Прошивка
В сети достаточно руководств по сборке приемников на SI4735, однако большинство авторов делают акцент на схемотехнику и сборку на макете, после чего туда заливают один из вариантов готовой прошивки. Мы же попробуем разобраться, как написать такую прошивку самостоятельно почти с нуля, поэтому все нижесказанное достаточно легко перенести на любой другой микроконтроллер, лишь бы у него хватало памяти для хранения патча.
Итак, что же за зверь SI4734 и с чем его едят? Этот чип управляется по шине I2C, и каждая посылка представляет собой адрес микросхемы (с битом переключения запись/чтение), 1 байт команды и до 7 байт аргументов. У каждой команды свое количество аргументов, впрочем, даташит говорит, что посылки можно сделать и фиксированной длины, если вместо неиспользуемых аргументов слать . Для наших целей понадобится не так много команд, поэтому мы можем позволить себе написать для каждой свою функцию. Результатом выполнения команды можно считать ответ, состоящий из байта статуса и до 7 байт собственно ответа, причем и здесь допускается унификация длины: можно читать по 8 байт, все неиспользуемые будут .
Но тут есть нюанс: команда выполняется не мгновенно, а с задержкой, до истечения которой микросхема будет отвечать только нулями. Поэтому, когда нам необходим ответ, мы с некоторой периодичностью будем его считывать, пока первый байт ответа не будет равен , что свидетельствует о завершении исполнения команды. Следом можно считать байты ответа и/или отправлять следующую команду.
Для отправки и чтения пакетов по I2C мы будем использовать уже известную нам команду библиотеки LibopenCM3 , где — используемая шина I2C (I2C1), а — семибитный адрес . О бите записи/чтения за нас позаботится библиотека. В итоге работа с микросхемой вкратце будет представлять собой следующую последовательность действий: инициализация, настройка режима работы, настройка на нужную частоту. Все описанное ниже опирается на содержание документов AN332 «Si47XX Programming Guide» и AN332SSB.
Инициализация
Прежде всего SI4734 нужно инициализировать. Сделать это можно в одном из трех режимов: AM, FM или SSB. Перед началом инициализации документация рекомендует выполнить сброс. Делается это тривиально: надо ненадолго подтянуть к земле REST-пин SI4734. Для задержки используется совершенно ленивая функция, благо точность тут не имеет особого значения.
Для инициализации используется команда , которая требует два параметра. Первый включает тактирование и определяет режим работы, а второй настраивает аудиовыходы. Мы используем часовой кварц и аналоговые выходы, поэтому для FМ применяются параметры , , а для АM — , . После отправки команды, опрашивая чип, дожидаемся ответа . Обычно на это уходит один‑два запроса.
В ответ на команду чип может выдать еще 8 байт, которые даташит рекомендует проверять, однако на это можно забить и даже их не считывать. На данном этапе уже можно проверить качество работы микросхемы: исправная вернет ответ и запустит кварцевый генератор, что проверяется осциллографом. Если команды отправлены верно, а генератор не запустился, то, вероятно, чип битый.
ДВ-СВ-КВ диапазоны
Сверхдлинные волны (длина волны более 10 км).
Радиоволны столь большой длины волны интересны тем, что способны не только огибать препятствия, но и проникать под воду. На частоте 18,1 KHz работает станция, использующаяся для связи с подводными лодками. Эта станция была построена ещё в Германии во времена Второй мировой войны, затем перевезена в Россию, собрана заново и работает до сих пор.
Естественно, диапазона сверхдлинных волн нет в бытовых приемниках. Однако принимать сигналы на этой частоте может любой желающий, причем совершенно бесплатно — обычная звуковая карта компьютера способна записывать сигналы такой частоты. Если установить на ноутбук программу визуализации звука, подключить к разъему микрофона провод длиной несколько метров и отъехать подальше от города и индустриальных помех — то эти сигналы вполне реально увидеть на экране.
Длинные и средние волны (от 100 м до 10 км)
На частоте 77 кГц можно услышать сигналы точного времени, передаваемые станцией DFC77, расположенной недалеко от Франкфурта. По этим сигналам часы и метеостанции могут автоматически настраиваться на точное время. В магазинах легко можно найти часы, имеющие функцию такой настройки, но, к сожалению, большинство городов России не входит в область уверенного приема этих сигналов.
