Особенности
Стоит отметить, что стабилизатор тока LM317 удобен для создания простых регулируемых импульсных приборов. Они могут применяться в качестве прецизионного стабилизатора, посредством подсоединения постоянного резистора между двумя выходами.
Создание вторичных питающих источников, работающих при недлительных коротких замыканиях, стало возможным благодаря оптимизации показателя напряжения на управляющем выводе системы. Программа удерживает его на входе в пределах 1,2 вольта, что для большинства нагрузок очень мало. Стабилизатор тока и напряжения LM317 изготавливается в стандартном транзисторном остове ТО-92, режим рабочих температур составляет от -25 до +125 градусов по Цельсию.
Схема стабилизации напряжения
Итак, у вас есть микросборка LM317T, схема блока питания на ней перед глазами, теперь нужно определить назначение ее выводов. Их у нее всего три – вход (2), выход (3) и масса (1). Поверните корпус лицевой стороной к себе, нумерация производится слева направо. Вот и все, теперь осталось осуществить стабилизацию напряжения. А сделать это несложно, если выпрямительный блок и трансформатор уже готовы. Как вы понимаете, минус с выпрямителя подается на первый вывод сборки. С плюса выпрямителя происходит подача напряжения на второй вывод. С третьего снимается стабилизированное напряжение. Причем по входу и выходу необходимо установить электролитические конденсаторы с емкостью 100 мкФ и 1000 мкФ соответственно. Вот и все, только лишь на выходе желательно поставить постоянное сопротивление (порядка 2 кОм), которое позволит электролитам быстрее разряжаться после выключения.
Паяльник на 12 вольт
В предыдущих материалах мы рассматривали исключительно паяльники на 220 В, а сегодня пришло время обзора низковольтного.
Согласно руководству по эксплуатации производителя S-Line, мини электропаяльник ZD-20A с напряжением питания 12 вольт и мощностью 8 ватт предназначен для монтажной пайки оловянно – свинцовыми припоями элементов радиоэлектронной аппаратуры. Для питания следует применять переменное напряжение.
Класс защиты второй, рабочая температура паяльного жала 250–400 градусов, время разогрева 3–5 минут. Во избежание перегрева рекомендуется через каждые 3-4 часа работы отключать его на 15-20 минут для охлаждения. И наконец, во избежание летального исхода всякий ремонт производить в специализированной мастерской.
Давно уже посматривал в сторону этого паяльника. Ещё в прошлом году собирая блок питания, нашёл место на лицевой панели для установки разъёма RCA, по простому «тюльпана», для его подключения. И вот, в прошедшие выходные, решив, что «смотрины» затянулись, пошёл и купил. Заплатил 140 рублей.
Сразу скажу, что упаковка с паяльником симпатичная — приятно взять в руки. Из внутреннего содержимого это собственно сам паяльник и инструкция по эксплуатации. Инструкция сделана одна сразу на весь ассортимент выпускаемых фирмой паяльников.
Паяльник имеет длину в 156 мм, наибольший диаметр составляет 16 мм, длина наконечника жала 12 мм, диаметр 0,5 мм. На пластмассовую ручку, в месте хвата пальцами, дополнительно одет кожух из материала низкой теплопроводности. Кабель подачи питания состоит из двух самостоятельных проводов в общей полихлорвиниловой оболочке.
В руке паяльник удобно держать между большим и указательным пальцами, поддерживая снизу средним, как авторучку. Он и весит как гелиевая авторучка.
Интересовавшее меня сопротивление спирали нагревательного элемента оказалось 104 Ом.
После подключения к блоку питания и установки напряжения в 12 вольт, стал известен более интересный параметр – токопотребление, которое составило 480 мА. Теперь можно узнать истинную мощность данного конкретного паяльника:
P = U x I , Р = 12 В х 0,48 А = 5,76 Вт
Теперь не будет лишним узнать до скольких градусов вообще и за сколько минут сможет нагреться жало паяльника.
В течении трёх минут нагрев жала осуществлялся довольно интенсивно и без труда достиг отметки в 240 градусов.
