краям платы (в районе подключения дисплея). Для ремонта придется применить пайку;
заводские ошибки чаще всего проявляются в том, что мультиметр показывает не то, что он должен по инструкции, в связи с чем его дисплей обследуется в первую очередь.. Если мультиметр выдает неправильные показания во всех режимах и микросхема IC1 нагревается, то надо осмотреть разъемы для проверки транзисторов
Если длинные выводы замкнулись, то ремонт будет заключаться всего-навсего в их размыкании
Если мультиметр выдает неправильные показания во всех режимах и микросхема IC1 нагревается, то надо осмотреть разъемы для проверки транзисторов. Если длинные выводы замкнулись, то ремонт будет заключаться всего-навсего в их размыкании.
https://youtube.com/watch?v=Ti1HIN_YyYM
В общей же сложности визуально определяемых неисправностей может набраться достаточное количество. С некоторыми из них вы можете ознакомиться в таблице и затем устранить своими руками. (по адресу: http://myfta.ru/articles/remont-multimetrov.) Перед ремонтом необходимо изучить схемы мультиметра, которая обычно дается в паспорте.
Тестирование АЦП
Прежде чем говорить о ремонте, необходимо провести проверку. Простым способом тестирования АЦП на пригодность к дальнейшей эксплуатации является прозвонка его выводов с использованием заведомо исправного мультиметра того же класса. Отметим, что для такой проверки не подходит случай, когда второй мультиметр неправильно показывает результаты измерений.
При подготовке к работе прибор переводится в режим «прозвонки» диодов, а измерительный конец провода в красной изоляции подсоединяется к выводу микросхемы «минус питания». Вслед за этим чёрным щупом последовательно касаются каждой из её сигнальных ножек.
Так как на входах схемы имеются защитные диоды, включённые в обратном направлении, после подачи прямого напряжения от стороннего мультиметра они должны открыться.
Факт их открытия фиксируется на дисплее в виде падения напряжения на переходе полупроводникового элемента. Аналогично проверяется схема при подключении щупа в чёрной изоляции к контакту 1 (+ питания АЦП) с последующим касанием всех остальных выводов. При этом показания на экране дисплея должны быть такими же, как в первом случае.
https://youtube.com/watch?v=sFvLYuZegS8
При смене полярности подключения второго измерительного прибора его индикатор всегда показывает обрыв, поскольку входное сопротивление рабочей микросхемы достаточно велико.
При этом неисправными будут считаться выводы, в обоих случаях показывающие конечное значение сопротивления. Если при любом из описанных вариантов подключения мультиметр показывает обрыв – это с большой вероятностью свидетельствует о внутреннем обрыве схемы.
Проверка дисплея
Если хотят проверить исправность и провести ремонт индикатора мультиметра, то обычно прибегают к помощи дополнительного прибора, выдающего сигнал подходящей частоты и амплитуды (50-60 Гц и единицы вольт). При его отсутствии можно воспользоваться мультиметром типа M832 с функцией генерации прямоугольных импульсов (меандра).
Для диагностики и ремонта дисплея мультиметра необходимо вынуть рабочую плату из корпуса прибора и выбрать удобное для проверки контактов индикатора положение (экраном вверх).
После этого следует присоединить конец одного щупа к общему выводу исследуемого индикатора (он расположен в нижнем ряду, крайний слева), а другим концом поочередно прикасаться к сигнальным выводам дисплея.
При этом все его сегменты должны загораться один за другим согласно разводке сигнальных шин, с которой следует ознакомиться отдельно. Нормальное «срабатывание» проверяемых сегментов во всех режимах свидетельствует о том, что дисплей исправен.
Последнее замечание касается лишь постоянных величин, при измерении которых мультиметр хорошо защищён по перегрузкам. Серьёзные затруднения с выявлением причин отказа прибора чаще всего встречаются при определении сопротивлений участка цепи и в режиме прозвонки.
Применение специального тестера
Для более сложных проверок нужно пользоваться специальным тестером микросхем, который можно приобрести или сделать своими руками. При прозвонке отдельных узлов микросхемы на экран дисплея будут выводиться данные, анализируя которые можно прийти к выводу об исправности или неисправности элемента. Стоит не забывать, что для полноценной проверки микросхемы нужно полностью смоделировать ее нормальный режим работы, то есть обеспечить подачу напряжения нужного уровня. Для этого проверку стоит проводить на специальной проверочной плате.