На частоте 198 кГц до сих пор работает радиостанция «Маяк». Эта станция выходит в эфир с 1964 года, желающие вполне могут услышать её на длинных и средних волнах и по сей день.
На частотах 400−600 кГц работают радиомаяки аэропортов. С помощью радиокомпаса воздушное судно может выйти точно к аэропорту, что актуально в условиях плохой видимости. Например, в Петербурге на частоте 525 КГц даже на бытовом приемнике можно услышать передаваемый азбукой морзе сигнал PL, относящийся видимо, к Пулково.
Частоты 2130 и 2150 кГц используются для связи на железной дороге, переговоры машинистов и диспетчеров хорошо слышны на расстоянии нескольких километров от ЖД на обычном бытовом радиоприемнике. Многие, наверное, видели длинный провод с изоляторами, протянутый вдоль крыши локомотива, это и есть антенна поездной радиостанции.
Короткие волны (10−100 м)
Информация, передаваемая в диапазоне коротких волн, весьма разнообразна. Это вещательные станции, сводки погоды, метеокарты и пр. Например, станция Hamburg Meteo круглосуточно передает карты погоды на частоте 7880 кГц, принять которые возможно с помощью радиоприемника, подключенного к компьютеру через вход звуковой карты. На частоте 10100 кГц эта же станция передает сводки погоды в телетайпном режиме, декодировать который можно, опять-таки, с помощью компьютера и программного обеспечения.
Частота 14 МГц используется радиолюбителями для экспериментов с разными видами связи, среди достаточно интересных можно отметить например, передачу изображений, этот стандарт называется Slow-scan television (SSTV).
В верхней части КВ-диапазона (27−28 МГц) находится гражданский, так называемый «Си-Би» (Citizen Band) диапазон. Любой желающий может приобрести радиостанцию, работающую в этом диапазоне, такие станции активно используются водителями, путешественниками и пр.
Антенна наклонная рамка
Горизонтальные рамки весьма популярны. Рик Роджерс (KI8GX) провел эксперименты с «наклонной рамкой», крепящейся к одной мачте.
Для установки варианта «наклонной рамки» с периметром 41,5 м, необходима мачта высотой 10…12 метров и вспомогательная опора высотой около двух метров. К этим мачтам крепятся противоположные углы рамки, которая имеет форму квадрата. Расстояние между мачтами выбирают таким, чтобы угол наклона рамки по отношению к земле был в пределах 30…45°.Точка питания рамки расположена в верхнем углу квадрата. Питается рамка коаксиальным кабелем с волновым сопротивлением 50 Ом. По измерениям KI8GX в этом варианте рамка имела КСВ=1,2 (минимум) на частоте 7200 кГц, КСВ=1,5 (довольно «тупой» минимум) на частотах выше 14100 кГц, КСВ=2,3 во всем диапазоне 21 МГц, КСВ=1,5 (минимум) на частоте 28400 кГц. На краях диапазонов значение КСВ не превышало 2,5. По данным автора некоторое увеличение длины рамки сместит минимумы ближе к телеграфным участкам и позволит получить КСВ меньше 2 в пределах всех рабочих диапазонов (кроме 21 МГц).
QST №4 2002 год
Почему SI4734
SI4735 отличается от других упомянутых чипов тем, что поддерживает патчи прошивки, а это открывает доступ к дополнительным функциям. Так, в сети есть патч, который позволяет принимать сигналы с SSB-модуляцией. Что в ней такого, спросишь ты? Да в общем, ничего особенного, просто на ней работают любители в КВ‑диапазонах, и их порой интересно послушать. И это, наверное, самый простой вариант такого приемника.
Хорошо, с SI4735 разобрались, а почему в заголовке значится SI4734? Дело в том, что все микросхемы SI473X совместимы «pin в pin» и отличаются только набором функций. Младшие модели (SI4730, SI4731) поддерживают длинные волны и FM, а старшие модели (SI4732, SI4735) поддерживают еще и короткие волны и RDS. SI4734 поддерживает КВ, но не умеет RDS. Кроме всего прочего, они здорово различаются по цене: SI4730 стоит примерно 100 рублей, SI4734 — 150, SI4735 — порядка 500 рублей. Правда, всего год назад они были минимум в три раза дешевле, ну да это известная сейчас проблема.
Патч официально поддерживает только SI4735, на ней я и хотел экспериментировать. Но купленный мною экземпляр оказался нерабочим, поэтому я поставил SI4734-D60, который имелся в загашнике. А заодно попробовал скормить этому чипу патч, и, к моему удивлению, он сработал. Так что, если тебе не нужен RDS, можно сэкономить.