А вот дальше, в течении последующей минуты, его температура с трудом увеличилась только на 7 градусов. Рассудил это так:
- рекомендовано было переменное напряжение
- для пайки смд компонентов этого будет вполне достаточно, скажу даже, что больше и не нужно
- если нужно, то стоит чуть поднять напряжение питания, будет и 270 и 300 градусов.
Установил на провода паяльника штекер и попытался «познакомиться поближе» с нагревательным элементом. Незамысловатое (двойной «прикус» кусачками) крепление нагревательного элемента внутри кожуха однозначно огорчило.
Далее вскрытие продолжать не стал. Единственным выявленным недостатком является способ крепления нагревательного элемента, который затруднит разборку паяльника в случае необходимости его ремонта или производства доработки.
Паяльник занял своё рабочее место. Есть платка запаянная стандартным по размерам паяльником, аккуратно это сделать тогда не получилось, достал и опробовал на ней работу паяльника – мини.
Видео
Сценарий «кино» незамысловатый, главное тут другое: сразу видно, что этот паяльник здесь к месту, везде жало наконечника «подлезет», обзор компонента не заслонит, не перегреет его, с места не сдвинет.
В прилагаемом архиве инструкция на паяльники серии ZD/ TLW, WD. В общем покупкой доволен, даже появилось настроение допаять показанную плату металлодетектора «Эльдорадо».
Ранее хотел сделать низковольтный паяльник самостоятельно, но правильно сделал, что купил и Вам этого желаю, Babay.
Форум по паяльникам
Инструменты радиолюбителя
Как проверить lm317 мультиметром ?
Мультиметром микросхемы проверить нельзя, так как это не транзистор. Что-то протестировать между контактами конечно можно, но это не гарантирует исправность микросхемы, так как она содержит большое количество различных радиоэлементов (транзисторов, резисторов и др.), которые не соединены с выводами напрямую и не «прозваниваются». Самым эффективный способ, это собрать простой стенд используя макетную плату для проверки и запитать все от батарейки, . Стенд должен представлять собой простейший стабилизатор (пару конденсаторов и резисторов).
Читать также: Db4 динистор характеристики маркировка
Схема стабилизатора напряжения 220в своими руками
При идеальной работе электрических сетей, значение напряжения должно изменяться не более чем на 10% от номинала в сторону увеличения или уменьшения. Однако на практике перепады напряжения достигают гораздо больших значений, что крайне отрицательно сказывается на электрооборудовании, вплоть до его выхода из строя.
Защититься от подобных неприятностей поможет специальное стабилизирующее оборудование. Однако из-за высокой стоимости, его применение в бытовых условиях во многих случаях экономически невыгодно. Наилучшим выходом из положения становится самодельный стабилизатор напряжения 220в, схема которого достаточно простая и недорогая.
За основу можно взять промышленную конструкцию, чтобы выяснить, из каких деталей она состоит. В состав каждого стабилизатора входят трансформатор, резисторы, конденсаторы, соединительные и подключающие кабели. Самым простым считается стабилизатор переменного напряжения, схема которого действует по принципу реостата, повышая или понижая сопротивление в соответствии с силой тока. В современных моделях дополнительно присутствует множество других функций, обеспечивающих защиту бытовой техники от скачков напряжения.
Среди самодельных конструкций наиболее эффективными считаются симисторные устройства, поэтому в качестве примера будет рассматриваться именно эта модель. Выравнивание тока этим прибором будет возможно при входном напряжении в диапазоне 130-270 вольт. Перед началом сборки необходимо приобрести определенный набор элементов и комплектующих. Он состоит из блока питания, выпрямителя, контроллера, компаратора, усилителей, светодиодов, автотрансформатора, узла задержки включения нагрузки, оптронных ключей, выключателя-предохранителя. Основными рабочими инструментами служат пинцет и паяльник.
Для сборки стабилизатора на 220 вольт в первую очередь потребуется печатная плата размером 11,5х9,0 см, которую нужно заранее подготовить. В качестве материала рекомендуется использовать фольгированный стеклотекстолит. Схема размещения деталей распечатывается на принтере и переносится на плату с помощью утюга.