Зачастую, осуществить проверку микросхемы, не выпаивая элементы, оказывается невозможным, и каждый из них должен прозваниваться отдельно. О том, как прозвонить отдельные элементы микросхемы после выпаивания будет рассказано далее.
Универсальный разгон мультиметра тестера
Она имеет отечественный аналог КПВ5. Микросхема устроена так, что имеет основной вход, предельные значения которого есть напряжение от Микросхема настолько универсальна, что на ней делают тестеры, термометры, измерители давления… в общем, все, что имеет линейное изменение напряжение с датчика. Теперь о частотах ее работы. Стандартная частота для нее 56кГц, и что самое странное, во всех тестерах она занижена, и равна примерно 20кГц. Видимо, это сделано для усреднения результата, но, тогда, скажем, быстроизменяющееся напряжение или ток в небольших пределах мы будем видеть как стабильное число, в то время как оно совсем не стабильно.
как проверить микросхеу ICL без замены? Какой повод для проверки этой микросхемы? 2. Какие приборы имеются?.
Начнём с измерений
Как известно, у мультиметра (даже дешевого) есть несколько режимов работы. Это и звуковая прозвонка, и омметр, и вольтметр, как на постоянном, так и на переменном токе, и амперметр. Есть также, думаю практически никогда не используемая большинством ремонтников, функция проверки биполярных транзисторов.
Мультиметр — режимы
Таким образом используя прозвонку, омметр и вольтметр, мы можем проверить на соответствие режимам работы наше устройство. Звуковую прозвонку используем в случае если рассчитываем, что сопротивление на участке цепи, в котором проводятся измерение, у нас будет менее 30 — 40 Ом. В таком случае услышим звуковой сигнал и увидим на экране падение напряжения, в милливольтах.
Прозвонка диода
Этого момента нужно коснуться подробнее: при проверке диодов или прозвонке p-n переходов транзисторов, мы как раз и видим в случае если наш транзистор или диод исправен то самое падение напряжения 500-700 миллиВольт.
Исключение составляют диоды Шоттки, там падение напряжения составляет всего порядка 150-250 миллиВольт. Данное значение при измерениях мы видим проводя измерения, разумеется, только в прямом включении диода или p-n перехода транзистора, при обратном включении в случае исправной детали на экране мультиметра должна быть единица
Если при измерении звучит звуковой сигнал (не важно при прямом или обратном включении) это означает что p-n переход в полупроводниковых приборах пробит, у нас короткое замыкание в цепи и устройство не будет функционировать должным образом
Измерение на звуковой прозвонке
Исключение составляет вышедший из строя полупроводниковый прибор имеющий большее сопротивление между своими выводами, обычно составляющее, условно говоря, порядка 80-300 Ом. В таком случае наша деталь просто выполняет функции низкоомного резистора. Если вы абсолютно уверены что на данном участке цепи нет высокого напряжения, например в устройстве питающемся от внешнего адаптера питания, можно прикоснуться рукой к корпусу детали (стараясь при этом не касаться ее выводов) и попытаться на ощупь определить греется ли аномально наша деталь.
Южный мост может греться
Температуру свыше 70-80 градусов вы обязательно на ощупь отличите от температуры детали работающей в нормальном режиме. В данном случае палец вряд ли вытерпит более 3-х секунд. Кстати, таким образом можно легко диагностировать микросхемы, например южный мост на материнской плате, особенно когда он не имеет радиатора, на нагрев свыше нормы. Аналогично мы можем потрогав пальцем, к примеру, тот же южный мост, с целью ощутить умеренный нагрев который является нормальным явлением при работе любого полупроводникового устройства.
И если микросхема спустя 5 минут работы осталась абсолютно холодной, возможно там обрыв по цепям питания либо другая поломка, вероятнее всего связанная с обрывом нашей цепи.
Неполадки в круговом переключателе
Ремонт потребуется, если возникли неисправности, связанные с пропаданием контакта в круговом галетном переключателе. Это проявляется не только в том, что не включается мультиметр, но и в невозможности получить нормальное соединение без сильного нажатия на галетник. Объясняется это тем, что в дешёвых китайских мультиметрах контактные дорожки редко покрываются качественной смазкой, что приводит к их быстрому окислению.