Обрадовавшись такому успеху, я попробовал поковырять SI4730-D60, тем более что в сети проскальзывала информация, будто некоторые из этих чипов могут работать на КВ. Однако у меня они не заработали и патч на них тоже не встал. Очень вероятно, что патч сработает и на SI4732, поскольку китайцы часто добавляют эту микросхему в наборы своих приемников и заявляют о поддержке SSB.
Схемотехника
Для наших экспериментов мы соберем относительно несложную конструкцию, состоящую из двух блоков: блока управления и блока приемника. Блок управления соберем на STM32F030, добавим к нему энкодер, дисплей OLED и восемь кнопок. От кнопок можно вовсе отказаться, но с ними управлять приемником намного удобнее. За клавиатуру будет отвечать PCF8574, очень удобная микросхема — расширитель портов с I2C-интерфейсом. Введение расширителя портов хоть и усложняет схему, но упрощает разводку платы и опрос кнопок. Питать все это дело удобно с помощью LiPO-аккумулятора, поэтому добавим туда еще контроллер заряда и DC/DC-преобразователь на RT9136 для питания контроллера. Использование активного преобразователя целесообразно в плане повышения КПД.
Схема приемника
Выходной мощности SI4735 недостаточно для раскачки стандартных 32-омных наушников, поэтому нужен аудиоусилитель, даже два, так как у нас стерео. В качестве усилителя использована микросхема TDA2822 (PDF) в стандартном включении. Это не лучший вариант по двум причинам: во‑первых, у нее слишком высок коэффициент усиления, а во‑вторых, на мой вкус, она слишком шумит. Лучше на эту роль подойдет LM4863 (PDF), но у меня ее не оказалось под рукой. Тем не менее TDA2822 недурно справляется со своей задачей.
В заводских решениях обычно используется УВЧ и магнитная антенна, мы же поступим проще: поставим на вход фильтр 5-го порядка с частотой среза и будем использовать полноразмерную антенну — все равно на штырь в квартире можно ловить только помехи, FM и пару китайских станций в хороший день. Что же касается FM-входа, то ему комфортно и без входных цепей. Кроме того, саму SI4734 вместе со входными цепями мы поместим в экран из жести (плата двухсторонняя, вторая сторона — сплошная медь), благо это совсем не сложно. Использование внешней полноразмерной антенны сильно снизит наводки от цифровой части и избавит от УВЧ.
Что касается этой самой цифровой части, то тут каких‑либо особенностей нет. Схема, платы и прочее лежат на GitHub. Вешать постоянно обновляющийся дисплей и клавиатуру на одну шину с SI4734 — не очень хорошая идея из‑за возможных помех, однако остановка контроллера и выключение дисплея на слух не вносит изменений. Отсюда можно сделать вывод, что в городе гораздо больший вклад в качество приема вносит зашумленность эфира.
Оформлено это в достаточно минималистичном стиле, впрочем, корпуса я делать никогда не любил. У меня получилось что‑то среднее между макетом и законченным устройством, но транспортировку и полевое использование приемник пережил не поморщившись.
info
Предвидя вопросы, скажу сразу, что управляющий блок можно собрать и на Blue Pill, и на ARDUINO, в последнем случае на Али можно купить уже собранную плату. Обойдется это примерно в 3000 рублей. А за дополнительные деньги к этому делу можно докупить корпус. Но это не наш метод, мы же собрались поковыряться с SI4734!
УКВ-диапазоны
Диапазон 117−137 МГц выделен для авиа-связи. На этих частотах диспетчеры общаются с воздушными судами, здесь работают автоматические системы передачи погоды (Automatic Terminal Information Service, ATIS) и координат (Aircraft Communications Addressing and Reporting System, ACARS). Естественно, гражданские лица не могут использовать эти частоты для радиопередачи, однако прием вполне возможен — некоторые бытовые приемники, например Grundig G6, имеют поддержку авиадиапазона.
В диапазоне 137 МГц передают данные метеоспутники NOAA. При помощи программы расчета орбиты, радиоприемника и компьютера получить фотографии из космоса с этих спутников может любой желающий.
Частоты 144−170 МГц используются государственными службами — милиция, скорая помощь, пожарные и пр. В некоторых регионах для этих целей используются также частоты 450 МГц и выше.