Трансформаторы для схемы можно взять уже готовые или собрать самостоятельно. Готовые трансформаторы должны иметь марку ТПК-2-2 12В и соединяться последовательно между собой. Для создания первого трансформатора своими руками потребуется магнитопровод сечением 1,87 см² и 3 кабеля ПЭВ-2. Первый кабель применяется в одной обмотке. Его диаметр составит 0,064 мм, а количество витков – 8669. Оставшиеся провода используются в других обмотках. Их диаметр будет уже 0,185 мм, а число витков составит 522.
Второй трансформатор изготавливается на основе тороидального магнитопровода. Его обмотка выполняется из такого же провода, как и в первом случае, но количество витков будет другим и составит 455. Во втором устройстве делаются отводы в количестве семи. Первые три изготавливаются из провода диаметром 3 мм, а остальные из шин, сечением 18 мм². За счет этого предотвращается нагрев трансформатора во время работы.
Дополнительные рекомендации по настройки схемы:
Все сопротивления в схеме лучше всего ставить полуваттные, это почти гарантия стабильной работоспособности схемы, даже в предельных условиях эксплуатации. Резистор R2 можно полностью исключить из схемы, я оставлял под него место на те случаи, когда нужно получит нестандартное напряжение. А ещё, хорошенько покопавшись в интернете, я нашел специальный калькулятор для пересчёта LM317, а именно резисторов в цепи управления регулировки напряжения.
Окно специального калькулятора для расчёта LM317 Управляющий делитель напряжения
Резисторы R3 и R4 – это обыкновенный делитель напряжения, таким образом, мы можем его подобрать под те резисторы, что у нас есть под рукой (в заданных пределах) – это очень удобно и позволяет без особого труда отрегулировать работу LM317T под любое напряжение (верхний придел может варьироваться от 2 до 37 В). К примеру, можно так подобрать резисторы, чтобы ваш блок питания регулировался от 1,2 до 20В – всё зависит от пересчёта делителя R3 и R4. Формулу по которой работает калькулятор, вы можете узнать почитав даташит на ЛМ317Т. В остальном — если всё собрано верно , блок питания сразу же готов к работе.
- Ножная педаль из дверного звонка Ножная педаль – применяется там, где необходимо оперативное управление без…
- Электрическая отвёртка и её модернизация Электрическая отвёртка – ручной электрический инструмент с различными насадками, приводимый…
- Термолобзик своими руками Для фигурного выпиливания в легкоплавких листовых материалах, удобно применять так…
БЛОК ПИТАНИЯ ЛАМПОВОГО УСИЛИТЕЛЯ
Ничто так не выдаёт консерватизм, чем изготовление ламповых усилителей звука. А может это просто признак особого изысканного вкуса настоящих аудиофилов? В любом случае собрать такой УНЧ представляется прикольным и теоретически выгодным занятием. Как знать, сколько подобный шедевр будет стоить спустя 20 лет. Тут один только внешний вид лампового усилителя уже делает достойной установку его на самом видном месте кабинета. А звук.. Ну это каждый решит после прослушки для себя сам. В общем приступая к сборке самого усилителя, вначале продумайте сам блок питания. Это вам не 12В взятые из БП ATX. Здесь должны присутствовать минимум два напряжения разной величины и мощности. Напряжение накала берётся в пределах 5,5 — 6,5В и чаще всего подаётся на схемы переменным, сразу с обмоток трансформатора, а питание анодов достигает 300 и даже 500В. При уже постоянной форме тока.
