Почему SI4734
SI4735 отличается от других упомянутых чипов тем, что поддерживает патчи прошивки, а это открывает доступ к дополнительным функциям. Так, в сети есть патч, который позволяет принимать сигналы с SSB-модуляцией. Что в ней такого, спросишь ты? Да в общем, ничего особенного, просто на ней работают любители в КВ‑диапазонах, и их порой интересно послушать. И это, наверное, самый простой вариант такого приемника.
Хорошо, с SI4735 разобрались, а почему в заголовке значится SI4734? Дело в том, что все микросхемы SI473X совместимы «pin в pin» и отличаются только набором функций. Младшие модели (SI4730, SI4731) поддерживают длинные волны и FM, а старшие модели (SI4732, SI4735) поддерживают еще и короткие волны и RDS. SI4734 поддерживает КВ, но не умеет RDS. Кроме всего прочего, они здорово различаются по цене: SI4730 стоит примерно 100 рублей, SI4734 — 150, SI4735 — порядка 500 рублей. Правда, всего год назад они были минимум в три раза дешевле, ну да это известная сейчас проблема.
Патч официально поддерживает только SI4735, на ней я и хотел экспериментировать. Но купленный мною экземпляр оказался нерабочим, поэтому я поставил SI4734-D60, который имелся в загашнике. А заодно попробовал скормить этому чипу патч, и, к моему удивлению, он сработал. Так что, если тебе не нужен RDS, можно сэкономить.
Обрадовавшись такому успеху, я попробовал поковырять SI4730-D60, тем более что в сети проскальзывала информация, будто некоторые из этих чипов могут работать на КВ. Однако у меня они не заработали и патч на них тоже не встал. Очень вероятно, что патч сработает и на SI4732, поскольку китайцы часто добавляют эту микросхему в наборы своих приемников и заявляют о поддержке SSB.
Прошивка
В сети достаточно руководств по сборке приемников на SI4735, однако большинство авторов делают акцент на схемотехнику и сборку на макете, после чего туда заливают один из вариантов готовой прошивки. Мы же попробуем разобраться, как написать такую прошивку самостоятельно почти с нуля, поэтому все нижесказанное достаточно легко перенести на любой другой микроконтроллер, лишь бы у него хватало памяти для хранения патча.
Итак, что же за зверь SI4734 и с чем его едят? Этот чип управляется по шине I2C, и каждая посылка представляет собой адрес микросхемы (с битом переключения запись/чтение), 1 байт команды и до 7 байт аргументов. У каждой команды свое количество аргументов, впрочем, даташит говорит, что посылки можно сделать и фиксированной длины, если вместо неиспользуемых аргументов слать . Для наших целей понадобится не так много команд, поэтому мы можем позволить себе написать для каждой свою функцию. Результатом выполнения команды можно считать ответ, состоящий из байта статуса и до 7 байт собственно ответа, причем и здесь допускается унификация длины: можно читать по 8 байт, все неиспользуемые будут .
Но тут есть нюанс: команда выполняется не мгновенно, а с задержкой, до истечения которой микросхема будет отвечать только нулями. Поэтому, когда нам необходим ответ, мы с некоторой периодичностью будем его считывать, пока первый байт ответа не будет равен , что свидетельствует о завершении исполнения команды. Следом можно считать байты ответа и/или отправлять следующую команду.
Для отправки и чтения пакетов по I2C мы будем использовать уже известную нам команду библиотеки LibopenCM3 , где — используемая шина I2C (I2C1), а — семибитный адрес . О бите записи/чтения за нас позаботится библиотека. В итоге работа с микросхемой вкратце будет представлять собой следующую последовательность действий: инициализация, настройка режима работы, настройка на нужную частоту. Все описанное ниже опирается на содержание документов AN332 «Si47XX Programming Guide» и AN332SSB.
Инициализация
Прежде всего SI4734 нужно инициализировать. Сделать это можно в одном из трех режимов: AM, FM или SSB. Перед началом инициализации документация рекомендует выполнить сброс. Делается это тривиально: надо ненадолго подтянуть к земле REST-пин SI4734. Для задержки используется совершенно ленивая функция, благо точность тут не имеет особого значения.
Для инициализации используется команда , которая требует два параметра. Первый включает тактирование и определяет режим работы, а второй настраивает аудиовыходы. Мы используем часовой кварц и аналоговые выходы, поэтому для FМ применяются параметры , , а для АM — , . После отправки команды, опрашивая чип, дожидаемся ответа . Обычно на это уходит один‑два запроса.
В ответ на команду чип может выдать еще 8 байт, которые даташит рекомендует проверять, однако на это можно забить и даже их не считывать. На данном этапе уже можно проверить качество работы микросхемы: исправная вернет ответ и запустит кварцевый генератор, что проверяется осциллографом. Если команды отправлены верно, а генератор не запустился, то, вероятно, чип битый.