Частоты 150 и 300 МГц используются для связи между морскими, речными судами и береговыми станциями.
На частоте 433 МГц работают безлицензионные радиостанции стандарта LPD (Low Power Device). Эти устройства могут использоваться всеми желающими для связи на небольших расстояниях, для наблюдения за ребенком с помощью радионяни, в качестве маяка для поиска домашних животных и пр. На этих частотах могут работать брелки автомобильных сигнализаций, кнопки открытия шлагбаумов и пр.
На частотах 900 и 950 МГц работают телефоны стандарта GSM. Используются две разнесенные частоты, именно поэтому по сотовому телефону можно одновременно и говорить, и слушать.
Радиоволны ещё более высоких частот (1 ГГц и выше) распространяются практически в пределах прямой видимости. Поэтому они используются либо на небольших расстояниях (Bluetooth, Wi-Fi, DECT) либо с крупными направленными антеннами (спутниковое ТВ, линии передачи данных). На этих частотах также передаются сигналы со спутников GPS.
На этом совсем краткий обзор радиоэфира подходит к концу. Вышеприведенный список, естественно, не претендует на полноту, но при наличии интереса любой желающий может заняться этим вопросом самостоятельно, ведь радиоэфир доступен всем без каких-либо ограничений. Более того, этот список и не может быть завершен, «точку» тут ставить рано, ведь постоянно появляются новые стандарты и технологии. Например, уже доступны Wi-Fi-маршрутизаторы, работающие на частота 5 ГГц, ещё лет 10 назад использование столь высоких частот «в быту» казалось бы нереальным. Поживем — увидим…
P. S: В завершение хочется ответить на вопрос, который наверняка возникнет у некоторых читателей — сколько стоит радиоприемник, способный принимать разные виды сигналов? На самом деле, не очень дорого.
P.P.S: И еще один момент, на который хотелось бы обратить внимание. В последнее время, особенно после выхода фильма «Радиоволна» модной стала тема приема радиосигналов из потустороннего мира
Много желающих пытаются вслушиваться в шум эфира, прокручивают записи так и этак, надеясь услышать то что хочется. Некоторым даже удается что-то поймать, а при должной фантазии и расшифровать…
Увы, вынужден огорчить всех желающих установить спиритический радиосеанс — все радиосигналы, имеющиеся в эфире, имеют вполне «земную» природу. А различные звуки, которые можно поймать — это либо помехи, либо наводки на этой частоте от более мощных соседних станций, либо доносящиеся на пределе слышимости фрагменты дальних передач с других континентов, либо переговоры служебных станций, использующих не поддерживаемый используемым приемником вид модуляции…
Модифицированная широкополосная антенна T2FD
Предложена модификация известной многим антенны T2FD, которая позволяет перекрыть весь диапазон радиолюбительских КВ частот, совсем немного проигрывая полуволновому диполю в 160 метровом диапазоне (0,5 дБ на ближних и около 1,0 дБ на DX трассах). При точном повторении, антенна работать начинает сразу и в настройке не нуждается. Подмечена особенность антенны: не воспринимаются статические помехи, и по сравнению с классическим полуволновым диполем. В таком исполнении приём эфира получается довольно-таки комфортный. Нормально прослушиваются совсем слабые DX станции, особенно на низкочастотных диапазонах.
Длительная эксплуатация антенны (более 8 лет) позволила заслуженно отнести её к малошумящим приёмным антеннам. В остальном, по эффективности, эта антенна практически не уступает диапазонному полуволновому диполю или Inverted Vee на любом из диапазонов от 3,5 до 28 МГц.
И ещё одно наблюдение (основанное на отзывах дальних корреспондентов) — во время проведения связи отсутствуют глубокие QSB. Из произведённых 23 вариантов модификаций этой антенны, предложенный здесь, заслуживает особого внимания и может быть рекомендован для массового повторения. Все предложенные размеры антенно-фидерной системы рассчитаны и точно выверены на практике.
Полотно антенны
Размеры вибратора приведены на рисунке. Половины (обе) вибратора симметричны, лишняя длина «внутреннего угла» урезается на месте, там же крепится и небольшая площадка (обязательно изолированная) для соединения с питающей линией. Балластный резистор 240 Ом, плёночный (зелёного цвета), рассчитанный на мощность 10 Вт. Можно также использовать любое другой резистор той же мощности, главное, чтобы сопротивление было обязательно безиндукционное. Медный провод — в изоляции, сечением 2,5 мм. Распорки — деревянные рейки в разрезе с сечением 1 х 1 см с лаковым покрытием. Расстояние между отверстиями равно 87 см. На растяжки применяем капроновый шнур.