При эксплуатации в пыльных условиях, например, они через какое-то время загрязняются и теряют контакт с переключающей планкой. Для ремонта этого узла мультиметра достаточно удалить из его корпуса печатную плату и протереть контактные дорожки ваткой, смоченной в спирте. Затем на них следует нанести тонкий слой качественного технического вазелина.
В заключении отметим, что при обнаружении или замыканий контактов в мультиметре следует устранить эти недоработки, воспользовавшись низковольтным паяльником с хорошо отточенным жалом. В случае отсутствия полной уверенности в причине поломки прибора следует обратиться к специалисту по ремонту измерительной техники.
Характерные неисправности мультиметров MASTECH
Перед диагностикой убедитесь в работоспособности батарейки питания. При необходимости замените батарейку. Никогда не оставляйте щуп в гнезде «10А» после окончания измерений! Короткое замыкание сожжет дорожки печатной платы под переключателем илии микросхему. Это не восстанавливается!
Ремонт мультиметра DT-838
Ремонт мультиметра S-Line DT-838
Проверял тестером транзисторы и они у меня оказались все не исправные, чуть не выкинул. А оказалась мультиметор заглючил. (ха-ха)
И так мультиметор глючил но измерениях сопротивлений и на про звонке но пищал. На напряжение показывал нормально.
Поискав схему именно такую не нашел, попалась вот такая:
Разобрав на плате заметил что R3(маркировка на плате,на схеме другая) имеется небольшая точка (на резисторе написано 152) 1.5 кОм, измерив другим мультиметром (он у меня вообще глючный но ориентироваться можно ) показал более 2 кОм.
После замены все заработало. Резистор взял со старой материнке компа, отпаивал и припаивал феном самодельной паяльной станции.
Мультиметр
Неисправность диодов мультиметром найти проще и легче определить причину поломки вашего прибора.
Также он поможет замерить:
- силу тока;
- перепады в напряжении;
- ёмкость конденсаторов;
- найти обрыв цепи и так далее.
Современные мультиметры в состоянии работать с различными видами токов:
- переменный;
- постоянный.
Самые популярные на современном рынке — цифровые устройства.
Но еще встречаются в продаже и приборы аналогового типа.
И те и другие часто применяются в домашних условиях.
Но цифровые точнее (с погрешностью измерений в 0.5 %) и ими проще выполняется прозвонка.
Аналоговые мультиметры обладают более высокой надежностью и низкой стоимостью. Но менее точны — погрешность 1.5–2 %.
Неполадки в АЦП
Обследование и ремонт неработающего мультиметра, неисправность которого не связана с уже рассмотренными случаями, рекомендуется начинать с проверки напряжения 3 Вольта на питающей шине АЦП. При этом в первую очередь необходимо убедиться в том, что отсутствует пробой между питающим выводом и общей клеммой преобразователя.
Пропадание элементов индикации на экране дисплея при наличии питающего преобразователь напряжения с большой долей вероятности свидетельствует о повреждении его схемы. Такой же вывод можно сделать и при выгорании значительного количества схемных элементов, расположенных поблизости от АЦП.
Выводы
Если же это были вторичные цепи, там чаще всего просто срабатывает защита блока питания и устройство просто не включается до тех пор, пока короткое замыкание, вызывающее очень большое потребление, не будет устранено. Так что когда электрики говорят, что практически любая поломка, за редким исключением когда параметры деталей уплывут, например у подсохших электролитических конденсаторов, и соответственно увеличившегося ESR ЭПС, у нас остаются всего 2 поломки:
- Есть контакт там где его не должно быть или иначе говоря то самое короткое замыкание, часто минуя нагрузку, потому что ток идет по пути наименьшего сопротивления или по нашему сгоревшему, к примеру p-n переходу транзистора.
- Либо нет контакта там где он должен быть, обрыв цепи, отгорание нагрузки или силового полупроводника уходящего в обрыв, а не в короткое замыкание, что кстати случается в намного меньшем проценте случаев при сгорании полупроводников.
В данной статье я попытался объяснить логику поиска неисправностей глазами ремонтника, так как ее видим мы, проводя диагностику, проанализировав схему и сверяясь с показаниями мультиметра и условно держа в голове значения сопротивления для каждой конкретной детали в исправном и неисправном состоянии. Много дополнительной информации ищите в разделе сайта «РЕМОНТ». Всем удачных ремонтов! AKV.