Приемник на микросхеме К174ХА2
Приемник состоит из приемного тракта на микросхеме К174ХА2 и декодера, построенного по схеме упрощенного частотомера. Приемный тракт целиком заимствован из Л2. Принципиальная схема приемного тракта показана на рисунке 2. Он построен на многофункциональной микросхеме А1 — К174ХА2 по упрощенной типовой схеме.
Puc.1. Принципиальная схема приемного тракта
Сигнал от антенны W1, роль которой выполняет тонкая стальная спица длиной около 0,5 метра, поступает во входной контур L1С2. Контур настроен на частоту несущей передатчика. Выделенный сигнал через катушку связи L2 поступает на симметричный вход УРЧ балансного смесителя микросхемы А1. Гетеродин также входит в состав микросхемы. Схема обвязки гетеродина отличается от типовой наличием в цепи обратной связи кварцевого резонатора Q1, стабилизирующего частоту гетеродина. На выходе гетеродина включен контур L3С4, настроенный на частоту гетеродина. В данном случае в гетеродине используется кварцевый резонатор на 26,655 МГц (с учетом промежуточной частоты 465 кГц и частоты несущей 27,12 МГц). Но в этой схеме можно использовать и резонаторы на другие частоты учитывая другие несущие и промежуточные частоты например, при частоте несущей 27 МГц (если резонатор в передатчике на 13,5 МГц), можно использовать резонатор в приемнике на 13,2 МГц, тогда частота гетеродина будет равна 26,4 МГц, а промежуточная частота 600 кГц. Но при этом необходимо контура L4C6 и L6C8 перестроить с ПЧ 465 кГц на ПЧ 600 кГц.
Сигнал промежуточной частоты выделяется на выводе 15 А1 и поступает в контур L4C6, настроенный на ПЧ = 465 кГц. В данной схеме нет пъезокерамического фильтра. С одной стороны это неблагоприятно сказывается на селективности тракта по соседнему каналу, но с другой стороны обеспечивается более высокая чувствительность из отсутствия потерь в фильтре, и имеется возможность выбирать любую ПЧ в пределах 300-1000 кГц взависимости от того, какие кварцевые резонаторы имеются в наличии. При необходимости, всегда можно в схему ввести пьезокерамический фильтр на 465 кГц, заменив им конденсатор С7. В любом случае, селективность по соседнему каналу такого приемного тракта значительно выше, чем у привычных, применяемых для систем радиоуправления, сверхрегенеративных приемников.
Через конденсатор С7 выделенное напряжение ПЧ поступает, через выводы 11 и 12 А1, на вход усилителя ПЧ микросхемы. На выходе УПЧ (вывод 7) включен преддетекторный контур L6 С8, настроенный, как и L4 С6 на промежуточную частоту (в данном случае на 465 кГц). Детектор выполнен по однополупериодной схеме на германиевом диоде VD1. Низкочастотное напряжение, амплитудой около 100 мВ, выделяется на конденсаторе С10, и поступает на выход радиотракта. Корме того, это напряжение интегрируется цепью R4 СИ для получения постоянного напряжения АРУ, которое подается на вывод 9 микросхемы А1. Вторая цепь АРУ (вывод 10) микросхемы К174ХА2 в данной схеме, с целью упрощения, не используется.
Puc. 2. Печатная плата радиоприемного тракта
Плату приемного тракта желательно заключить в латунный или жестяной экран.
Напряжение питания приемного тракта 6-9В, при этом. В качестве источника питания можно использовать батарею типа «Крона» или батарею, составленную из дисковых аккумуляторов или отдельных гальванических элементов типа A316.
Контурные катушки приемного тракта наматываются на каркасах с подстроечными сердечниками от контуров декодеров цветности телевизоров 3-УСЦТ с экранами. Экраны обозначены на монтажной схеме пунктирными линиями. Катушки L1 и L3 содержат по 9 витков. L2 содержит 3 витка, намотанных поверх L1. Провод — ПЭВ 0,31. Катушки L4 и L6 применительно к промежуточной частоте 465 кГц содержат по 120 витков провода ПЭВ 0,12, намотанных виток к витку в два слоя. Катушка L5 намотана поверх L4, она содержит 10 витков ПЭВ 0,12.
Настройку приемного тракта производите по общепринятой методике (настройка контуров ПЧ, настройка входного и гетеродинного контура).
Литература :
1. Кожановский С Д. ‘Система частотного кодирования’, ж. Радиоконструктор 11-99. стр.28-29. 2. Каравкин В. ‘Простая СВ-Радиостанция с амплитудной модуляцией’, ж. Радиоконструктор 01-2001, стр. 2-4.