Воздушная линия питания
Для линии питания применяем медный провод ПВ-1, сечением 1мм, распорки винипластовые. Расстояние между проводниками составляет 7,5 см. Длина всей линии равно 11 метров.
Авторский вариант установки
Применяется металлическая, заземленная снизу, мачта. Мачта установлена на 5-этажном доме. Мачта — 8 метров из трубы Ø 50 мм. Концы антенны размещены в 2 м от крыши. Сердечник согласующего трансформатора (ШПТР) сделан из строчного трансформатора ТВС-90ЛЦ5. Катушки там удалены, сам же сердечник склеен клеем «Супермомент» до монолитного состояния и с тремя слоями лакоткани.
Намотка произведена в 2 провода без скрутки. Трансформатор содержит 16 витков одножильного изолированного медного провода Ø 1 мм. Трансформатор имеет квадратную (иногда прямоугольную) форму, поэтому на каждую из 4-х сторон наматывают по 4 пары витков — наилучший вариант распределения тока.
КСВ во всем диапазоне получается от 1,1 до 1,4. ШПТР помещается в хорошо пропаянный с оплёткой фидера экран из жести. С внутренней стороны к нему надёжно припаивается средний вывод обмотки трансформатора.
После сборки и установки антенна будет работать сразу и практически в любых условиях, то есть располагаясь низко над землей или над крышей дома. У неё отмечен очень низкий уровень TVI (телевизионных помех), и это дополнительно может заинтересовать радиолюбителей, работающих из сёл или дачников.
RK1AC
Антенна Loop Feed Array Yagi на диапазон 50 МГц
Антенны Yagi (Яги) с рамочным вибратором, расположенным в плоскости антенны называются LFA Yagi (Loop Feed Array Yagi) и характеризуются большим, чем у обычных Яги рабочим диапазоном частот. Одной из популярных LFA Yagi является 5-элементная конструкция Джастина Джонсона (G3KSC) на 6-метровый диапазон.
Схема антенны, расстояния между элементами и размеры элементов, показаны ниже в таблице и на чертеже.
Размеры элементов, расстояний до рефлектора и диаметров алюминиевых трубок, из которых выполнены элементы согласно таблицы: Элементы установлены на траверсе длиной около 4,3 м из квадратного алюминиевого профиля сечением 90×30 мм через изоляционные переходные планки. Вибратор питается по 50-омному коаксиальному кабелю через симметрирующий трансформатор 1:1.
Настройка антенны по минимальному КСВ в середине диапазона производится путем подбора положения торцевых П-образных частей вибратора из трубок диаметром 10 мм. Изменять положение этих вставок нужно симметрично, т.е., если правую вставку выдвинули на 1 см, то и левую нужно выдвинуть на столько же.
Антенна имеет следующие характеристики: максимальное усиление 10,41 дБ на 50,150 МГц, максимальное отношение фронт/тыл 32.79 дБ, рабочий диапазон частот 50,0-50,7 МГц по уровню КСВ=1,1
«Prakticka elektronik»
Вертикальный диполь
Хорошо известно, что для работы на дальних трассах вертикальная антенна имеет преимущество, так как её диаграмма направленности в горизонтальной плоскости круговая, а главный лепесток диаграммы в вертикальной плоскости прижат к горизонту и имеет малый уровень излучения в зенит.
Однако изготовление вертикальной антенны сопряжено с решением ряда конструктивных проблем. Применение алюминиевых труб в качестве вибратора и необходимость для его эффективной работы установить в основании «вертикала» систему «радиалов» (противовесов), состоящую из большого числа проводов длиной в четверть волны. Если использовать в качестве вибратора не трубу, а провод, мачта, его поддерживающая, должна быть выполнена из диэлектрика и все оттяжки, поддерживающие диэлектрическую мачту, также диэлектрическими, либо разбиты на нерезонансные отрезки изоляторами. Всё это связано с затратами и часто невыполнимо конструктивно, например, из-за отсутствия необходимой площади для размещения антенны. Не забываем, что входное сопротивление «вертикалов» обычно ниже 50 Ом, а это ещё и потребует его согласования с фидером.