Несмотря на то, что в последнее время наметилась стойкая тенденция к импульсным источникам питания всего и вся, рекомендую всё-же забыть на время про электронные трансформаторы и задействовать старый добрый ТС180 (ТС160) от любого чёрно-белого лампового телевизора. Тому есть две причины. Во-первых обычный трансформатор прощает невнимательность монтажа и не взорвётся, как электронный, при случайных боках и замыканиях, а во-вторых цена ЭТ может быть весьма и ввесьма, в отличии от обычных ТС, коих у многих хватает в закромах. Представляется правильным собрать один универсальный блок питания с анодным и накальным напряжением, и питать от него или один конкретный ламповый усилитель (спрятав сам БП подальше), или собирая другие ламповые схемы переключать его при необходимости на них. На каждый ламповый УНЧ блоков питания не напасёшся:)
Смотрим схему простого блока питания лампового усилителя:
По питанию 220В ставим модный пластмассовый тумблер 250В 5А с зелёной подсветкой. Не забываем про предохранители — один на пару ампер по сети, второй трёхамперник по накалу, и третий по высоковольтному напряжению анода. В отличии от электронных трансформаторов, где предохранители сгорают последними, здесь они выполнят свою миссию, так как даже и без них блок питания выдержит кратковременные замыкания выходов. За что я и уважаю трансы в железе. Диоды для двухполупериодных мостов или собираем из советских КД202 с нужной буквой, или берём готовый диодный мост на подходящее напряжение и ток. Если у вас усилитель на пару ламп типа 6П14П с небольшой мощностью выхода, диодный мост выпрямителя пойдёт и советский коричневый КЦ405 или КЦ402. Накал выпрямлять следует только для входных ламп первого одного — двух каскадов. Дальше влияние постоянного накала сводится к нулю и это будет только расход тепла на диодах.
Можно питать накал от моста с конденсатором 4700 — 10000мкФ, а можно и КРЕН5 поставить. и не стремитесь на входные лампы подавать строго 6,3В — лучше питать их немного заниженным напряжением вплоть до 5В. Так что обычная пятивольтовая КРЕНка и всё будет ОК. Обязательно советую поставить пару светодиодов — индикаторов напряжения анода и накала. Во-первых красиво, а во-вторых информативно, сразу видны возможные проблемы с питанием.
Корпус лучше делать делезный, точнее из листового алюминия — он обрабатывается очень удобно. Или просто взять готовый подходящих размеров, где просверлить гнёзда под кнопку сети, светодиоды и разъёмы. Сеть тоже вводите в корпус не просто через дырку, а подключив штеккером к специальному сетевому гнезду. Лично я делаю только так на всех конструкциях — это удобно.
Конденсаторы фильтров анода берём чем больше — тем лучше. Минимум два по 300 микрофарад. Напряжение на них должно быть на 100В выше, чем напряжение на выходе БП. Если у вас схема рассчитана на 250В, то берём конденсатор на 350. Конечно я это правило выполняю далеко не всегда, а бывает вообще ставлю один к одному, но вы так не делайте и в этом с меня пример не берите. Резистор на 47 Ом 5 ватт уточняем по конкретной схеме лампового усилителя. Для простого однотактного его хватит, а для мощного двухтактника надо вообще ставить дроссель. Выдиратся он из любого лампового телевизора и называется ДР-0,38. Трансформатор питания перед установкой в БП обязательно послушайте на предмт гудения и жужжания. А то купите, рассчитете и соберёте под него корпус, а он гудит громче вечернего Пинк Флойда. Будет большой облом. И напоследок порекомендую все диоды шунтировать конденсаторами на 0,01-0,1 мкФ с соответствующими напряжениеми.
Все вопросы — на форум по БП
Регулируемый блок питания на LM723
Схема блока питания на LM723 с регулировкой
Также можете собрать схему для более совершенного и мощного регулируемого источника питания, используя микросхему LM723. Помимо регулируемого выходного напряжения, эта схема включает в себя регулируемый предел тока — вы можете ограничить ток, протекающий через тестируемую цепь, тем самым защищая источник питания от короткого замыкания. Параллельно стоящие 4 силовых транзистора увеличивают максимальный ток до 10 ампер (а это уже возможность зарядить авто аккумулятор, обычно средним током 5 А). Силовые транзисторы должны быть установлены на хороший радиатор.
Построение мощных регулируемых блоков питания
Внутренний транзистор lm317 недостаточно мощный, для его увеличения придется использовать внешние дополнительные транзисторы
. В данном случае выбираются компоненты без ограничений, потому что управление ими требует намного меньших величин токов, которые микросхема вполне способна предоставить.
Регулируемый блок питания lm317 с внешним транзистором не сильно отличается от обычного включения. Вместо постоянного R2 устанавливается переменный резистор, а база транзистора подключается на вход микросхемы через дополнительный ограничивающий резистор, запирающий транзистор. В качестве управляемого используется биполярный ключ с проводимостью p-n-p. В таком исполнении микросхема оперирует токами порядка 10 мА.
