Неинвертирующий усилитель на оу

Содержание:

Инвертирующий и не инвертирующий усилитель

Инвертирующий усилитель и неинвертирующий усилитель — это два усилителя, которые разработаны с использованием операционного усилителя. Инвертирующий усилитель использует инвертирующий вход операционного усилителя в качестве основного входа, в то время как неинвертирующий вход заземляется. Неинвертирующий усилитель использует неинвертирующий вход операционного усилителя в качестве основного входа, в то время как инвертирующий вход заземляется. Оба этих режима усилителя очень важны в схемах операционных усилителей. Эти схемы широко используются для добавления схем, умножителей, дифференцирующих схем, интегральных схем, логических вентилей и многих других схем, разработанных с использованием операционного усилителя. В этой статье мы собираемся обсудить, что такое инвертирующий усилитель и неинвертирующий усилитель, их применение, сходство между ними и, наконец, разницу между инвертирующим усилителем и неинвертирующим усилителем.

Что такое инвертирующий усилитель?

Чтобы понять, что такое инвертирующий усилитель, нужно сначала понять, что такое операционный усилитель. Операционный усилитель имеет две входные клеммы, два входа питания и одну выходную клемму. Входные клеммы известны как инвертирующий вход и неинвертирующий вход. Идеальный операционный усилитель имеет бесконечное усиление с бесконечным сопротивлением между входными клеммами и нулевым сопротивлением на выходной клемме. На практике входное сопротивление очень велико, а выходное сопротивление очень мало. Максимальное выходное напряжение операционного усилителя равно рабочему напряжению, поступающему от внешнего источника питания. Операционный усилитель — это дифференциальный усилитель, что означает, что усилитель усиливает разницу напряжений между инвертирующим входом и неинвертирующим входом.

Инвертирующий усилитель спроектирован так, что он дает вход на инвертирующий вход и заземляет неинвертирующий конец.Выходной сигнал насыщается даже при очень слабом входном сигнале из-за теоретического бесконечного усиления операционного усилителя. Выходной сигнал на 1800 не совпадает по фазе (инвертирован) с входным сигналом. Резистор обратной связи и входной резистор подключаются к схемам для уменьшения усиления и стабилизации сигнала. Инвертирующий усилитель имеет линейное изменение по отношению к инверсии входного резистора, когда резистор обратной связи фиксирован.

Что такое неинвертирующий усилитель?

Неинвертирующий усилитель — это еще один вариант усилителя, разработанный с использованием операционного усилителя. Выходной сигнал, когда вход подается на неинвертирующий вход, находится в фазе с входным сигналом. Когда подан резистор обратной связи с отрицательной обратной связью и установлен входной резистор, усилитель стабилизируется. В этом режиме усилитель имеет линейную зависимость между усилением и обратной величиной входного резистора, когда резистор обратной связи фиксирован. Однако существует значение усиления, когда резистор обратной связи равен нулю. Это делает неинвертирующий усилитель бесполезным в схемах сложения, умножения и вычитания.

В чем разница между инвертирующим усилителем и неинвертирующим усилителем?

• Инвертирующий усилитель дает инвертированный выход, тогда как неинвертирующий усилитель дает выходной сигнал, совпадающий по фазе с входным сигналом.

• Коэффициент усиления инвертирующего усилителя при использовании с отрицательной обратной связью прямо пропорционален отношению резистора обратной связи / входного резистора. Коэффициент усиления неинвертирующего усилителя также пропорционален вышеуказанному коэффициенту, но со значением точки пересечения.

Чертеж транслятора

Усилительное устройство, созданное на базе вышеуказанной картины, относится к числу разграниченного оборудования, предназначенных для повышения амплитуды 2-х толчков на вводе. Элементарная диаграмма похожего прибора показана здесь:


Диаграмма усилительного устройства.

Микрорезисторы R1 = R7 и R2 = R8 обеспечивают постановку задач величины действия приемников, а R4’, R4’’ и R5 для того, чтобы сбалансировать мостовой элемент. Оптимальная работоспособность диаграммы образуется за счет выдерживания равномерных параметров мостика.

На финишном этапе, когда нет входящего толчка на Вх.1 и Вх.2, установленное сосредоточение на выходном конце станет приравниваться к 0-му показателю, в независимости от динамики колебания питательного ингредиента электрической сети.

Настройка транзисторного усилителя низкой частоты

Питание обоих усилителей можно осуществить от 3 пальчиковых батарей или же от простого и надежного стабилизатора напряжения построенного на микросхеме LM317.

Настройка усилителя первого варианта сводится к подбору сопротивлений R2 и R4. Величину сопротивлений нужно подобрать такой, чтобы миллиамперметр, подключенный в коллекторную цепь каждого транзистора, показывал ток в районе 0,5…0,8 мА. По второй схеме необходимо также выставить коллекторный ток второго транзистора путем подбора сопротивления резистора R3.

В первом варианте возможно применить транзисторы марки КТ312, КТ3102, или их зарубежные аналоги, однако при этом необходимо будет выставить правильное смещение напряжения транзисторов путем подбора сопротивлений R2, R4. Во втором варианте в свою очередь, возможно применить кремневые транзисторы марки КТ209, КТ361, или зарубежные аналоги. При этом выставить режимы работы транзисторов можно путем изменения сопротивления R3.

В коллекторную электроцепь транзистора VT2 (обоих усилителей) взамен наушников возможно подключить динамик с высоким сопротивлением. Если же необходимо получить более мощное усиление звука, то можно собрать усилитель на TDA2030, который обеспечивает усиление до 15 Вт.

Виды и обозначения на схеме

С развитием электросхемотехники операционные усилители постоянно совершенствуются и появляются новые модели.

Классификация по сферам применения:

  1. Индустриальные – дешевый вариант.
  2. Презиционные (точная измерительная аппаратура).
  3. Электрометрические (малое значение Iвх).
  4. Микромощные (потребление малого I питания).
  5. Программируемые (токи задаются при помощи I внешнего).
  6. Мощные или сильноточные (отдача большего значения I потребителю).
  7. Низковольтные (работают при U<3 В).
  8. Высоковольтные (рассчитаны на высокие значения U).
  9. Быстродействующие (высокая скорость нарастания и частота усиления).
  10. С низким уровнем шума.
  11. Звуковой тип (низкий коэффициент гармоник).
  12. Для двухполярного и однополярного типа электрического питания.
  13. Разностные (способны измерять низкие U при высоких помехах). Применяются в шунтах.
  14. Усилительные каскады готового типа.
  15. Специализированные.

По входным сигналам ОУ делятся на 2 типа:

  1. С 2 входами.
  2. С 3 входами. 3 вход применяется для расширения функциональных возможностей. Обладает внутренней ООС.

Схема операционного усилителя достаточно сложная, и не имеет смысла его изготавливать, а радиолюбителю нужно только знать правильную схему включения операционного усилителя, но для этого следует понимать расшифровку его выводов.

Основные обозначения выводов ИМС:

  1. V+ – неинвертирующий вход.
  2. V- – инвертирующий вход.
  3. Vout – выход.Vs+ (Vdd, Vcc, Vcc+) – плюсовая клемма ИП.
  4. Vs- (Vss, Vee, Vcc-) – минус ИП.

Практически в любом ОУ присутствуют 5 выводов. Однако в некоторых разновидностях может отсутствовать V-. Существуют модели, которые обладают дополнительными выводами, которые расширяют возможности ОУ.

Выводы для питания необязательно обозначать, т.к. это увеличивает читабельность схемы. Вывод питания от положительной клеммы или полюса ИП располагают вверху схемы.

Основные характеристики

ОУ, как и другие радиодетали, имеют ТХ, которые можно разделить на типы:

  1. Усилительные.
  2. Входные.
  3. Выходные.
  4. Энергетические.
  5. Дрейфовые.
  6. Частотные.
  7. Быстродействие.

Коэффициент усиления является основной характеристикой ОУ. Он характеризуется отношением выходного сигнала ко входному. Его еще называют амплитудной, или передаточной ТХ, которая представлена в виде графиков зависимости. К входным относятся все величины для входа ОУ: Rвх, токи смещения (Iсм) и сдвига (Iвх), дрейф и максимальное входное дифференциальное U (Uдифмакс). Iсм служит для работы ОУ на входах. Iвх нужен для функционирования входного каскада ОУ. Iвх сдвига — разность Iсм для 2 входных полупроводников ОУ.

Во время построения схем нужно учитывать эти I при подключении резисторов. Если Iвх не учитывать, то это может привести к созданию дифференциального U, которое приведет к некорректной работе ОУ. Uдифмакс — U, которое подается между входами ОУ. Его величина характеризует исключение повреждения полупроводников каскада дифференциального исполнения.

Для надежной защиты между входами ОУ подключаются встречно-параллельно 2 диода и стабилитрона. Дифференциальное входное R характеризуется R между двумя входами, а синфазное входное R — величина между 2 входами ОУ, которые объединены, и массой (земля). К выходным параметрам ОУ относятся выходное R (Rвых), максимальное выходное U и I. Параметр Rвых должен быть меньшим по значению для обеспечения лучших характеристик усиления.