При проектировании двухполярных источников питания потребуется использовать комплементарную пару этой микросхемы
, которой является lm337. А для увеличения выходного тока применяется транзистор с проводимостью n-p-n. В обратном плече стабилизатора компоненты подключаются таким же образом, как и в верхнем. В качестве первичной цепи выступает трансформатор или импульсный блок, что зависит от качества работы схемы и ее эффективности.
Рабочие схемы
Все описанные устройства выполнены на распространенных радиоэлементах. Ниже приведены схемы с обозначением всех деталей.
В БП с транзисторными стабилизаторами КТ940А можно заменить на высоковольтный, выдерживающий более 250 В, а КТ815Г — на другой, с минимальным напряжением 80 В. При указанных деталях устройство может выдать до 300 мА. Для увеличения силы тока надо транзисторы установить на радиаторы. Если вместо стабилитрона КС512А поставить Д814Д, то выходной ток устройства уменьшится до 200 мА.
Традиционный бестрансформаторный блок на 12 В с RC-цепочкой выдает всего 20-40 мА. Если после моста установить мощный стабилитрон Д815Ж, который ограничит напряжение до 16-19 В, и дополнить схему стабилизатором на транзисторе, то выходной ток повысится до 120 мА. Для его увеличения до 180 мА необходимо параллельно конденсаторам C1, C2 припаять еще один такой же.
Более стабилен блок на микросхеме 78L08 (российское обозначение КР142Б). При указанных деталях он выдает до 200 мА.
Стабилизатор тока на lm317 | AUDIO-CXEM.RU
Ток на выходе блока питания может увеличиться вследствие уменьшения сопротивления нагрузки (простой пример, короткое замыкание), также изменение тока нагрузки происходит из-за изменения напряжения питания её. Стабилизатор тока на lm317 обеспечивает стабильность тока (ограничение тока) на выходе в случаях описанных выше.
Данный стабилизатор может быть применён в схемах питания светодиодов, зарядных устройствах (ЗУ), лабораторных источников питания и так далее.
Если, к примеру, рассматривать светодиоды, то необходимо учитывать тот факт, что для них нужно ограничивать ток, а не напряжение. На кристалл можно подать 12В и он не сгорит, при условии, что ток будет ограничен до номинального (в зависимости от маркировки и типа светодиода).
Основные технические характеристики LM317
Максимальный выходной ток 1.5А
Максимальное входное напряжение 40В
Выходное напряжение от 1.2В до 37В
Более подробные характеристики и графики можно посмотреть в даташите на стабилизатор.
Схема стабилизатора тока на lm317
Плюс данного стабилизатора в том, что он является линейным и не вносит высокочастотные помехи, например как некоторые импульсные стабилизаторы. Минусом является низкий КПД (в счёт своей линейности), и поэтому происходит значительный нагрев кристалла микросхемы. Как вы уже поняли, микросхему необходимо обеспечить хорошим радиатором.
За величину тока стабилизации (ограничения) отвечает резистор R1. С помощью данного резистора можно выставить ток стабилизации, например 100мА, тогда даже при коротком замыкании на выходе схемы будет протекать ток, равный 100мА.
Сопротивление резистора R1 рассчитывается по формуле:
R1=1,2/Iнагрузки
Изначально необходимо определиться с величиной тока стабилизации. Например, мне необходимо ограничить ток потребления светодиодов равный 100мА. Тогда,
R1=1,2/0,1A=12 Ом.
То есть, для ограничения тока 0,1A необходимо установить резистор R1=12 Ом. Проверим на железе… Для проверки собрал схему на макетной плате. Резистор на 12 Ом искать было лень, зацепил в параллель два по 22 Ома (были под рукой).
Выставил напряжение холостого хода, равное 12В (можно выставить любое). После чего, я замкнул выход на землю, и стабилизатор LM317 ограничил ток 0,1А. Расчеты подтвердились.
При увеличении или уменьшении напряжения ток остается стабильным.
Резистор можно припаять на выводы микросхемы, но не стоит забывать, что через резистор протекает весь ток нагрузки, поэтому при больших токах нужен резистор повышенной мощности.
Если использовать данный стабилизатор тока на LM317 в лабораторном блоке питания, то необходимо устанавливать переменный резистор проволочного типа, простой переменный резистор не выдержит токи нагрузки протекающие через него.
Для ленивых представляю таблицу значений резистора R1 в зависимости от нужного тока стабилизации.
Ток | R1 (стандарт) |
0.025 | 51 Ом |
0.05 | 24 Ом |
0.075 | 16 Ом |
0.1 | 13 Ом |
0.15 | 8.2 Ом |
0.2 | 6.2 Ом |
0.25 | 5.1 Ом |
0.3 | 4.3 Ом |
0.35 | 3.6 Ом |
0.4 | 3 Ома |
0.45 | 2.7 Ома |
0.5 | 2.4 Ома |
0.55 | 2.2 Ома |
0.6 | 2 Ома |
0.65 | 2 Ома |
0.7 | 1.8 Ома |
0.75 | 1.6 Ома |
0.8 | 1.6 Ома |
0.85 | 1.5 Ома |
0.9 | 1.3 Ома |
0.95 | 1.3 Ома |
1 | 1.3 Ома |
Таким образом, применив галетный переключатель и несколько резисторов, можно собрать схему регулируемого стабилизатора тока с фиксированными значениями.
Даташит на LM317 СКАЧАТЬ
Основные электрические характеристики
Стабилизатор напряжения 12 вольт
Стабилизатор тока на lm317 для светодиодов имеет слабое звено. Это звено – сама китайская микросхема. Она хоть и имеет встроенную защиту от КЗ (коротких замыканий), всё же может не выдержать работы на предельных режимах.
Осторожно. В случае выхода из строя микросхемы могут выгореть и рядом стоящие элементы, или произойти замыкание в электроцепи схемы
Электрические характеристики сборки следующие:
- интервал входных напряжений – 1,25-37 В;
- максимальный ток на выходе ИМС – 1,5 А;
- коэффициент нестабильности на выходе – до 0,1%;
- опорное Vref – в границах 0,1-1,3 В;
- IAdj – ток, исходящий из подстроечного вывода 50-100 мкА.
Стабильная работа устройства возможна при температуре до 1250С.
Не хотим покупать, хотим создавать!
Один из самых простых и универсальных вариантов – блок питания на LM 317. Это популярный и недорогой регулируемый линейный стабилизатор напряжения, обычно изготавливаемый в корпусе ТО-220. Узнать, какая ножка за что отвечает, можно из картинки ниже.
Основные характеристики таковы:
- Входное напряжение до 40 В.
- Ток на выходе до 2,3 А.
- Минимальное выходное напряжение – 1,3 В.
- Максимальное выходное напряжение – Uвх-2 В.
- Рабочая температура – до 125 градусов Цельсия.
- Погрешность стабилизации – не более 0,1% от Uвых.
Чуть подробнее остановимся на максимальном токе. Дело в том, что LM 317 – линейный стабилизатор. «Лишнее» напряжение на ней превращается в тепло, а максимальный теплопакет микросхемы с дополнительным радиатором охлаждения составляет 20 Вт, без него – около 2,5 Вт. Зная формулу расчёта мощности, мы можем посчитать, какой ток реально получить при различных условиях. Например, Uвх=20 В, Uвых=5 В – падение напряжения Uпад = 15В.
При теплопакете 20 Вт это означает максимально допустимый ток в 1,33 А (20 Вт/15 В=1,33 А). А без радиатора – всего 0,15А. Так что помимо радиодеталей следует озаботиться поиском радиатора – подойдёт какой-нибудь помассивнее, от старого усилителя мощности, да и к выбору источника питания нужно подойти с умом.
Расчеты основных параметров
Для того чтобы устройство было работоспособным и надежно функционировало, необходимо выполнить предварительный расчет бестрансформаторного блока питания. С этой целью потребуется рассчитать основные параметры:
- Емкостное сопротивление. При включении конденсатора в цепь переменного тока, он начинает оказывать влияние на силу тока, протекающего по этой цепи, то есть на определенном этапе он становится сопротивлением. Чем больше емкость конденсатора и частота переменного тока, тем меньше величина емкостного сопротивления и наоборот. Для расчетов используется формула XC = 1 /(2πƒC), где ХС – емкостное сопротивление, f – частота, С – емкость. Ускорить расчеты и получить точные данные поможет онлайн-калькулятор, в который достаточно лишь ввести исходные данные.