Для достижения маленького Rвых нужно применять эмиттерный повторитель. Iвых изменяется при помощи коллекторного I. Энергетические ТХ оцениваются максимальной мощностью, которую потребляет ОУ. Причина некорректной работы ОУ — разброс ТХ полупроводников дифференциального усилительного каскада, зависящего от температурных показателей (температурный дрейф). Частотные параметры ОУ являются основными. Они способствуют усилению гармонических и импульсных сигналов (быстродействие).

В ИМС ОУ общего и специального вида включается конденсатор, предотвращающий генерацию высокочастотных сигналов. На частотах с низким значением схемы обладают большим коэффициентом Kу без обратной связи (ОС). При ОС используется неинвертирующее включение. Кроме того, в некоторых случаях, например при изготовлении инвертирующего усилителя, ОС не используется. Кроме того, у ОУ есть динамические характеристики:

  1. Скорость нарастания Uвых (СН Uвых).
  2. Время установления Uвых (реакция ОУ при скачке U).

Что будет на выходе ОУ, если на обоих входах будет ноль вольт?

Итак, мы рассмотрели случай, когда напряжение на входах может различаться. Но что будет, если они будут равны? Что нам покажет Proteus в этом случае? Хм, показал +Uпит.

А что покажет Falstad? Ноль Вольт.

Кому верить? Никому! В реале, такое сделать невозможно, чтобы на два входа загнать абсолютно равные напряжения. Поэтому такое состояние ОУ будет неустойчивым и значения на выходе могут принимать значения или -E Вольт, или +E Вольт.

Давайте подадим синусоидальный сигнал амплитудой в 1 Вольт и частотой в 1 килоГерц на НЕинвертирующий вход, а инвертирующий посадим на землю, то есть на ноль.

Смотрим, что имеем на виртуальном осциллографе:

Что можно сказать в этом случае? Когда синусоидальный сигнал находится в отрицательной области, на выходе ОУ у нас -Uпит, а когда синусоидальный сигнал находится в положительной области, то и на выходе имеем +Uпит.

Логарифмирующий преобразователь

Одной из схем на операционном усилителе, которые нашли применение, является логарифмирующий преобразователь. В данном схеме используется свойство диода или биполярного транзистора. Схема простейшего логарифмического преобразователя представлена ниже

Логарифмирующий преобразователь.

Данная схема находит применение, прежде всего в качестве компрессора сигналов для увеличения динамического диапазона, а так же для выполнения математических функций.

Рассмотрим принцип работы логарифмического преобразователя. Как известно ток, протекающий через диод, описывается следующим выражением

где IO – обратный ток диода,
е – число е, основание натурального логарифма, e ≈ 2,72,
q – заряд электрона,
U – напряжение на диоде,
k – постоянная Больцмана,
T – температура в градусах Кельвина.

При расчётах можно принимать IO ≈ 10-9 А, kT/q = 25 мВ. Таким образом, входной ток данной схемы составит

тогда выходное напряжение

Простейший логарифмический преобразователь практически не используется, так как имеет ряд серьёзных недостатков:

  1. Высокая чувствительность к температуре.
  2. Диод не обеспечивает достаточной точности преобразования, так как зависимость между падением напряжения и током диода не совсем логарифмическая.

Вследствие этого вместо диодов применяют транзисторы в диодном включении или с заземлённой базой.

Простейший ОУ на дискретных элементах


Операционные усилители на дискретных элементах выпускают для высококачественной аудиотехники. Выглядят они так — плата или «бутерброд» из двух плат и две гребёнки для впаивания вместо интегрального восьмивыводного сдвоенного ОУ со стандартной цоколёвкой. Улучшается ли после замены звук, неизвестно. Но если ОУ на дискретных элементах сильно упростить и превратить в развёрнутый макет, учебное пособие получится отличное. В этой схеме все транзисторы структуры NPN — 2N2222 или 2N3403, структуры PNP — 2N2907 или 2N3906:

Результат сборки схемы на макетке показан на КДПВ.

В отличие от интегрального ОУ, здесь можно увидеть без микроскопа все транзисторы и назвать их функции. Q1 и Q2 — токовое зеркало, стремящееся равномерно распределить токи между транзисторами дифференциальной пары Q3 и Q4. Ну а Q5 и Q6 — ещё одно токовое зеркало, стремящееся привести суммарный ток через оба транзистора дифференциальной пары к току через резистор Rprg.