- Сопротивление нагрузки (Rн). Его расчет позволяет выяснить, до какого значения Rн может быть уменьшено, чтобы Напряжение нагрузки стало равным напряжению стабилизации. Когда необходимо изготовить блок питания своими руками, рекомендуется воспользоваться справочной таблицей, поскольку формулы слишком сложные и не дают точных результатов.
- Напряжение гасящего конденсатора. Этот показатель обычно составляет не менее 400 В, при сетевом напряжении 220 вольт. В некоторых случаях используется более мощный элемент, с номинальным напряжением 500 или 600 В. Для бестрансформаторных блоков подходят не все типы конденсаторов. Например, устройства МБПО, МБГП, МБМ, МБГЦ-1 и МБГЦ-2 не могут работать в цепях переменного тока, в которых амплитудное значение напряжения более 150 В.
Понадобился мне блок питания для самодельной мини-дрели, сделанной из моторчика на 17 Вольт. Пересмотрел много схем различных БП, но во всех использовался трансформатор, которого у меня нету, а покупать как-то неохота. Тогда решил поступить проще и собрать бестрансформаторный блок питания на данное напряжение – 17 Вольт. Схема довольно простая, на такой готовый блок питания нужно подавать 220 вольт переменного напряжения, короче питать схему от розетки, а на выходе мы получаем 17 вольт постоянного напряжения. Обычно источники питания такого типа применяют во всяких небольших бытовых вещах, например в фонарике с аккумулятором, в качестве зарядного, где нужен небольшой ток, до 150 mA или в электробритвах. Итак, детали для схемы. Вот так выглядят высоковольтные металлопленочные конденсаторы (те что красные), и слева от них электролитический конденсатор на 100 мкФ. Вместо микросхемы 78l08 можно использовать такие стабилизаторы напряжения, как КР1157ЕН5А (78l08) или КР1157ЕН5А (7905). Если отсутствует выпрямительный диод 1N4007, то его можно заменить на 1N5399 или 1N5408, которые рассчитаны на более высокий ток. Серый кружок на диоде обозначает его катод. Резистор R1 взял на 5W, а R2 – на 2W, для страховки, хотя оба можно было применять и на 0,5 Вт. Стабилитрон BZV85C24 (1N4749), рассчитан на мощность 1,5 W, и на напряжение до 24 вольт, заменить его можно отечественным 2С524А. Этот бестрансформаторный БП собрал без регулировки выходного напряжения, но если вы хотите организовать такую функцию, то просто подключите к выводу 2 микросхемы 78L08 переменный резистор примерно на 1 кОм, а второй его вывод – к минусу схемы. Плата к схеме бестрансформаторного блока питания конечно есть, формат лэй, скачать можно тут. Думаю вы поняли, что диоды без пометки – это 1n4007. Готовую конструкцию нужно обязательно поместить в пластиковый корпус, из-за того что включенная в сеть схема находиться под напряжением 220 вольт и прикасаться к ней ни в коем случае нельзя! На этих фото вы можете видеть напряжение на входе, то есть напряжение в розетке, и сколько вольт мы получаем на выходе БП. Видео работы схемы бестрансформаторного БПБольшим плюсом этой схемы можно считать очень скромные размеры готового устройства, ведь благодаря отсутствию трансформатора этот БП можно сделать маленьким, и относительно недорогая стоимость деталей для схемы. Минусом схемы можно считать то, что есть опасность случайно дотронуться к работающему источнику и получить удар током. Автор статьи – egoruch72. Обсудить статью БЕСТРАНСФОРМАТОРНОЕ ПИТАНИЕ СХЕМ Предлагается широкий ассортимент светодиодных ламп, светильников и LED фонарей, от японских и китайских производителей. |
РАСПАШНЫЕ АВТОМАТИЧЕСКИЕ ВОРОТА
Самодельные распашные ворота для частного дома – электроника и механика. Электрическая схема и фото процесса монтажа.