В исходном состоянии к входам усилителя подключены переменные резисторы — один к неинвертирующему, второй к инвертирующему. Соединив выход усилителя с входом вольтметра, попробуйте регулировать переменными резисторами напряжения на входах усилителя, и вы обнаружите, что изменение напряжения на первом входе действительно приводит к изменению напряжения на выходе в том же направлении, а изменение напряжения на втором входе — к противоположному результату

Выставьте на обоих входах одинаковые напряжения, затем слегка поменяйте любое из них, и обратите внимание, как резко от этого изменится выходное напряжение

Убедившись, что схема работает, попробуйте подключить устройство по какой-нибудь стандартной схеме включения ОУ. Начнём с повторителя напряжения, для этого необходимо соединить выход с инвертирующим входом, а на неинвертирующий вход подать регулируемое напряжение:

На макетке это будет выглядеть так:

Сравнив напряжения на входе и выходе схемы, вы обнаружите, что они отличаются друг от друга не более, чем на несколько десятков милливольт. Эта схема хороша, если усиление требуется не по напряжению, а по мощности. Для усиления же по напряжению нужно задать его коэффициент, добавив в цепь обратной связи два резистора. От соотношения их сопротивлений и зависит коэффициент усиления по напряжению, если они равны, этот коэффициент равен двум:

На макетке:

Конечно, чуда не произойдёт, и заставить выходное напряжение превысить напряжение питания вы не сможете. Но даже в том диапазоне, в котором эта схема действительно усиливает напряжение в два раза, вы обнаружите неточность в несколько десятков милливольт. Выбрать разумный компромисс между точностью и потребляемой мощностью можно подбором «программирующего» резистора в диапазоне от 10 кОм до 1 МОм. Меньше 10 кОм ставить резистор нельзя, поскольку транзисторы токового зеркала могут выйти из строя от перегрева.

У некоторых интегральных ОУ выводы для такого «программирования» выведены наружу. Но обычно этого не сделано, и в этом случае сопротивление встроенного «программирующего» резистора такое, какое счёл оптимальным разработчик.

Исключив переменный резистор, добавив конденсаторы на вход и выход, и выставив добавочными резисторами желаемый коэффициент усиления, можно получить усилитель для наушников.

Повторитель напряжения на ОУ. Принцип работы

Повторитель напряжения — это самый простой из возможных усилителей, обладающих отрицательной обратной связью (ООС). Выходное напряжение точно равно входному напряжению. Если оно ничем не отличаются, то вы можете спросить — зачем это нужно, если от этого ничего не изменяется?

Суть в том, что речь идет о напряжении, а не о токе. Так вот, повторитель напряжения почти не потребляет тока от источника сигнала, и позволяет получить довольно высокий ток со своего выхода.

Нам часто приходится иметь дело с активными радиокомпонентами, которые имеют очень малый выходной ток. Примером такого компонента является микрофон или фототранзистор. Подключение к ним элементов с низким сопротивлением приведет к уменьшению напряжения выходного сигнала, генерируемого этими источники.

В такой ситуации имеет смысл использовать повторитель напряжения. Он имеет высокое входное сопротивление, поэтому он не снижает и не искажает входной сигнал, а так же обладает низким выходным сопротивлением, что позволяет подключить энергоемкие компоненты, например, светодиод.

Цифровой мультиметр AN8009

Большой ЖК-дисплей с подсветкой, 9999 отсчетов, измерение TrueRMS…

Подробнее

Чтобы понять, как работает повторитель напряжения, мы должны знать три элементарных правила, определяющие работу операционного усилителя:

Предположим, что входное напряжение стало 3В, а в настоящее время на выходе у нас 1В. Что произойдет? Усилитель определяет, что между инвертирующим входом (-) и неинвертирующим (+) разница составляет 2В.

Поэтому, в соответствии с правилом №1, выходное напряжение увеличивается до тех пор, пока напряжения на входах не сравняют. Ситуацию дополнительно упрощает тот факт, что выход соединен непосредственно с инвертирующим входом (-), и это неизбежно приводит к тому, что напряжение на этих двух выводах становиться одинаковым.

Часто, в схеме повторителя напряжения, можно встретить дополнительный резистор в цепи обратной связи. Он необходим там, где требуется повышенная точность. Правила №1 и №2 относятся к идеальному операционному усилителю, которого в реальности нет.