Простой блок питания
Как-то недавно мне в интернете попалась одна схема очень простого блока питания с возможностью регулировки напряжения. Регулировать напряжение можно было от 1 Вольта и до 36 Вольт, в зависимости от выходного напряжения на вторичной обмотке трансформатора.
Внимательно посмотрите на LM317T в самой схеме! Третья нога (3) микросхемы цепляется с конденсатором С1, то есть третяя нога является ВХОДОМ, а вторая нога (2) цепляется с конденсатором С2 и резистором на 200 Ом и является ВЫХОДОМ.
С помощью трансформатора из сетевого напряжения 220 Вольт мы получаем 25 Вольт, не более. Меньше можно, больше нет. Потом все это дело выпрямляем диодным мостом и сглаживаем пульсации с помощью конденсатора С1.
Все это подробно описано в статье как получить из переменного напряжения постоянное. И вот наш самый главный козырь в блоке питания – это высокостабильный регулятор напряжения микросхема LM317T.
На момент написания статьи цена этой микросхемы была в районе 14 руб. Даже дешевле, чем буханка белого хлеба.
Описание микросхемы
LM317T является регулятором напряжения. Если трансформатор будет выдавать до 27-28 Вольт на вторичной обмотке, то мы спокойно можем регулировать напряжение от 1,2 и до 37 Вольт, но я бы не стал подымать планку более 25 вольт на выходе трансформатора.
- Микросхема может быть исполнена в корпусе ТО-220:
- или в корпусе D2 Pack
Она может пропускать через себя максимальную силу тока в 1,5 Ампер, что вполне достаточно для питания ваших электронных безделушек без просадки напряжения.
То есть мы можем выдать напряжение в 36 Вольт при силе тока в нагрузку до 1,5 Ампера, и при этом наша микросхема все равно будет выдавать также 36 Вольт – это, конечно же, в идеале.
В действительности просядут доли вольта, что не очень то и критично. При большом токе в нагрузке целесообразней поставить эту микросхему на радиатор.
Для того, чтобы собрать схему, нам также понадобится переменный резистор на 6,8 Килоом, можно даже и на 10 Килоом, а также постоянный резистор на 200 Ом, желательно от 1 Ватта. Ну и на выходе ставим конденсатор в 100 мкФ. Абсолютно простая схемка!
Сборка в железе
Раньше у меня был очень плохой блок питания еще на транзисторах. Я подумал, почему бы его не переделать? Вот и результат
Здесь мы видим импортный диодный мост GBU606. Он рассчитан на ток до 6 Ампер, что с лихвой хватает нашему блоку питания, так как он будет выдавать максимум 1,5 Ампера в нагрузку. LM-ку я поставил на радиатор с помощью пасты КПТ-8 для улучшения теплообмена. Ну а все остальное, думаю, вам знакомо.
- А вот и допотопный трансформатор, который выдает мне напряжение 12 Вольт на вторичной обмотке.
- Все это аккуратно упаковываем в корпус и выводим провода.
- Ну как вам ?
- Минимальное напряжение у меня получилось 1,25 Вольт, а максимальное – 15 Вольт.
- Ставлю любое напряжение, в данном случае самые распространенные 12 Вольт и 5 Вольт
- Все работает на ура!
- Очень удобен этот блок питания для регулировки оборотов мини-дрели, которая используется для сверления плат.
Аналоги на Алиэкспресс
- Кстати, на Али можно найти сразу готовый набор этого блока без трансформатора.
- Ссылка на этот кит-набор здесь.
- Лень собирать? Можно взять готовый 5 Амперный меньше чем за 2$:
- Посмотреть можно по этой ссылке.
- Если 5 Ампер мало, то можете посмотреть 8 Амперный. Его вполне хватит даже самому прожженному электронщику:
- Вот ссылка.
- Также неплохо было бы доработать этот блок питания ампервольтметром
- который также можно купить на Али здесь.
- С трансформатором и корпусом уже будет подороже:
- Вот так он будет выглядеть при сборке
Глянуть его можно по этой ссылке. Может быть найдете подешевле.
- А лучше вообще не заморачиваться и взять готовый лабораторный мощный блок питания со всеми прибамбасами:
- Выбирайте на ваш вкус и цвет!