Напряжения на входах не могут быть идеально одинаковыми, через них протекает небольшой ток, поэтому напряжение на выходе может отличаться от входного напряжения на несколько милливольт. Резистор R предназначен для уменьшения влияния этих недостатков. Он должен иметь сопротивление равное сопротивлению источника сигнала.

Принцип работы операционного усилителя

Давайте рассмотрим, как работает ОУ

Принцип работы ОУ очень прост. Он сравнивает два напряжения и на выходе уже выдает отрицательный, либо положительный потенциал питания. Все зависит от того, на каком входе потенциал больше. Если потенциал на НЕинвертирующем входе U1 больше, чем на инвертирующем U2, то на выходе будет +Uпит, если же на инвертирующем входе U2 потенциал будет больше, чем на НЕинвертирующем U1, то на выходе будет -Uпит. Вот и весь принцип ;-).

Давайте рассмотрим этот принцип в симуляторе Proteus. Для этого выберем самый простой и распространенный операционный усилитель LM358 (аналоги 1040УД1, 1053УД2, 1401УД5) и соберем примитивную схему, показывающую принцип работы

Подадим на НЕинвертирующий вход 2 Вольта, а на инвертирующий вход 1 Вольт. Так как на НЕинвертирующем входе потенциал больше, то следовательно, на выходе мы должны получить +Uпит. Мы получили 13,5 Вольт, что близко к этому значению

Но почему не 15 Вольт? Виновата во всем сама внутренняя схемотехника ОУ. Максимальное значение ОУ не всегда может равняться положительному либо отрицательному напряжению питания. Оно может отклоняться от 0,5 и до 1,5 Вольт в зависимости от типа ОУ.

Но, как говорится, в семье не без уродов, и поэтому на рынке уже давно появились ОУ, которые могут выдавать на выходе допустимое напряжение питания, то есть в нашем случае это значения, близкие к +15 и -15 Вольтам. Такая фишка называется Rail-to-Rail, что в дословном переводе с англ. “от рельса до рельса”, а на языке электроники “от одной шины питания и до другой”.

Давайте теперь на инвертирующий вход подадим потенциал больше, чем на НЕинвертирущий. На инвертирующий подаем 2 Вольта, а на НЕинвертирующий подаем 1 Вольт:

Как вы видите, в данный момент выход “лег” на -Uпит, так как на инвертирующем входе потенциал был больше, чем на НЕинвертирующем.

Чтобы не качать лишний раз программный комплекс Proteus, можно в онлайне с помощью программы Falstad сэмулировать работу идеального ОУ. Для этого выбираем вкладку Circuits—Op-Amps—>OpAmp. В результате на вашем экране появится вот такая схемка:

На правой панели управления увидите бегунки для добавления напряжения на входы ОУ и уже можете визуально увидеть, что получится на выходе ОУ при изменении напряжения на входах.

Способы борьбы с током смещения

В некоторых случаях током смещения можно пренебречь, если он не оказывает сильного влияния на ваши требования по сигналу. Но если все-таки вы разрабатываете какое-либо точное устройство, где выходной сигнал должен строго вписываться в рамки ТЗ, то в этом случае можно прибегнуть к таким способам:

1) Ставить в цепь обратной связи резистор малого номинала.

На малом сопротивлении падает малое напряжение. Следовательно, на выходе уже будет меньшее постоянное напряжение. Стандартный диапазон резисторов от нескольких килоом и до 50 кОм.

2) Ввести в схему компенсирующий резистор

В этом случае он будет определяться по формуле:

Если все-таки выходной сигнал соответствует вашим ожиданиям и без RК , то лучше его не ставить, так как любой резистор вносит шумовые искажения в сигнал. Зачем лишний раз добавлять в схему шум?

3) Использовать ОУ с входными цепями, построенными на полевых транзисторах, либо подбирать ОУ с малыми токами смещения, благо сейчас технологии производства таких ОУ далеко шагнули вперед.

Что такое операционный усилитель

Операционный усилитель (ОУ) англ. Operational Amplifier (OpAmp), в народе – операционник, является усилителем постоянного тока (УПТ) с очень большим коэффициентом усиления. Словосочетание «усилитель постоянного тока» не означает, что операционный усилитель может усиливать только постоянный ток. Имеется ввиду, начиная с частоты в ноль Герц, а это и есть постоянный ток. Термин «операционный» укрепился давно, так как первые образцы ОУ использовались для различных математических операций типа интегрирования, дифференцирования, суммирования и тд. Коэффициент усиления ОУ зависит от его типа, назначения, структуры и может превышать 1 млн!

Рейтинг
( 1 оценка, среднее 5 из 5 )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: