Усилитель «germazon». умощняем датагорский германиевый кит «geamp 1970»

Регенеративный приемник коротковолновика-наблюдателя

Этот несложный КВ приемник перекрывает частоты от 3.5 до 10 МГц, то есть захватывает 4 любительских диапазона – 3.5, 5, 7 и 10 МГц. С его помощью можно вести как радионаблюдение (телефон и телеграф), так и принимать вещательные радиостанции, работающие между любительскими диапазонами. Единственный, пожалуй, его недостаток – достаточно сложная настройка на станцию, но этим грешат практически все регенеративные радиоприемники.

Схема регенеративного КВ приемника

Сердцем приемника является генератор ВЧ, собранный на транзисторе Т1 по схеме индуктивной трехточки. Частота его колебаний регулируется при помощи переменного конденсатора С3. Этот же конденсатор служит для настройки на станцию. Добротность контура можно регулировать переменным резистором R3, являющимся элементом положительной обратной связи.

Детектирование принятого НЧ сигнала осуществляется этим же транзистором. Продетектированный сигнал проходит через фильтр R2,C5 и через разделительный конденсатор С4 поступает на однокаскадный усилитель НЧ, собранный на транзисторе Т2. Далее через конденсатор С7 усиленный НЧ сигнал подается на внешний УНЧ.

Конденсаторы С8 и С9 – фильтр по питанию. Антенна подключается к катушке L1 через конденсатор С1, емкость которого зависит от длины антенны. Чем антенна короче, тем емкость должна быть больше. При указанных номиналах длина антенны должна составлять 7 метров.

Катушка L1 L2 наматывается на каркасе из изоляционного материала. Диаметр каркаса 15 мм. L1 и L2 наматываются проводом ПЭЛ диаметром 0.8 мм. Количество витков L1 – 20, а L2 – 3 витка. Антенной служит кусок провода длиной, как уже указывалось, 7 метров. Если длина антенны иная, придется подобрать емкость конденсатора С1 для лучшего согласования антенны с приемником. Делают это на слух по максимальной громкости принимаемого сигнала.

Конструкция катушки L1 L2

Работают с приемником так. Поворотом движка резистора R3 добиваются громкого свиста или шума. Затем постепенно уменьшая его сопротивление, добиваются пропадания свиста и появления тихого шума.

Важно! Чрезмерно выводить движок резистора, добиваясь тишины, не следует. Он должен поддерживать генератор на границе возбуждения

В противном случае чувствительность приемника сильно упадет, а высокая чувствительность – одно из главных достоинств регенеративных приемников.

При помощи конденсатора С3 настраивают приемник на станцию, которая проявит себя появлением искаженного сигнала или просто резким усилением шума. Снова подстраивают R3 до максимально качественного звука. При необходимости точнее отстраиваются на станцию конденсатором С3 и снова улучшают качество приема при помощи R3.

Несколько слов о деталях:

При сборке усилителя, в качестве конденсаторов постоянной ёмкости (помимо электролитических), желательно применять слюдяные конденсаторы. Например типа КСО, такие, как ниже на рисунке.

Транзисторы МП40А можно заменить на транзисторы МП21, МП25, МП26. Транзисторы ГТ402Г – на ГТ402В; ГТ404Г – на ГТ404В; Выходные транзисторы ГТ806 можно ставить любых буквенных индексов. Применять более низкочастотные транзисторы типа П210, П216, П217 в этой схеме не рекомендую, поскольку на частотах выше 10кГц они здесь работают плоховато (заметны искажения), видимо, из-за нехватки усиления тока на высокой частоте.

Площадь радиаторов на выходные транзисторы должна быть не менее 200 см2, на предоконечные транзисторы не менее 10 см2. На транзисторы типа ГТ402 радиаторы удобно делать из медной (латунной) или алюминиевой пластины, толщиной 0,5 мм, размером 44х26.5 мм.

Пластина разрезается по линиям, потом этой заготовке придают форму трубки, используя для этой цели любую подходящую цилиндрическую оправку (например сверло). После этого заготовку (1) плотно надевают на корпус транзистора (2) и прижимают пружинящим кольцом (3), предварительно отогнув боковые крепёжные ушки.

Кольцо изготовляется из стальной проволоки диаметром 0,5-1,0 мм. Вместо кольца можно использовать бандаж из медной проволоки. Теперь осталось загнуть снизу боковые ушки для крепления радиатора за корпус транзистора и отогнуть на нужный угол надрезанные перья.

Подобный радиатор можно также изготовить и из медной трубки, диаметром 8мм. Отрезаем кусок 6…7см, разрезаем трубку вдоль по всей длине с одной стороны. Далее на половину длины разрезаем трубку на 4 части и отгибаем эти части в виде лепестков и плотно надеваем на транзистор.

Так как диаметр корпуса транзистора где-то 8,2 мм, то за счёт прорези по всей длине трубки, она плотно оденется на транзистор и будет удерживаться на его корпусе за счёт пружинящих свойств. Резисторы в эмиттерах выходного каскада – либо проволочные мощностью 5 Вт, либо типа МЛТ-2 3 Ом по 3шт параллельно. Импортные пленочные использовать не советую – выгорают мгновенно и незаметно, что ведет к выходу из строя сразу нескольких транзисторов.

Несколько слов о деталях:

При сборке усилителя, в качестве конденсаторов постоянной ёмкости (помимо электролитических), желательно применять слюдяные конденсаторы. Например типа КСО, такие, как ниже на рисунке.

Транзисторы МП40А можно заменить на транзисторы МП21, МП25, МП26. Транзисторы ГТ402Г – на ГТ402В; ГТ404Г – на ГТ404В; Выходные транзисторы ГТ806 можно ставить любых буквенных индексов. Применять более низкочастотные транзисторы типа П210, П216, П217 в этой схеме не рекомендую, поскольку на частотах выше 10кГц они здесь работают плоховато (заметны искажения), видимо, из-за нехватки усиления тока на высокой частоте.

Площадь радиаторов на выходные транзисторы должна быть не менее 200 см2, на предоконечные транзисторы не менее 10 см2. На транзисторы типа ГТ402 радиаторы удобно делать из медной (латунной) или алюминиевой пластины, толщиной 0,5 мм, размером 44х26.5 мм.

Пластина разрезается по линиям, потом этой заготовке придают форму трубки, используя для этой цели любую подходящую цилиндрическую оправку (например сверло). После этого заготовку (1) плотно надевают на корпус транзистора (2) и прижимают пружинящим кольцом (3), предварительно отогнув боковые крепёжные ушки.

Кольцо изготовляется из стальной проволоки диаметром 0,5-1,0 мм. Вместо кольца можно использовать бандаж из медной проволоки. Теперь осталось загнуть снизу боковые ушки для крепления радиатора за корпус транзистора и отогнуть на нужный угол надрезанные перья.

Подобный радиатор можно также изготовить и из медной трубки, диаметром 8мм. Отрезаем кусок 6…7см, разрезаем трубку вдоль по всей длине с одной стороны. Далее на половину длины разрезаем трубку на 4 части и отгибаем эти части в виде лепестков и плотно надеваем на транзистор.

Так как диаметр корпуса транзистора где-то 8,2 мм, то за счёт прорези по всей длине трубки, она плотно оденется на транзистор и будет удерживаться на его корпусе за счёт пружинящих свойств. Резисторы в эмиттерах выходного каскада – либо проволочные мощностью 5 Вт, либо типа МЛТ-2 3 Ом по 3шт параллельно. Импортные пленочные использовать не советую – выгорают мгновенно и незаметно, что ведет к выходу из строя сразу нескольких транзисторов.

Как питаемся схема

От качества питания зависит и качество усиления. С какими бы выдающимися характеристиками не был транзистор, если питание плохо отфильтровано или недостаточное, то усиление будет советующего качества.

На клеммы Х3 и Х4 подключается питание 6 В.

Эта схема может питаться и от аккумулятора. Однако, несмотря на то, что аккумулятор – это источник с минимальным шумом, у аккумулятора тоже есть свое сопротивление.

И чтобы оно не мешало и не влияло на работу усилителя, нужен сглаживающий и накопительный конденсатор.

Электролитический конденсатор С3 накапливает энергию источника питания, что позволяет улучшить качество усиления. Чем выше емкость – тем лучше. Естественно, у такого правила есть ограничения. Если поставить слишком большую емкость, то будет большая нагрузка на источник питания.

К тому же, электролитические конденсаторы должны разряжаться после выключения. Тем более, есть предел для увеличения емкости для схемы. Если в эту схему подключить конденсатор емкостью 1 фарад (1 000 000 мкФ), то уровень шума на выходе усилителя будет такой же, как и при 1000 мкФ. Это связано с тем, что у транзистора так же есть и свои «шумы», отсутствие экранировки на входе, динамические искажения и другие параметры.

Во время проектирования схемы все эти параметры рассчитываются. Здесь в схеме у конденсатора С3 емкость 47 микрофарад – этого достаточно для нашего транзистора, поскольку у него не большая мощность, которую он может выдать. Можно поставить и большую емкость, например, 1000 микрофарад. Главное не нежно ставить конденсатор с меньшим пределом по напряжению. Если поставить конденсатор менее 6 В (питание схемы), то конденсатор начнет нагреваться и даже может взорваться.

Прибор для отбора транзисторов по минимальным шумам

Обычно то, насколько «шумным» является транзистор, оценивают по обратному току. Чем он меньше, тем меньше транзистор шумит. Обычно такой метод срабатывает, но не всегда. Намного проще и точнее определять уровень шума на слух. Предлагаемая схема позволяет «прослушать» транзистор и оценить уровень его шумов.

Схема прибора для отбора малошумящих транзисторов

Схема представляет собой двухкаскадный усилитель, собранный на малошумящих транзисторах МП27, нагруженный на высокоомные телефоны ТОН-2. Испытываемый транзистор Тх подключают к входу усилителя через клеммы Х1 и Х2, как показано на схеме. На прибор подают питание и прослушивают шум через головные телефоны. Чем он ниже, тем более малошумный транзистор.

Важно! В качестве источника питания необходимо использовать гальванические элементы или, в крайнем случае, хорошо стабилизированный источник питания. На этом краткий обзор простых конструкций на германиевых транзисторах, пожалуй, закончим

У кого-то приведенные схемы вызовут приступ ностальгии, у кого-то смех, а кому-то, возможно, они будут полезны

На этом краткий обзор простых конструкций на германиевых транзисторах, пожалуй, закончим. У кого-то приведенные схемы вызовут приступ ностальгии, у кого-то смех, а кому-то, возможно, они будут полезны.

Иван Миров

Главный редактор , masterkin.ru

  • Об авторе

Об авторе

Уже лет 20 работаю своими руками. Пробовал и сантехнику, монтаж конструкций, есть свое маленькое производство. Друзья постоянно спрашиваю как сделать разные вещи. Вот и делюсь я с вами своими идеями в интернете.

Усилитель своими руками 100Вт/200Вт

Параметры изделия: 150Вт на нагрузку 4 Ом и 100Вт на нагрузку 8 Ом.

Второй усилитель звука лишен недостатков первого, что касается шума. Усилитель работает в классе В, диоды D2-D3-D4 задают данный режим работы выходным транзисторам VT4-VT5.

Сделанный УНЧ своими руками можно применить в активной колонке, сабвуфере воспроизведения низких частот превосходны.

В этой статье на нашем сайте www.radiochipi.ru мы расскажем вам как самостоятельно собрать усилители звука, что и позволит сэкономить на покупке уже готовых моделей.

Какой усилитель мощности будет лучшим?

Единого мнения о том какой тип усилителя лучший не существует. В настоящее время имеется возможность самостоятельной сборки двух типов усилителей звука:

Ламповые модели пользовались популярностью в недалёком прошлом. Они отличаются увеличенными размерами и повышенным потреблением электроэнергии.

Но при этом подобные ламповые усилители превосходят своих конкурентов по качеству звучания.

Транзисторные усилители имеют компактный размер и малое потребление электроэнергии. При этом они обеспечивают отличное качество звука.

С чего начать работу?

Для начала вам надлежит определиться с мощностью будущего усилителя. Стандартным параметром мощности для использования усилителя в домашних условиях является уровень в 30 – 50 Вт. Если же вам нужно изготовить простой усилитель звука, который будет использоваться для масштабных мероприятий, мощность может составлять 200-300 ватт.

Для работы нам потребуются следующие инструменты:

  • Набор отверток.
  • Мультиметр.
  • Паяльник.
  • Материал для изготовления корпуса.
  • Электродетали.
  • Текстолит для печатной платы.

По сути, печатные платы являются основой для будущего усилителя. Собрать её в домашних условиях не составит сложности.

Для выполнения печатной платы своими руками вам потребуется:

  • Текстолит, имеющий медную фольгу.
  • Моющее средство.
  • Бытовой утюг.
  • Самоклеящаяся китайская плёнка.
  • Лазерный принтер.
  • Сверло для работы с платой.

Кусок хлопчатобумажной ткани или марлевый тампон. Вырезаем из текстолита заготовку будущей платы. Оставьте с каждой из сторон сантиметровый запас. При помощи моющего средства необходимо обработать кусок текстолита, чтобы медная фольга получила розовый цвет. Промываем сделанную нами заготовку и тщательно её выслушиваем.

Приклеиваем самоклеящуюся плёнку к листу формата А4. Распечатываем на принтере заготовку будущей платы. Рекомендуется установить на максимум подачу тонера в принтер. На рабочую поверхность следует уложить фанеру, старую книгу и сверху плату фольгой вверх. Все накрываем офисной бумагой и тщательно прогреваем горячим утюгом. Прогревать нужно около 1 минуты.

Наносим распечатанную схему с листа бумаги на разогретую плату. Накрываем сверху плату листом бумаги и в течение 30 секунд прогреваем утюгом. Разглаживает рисунок при помощи тампона поперечными и продольными движениями. Дождитесь остывания заготовки, после чего можно снять с неё подложку.

Настройка транзисторного усилителя низкой частоты

Питание обоих усилителей можно осуществить от 3 пальчиковых батарей или же от простого и надежного стабилизатора напряжения построенного на микросхеме LM317.

Настройка усилителя первого варианта сводится к подбору сопротивлений R2 и R4. Величину сопротивлений нужно подобрать такой, чтобы миллиамперметр, подключенный в коллекторную цепь каждого транзистора, показывал ток в районе 0,5…0,8 мА. По второй схеме необходимо также выставить коллекторный ток второго транзистора путем подбора сопротивления резистора R3.

В первом варианте возможно применить транзисторы марки КТ312, КТ3102, или их зарубежные аналоги, однако при этом необходимо будет выставить правильное смещение напряжения транзисторов путем подбора сопротивлений R2, R4. Во втором варианте в свою очередь, возможно применить кремневые транзисторы марки КТ209, КТ361, или зарубежные аналоги. При этом выставить режимы работы транзисторов можно путем изменения сопротивления R3.

В коллекторную электроцепь транзистора VT2 (обоих усилителей) взамен наушников возможно подключить динамик с высоким сопротивлением. Если же необходимо получить более мощное усиление звука, то можно собрать усилитель на TDA2030, который обеспечивает усиление до 15 Вт.

Советская «силиконовая долина»

В советское время, в начале 60-х годов, город Зеленоград стал плацдармом для организации в нем Центра микроэлектроники. Советский инженер Щиголь Ф. А. разрабатывает транзистор 2Т312 и его аналог 2Т319, который в последующем стал главным компонентом гибридных цепей. Именно этот человек заложил основу для выпуска в СССР германиевых транзисторов.

В 1964 году на базе Научно-исследовательского института точных технологий создал первую интегральную микросхему IC-Path с 20 элементами на кристалле, выполняющую задачу совокупности транзисторов с резистивными соединениями. В это же время появилась другая технология: были запущены первые плоские транзисторы «Плоскость».

В 1966 году в Пульсарском научно-исследовательском институте начала действовать первая экспериментальная станция по производству плоских интегральных микросхем. В NIIME группа доктора Валиева начала производство линейных резисторов с логическими интегральными схемами.

В 1968 году Исследовательский институт Пульсар произвел первую часть тонкопленочных гибридных ИС с плоскими транзисторами с открытой рамой типов KD910, KD911, KT318, которые предназначены для связи, телевидения, радиовещания.

Линейные транзисторы с цифровыми ИС массового использования (типа 155) были разработаны в Научно-исследовательском институте МЭ. В 1969 году советский физик Алферов Ж. И. открыл миру теорию по управлению электронными и световыми потоками в гетероструктурах на базе арсенид-галлиевой системы.

Наладка УМЗЧ

Подбором резисторов R1 и R4 добиваемся того, чтобы при замкнутом входе ток через каждый из транзисторов VT1 и VT2 был равен 5 мА. Подбором резистора R9 устанавливаем ток через VT3, VT4. Он должен быть равен 10 мА. Подбирая резисторы R11 и R12, получаем ток через VT5, VT6 20 мА. Резистором R10 добиваемся нулевого выходного напряжения при отсутствии входного сигнала.

При настройке усилителя требуется довольно точный подбор резисторов. Чтобы его выполнить, можно использовать подстроечные резисторы или соединить два резистора последовательно, один из резисторов должен иметь сопротивление в 10 раз меньше другого. Подбирая меньший резистор, можно получить очень тонкую настройку.

(читать дальше…) :: (в начало статьи)

 1   2 

:: ПоискТехника безопасности :: Помощь

 

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!Задать вопрос. Обсуждение статьи. сообщений.

Я собрал приведенную схему. Удивлен ее приличными характеристиками, хотя никак не ожидал, судя по ее странному виду, что она их продемонстрирует. Особенно хочу отметить тот факт, что выходной усилитель тока также несколько усиливает напряжение, что значительно упрощает его раскачку, так как не его вход не надо подавать напряжение полного размаха питания. Получение такой амплит Читать ответ…

Еще статьи

Усилитель на полевом транзисторе. FET, MOSFET. Звуковая, низкая частот…
Применение полевых транзисторов в низкочастотных усилителях….

Усилитель звука класса D (Д) большой мощности. Звуковой. УМЗЧ. УНЧ. Сх…
УМЗЧ большой мощности класса D. Ключевой режим….

Акустическая система, акустика. Качество звукоусиливающей, звукоусилит…
Акустическая система и качество усилителей звука. Элементная база усилительной а…

Применение полевых транзисторов, МОП, FET, MOSFET. Использование. Схем…
Типичные схемы с полевыми транзисторами. Применение МОП….

Дифференциальный усилитель, усилительный каскад — схемы. Усиление разн…
Схемы и характеристики дифференциальных усилителей на дискретных элементах и на …

Обратная связь. Класс, качество усилителя мощности звуковой, низкой ч…
Влияние обратной связи на качество усилителей звуковой частоты…

Мощный полевой транзистор irfp2907. МОП, MOSFET. Свойства, параметры, …
Применение и параметры IRFP2907, мощного полевого транзистора, рассчитанного на …

Применение дифференциального усилителя, использование усилительного ка…
Типовые схемы с дифференциальным усилительным каскадом…

Несколько слов о деталях:

При сборке усилителя, в качестве конденсаторов постоянной ёмкости (помимо электролитических), желательно применять слюдяные конденсаторы. Например типа КСО, такие, как ниже на рисунке.

Транзисторы МП40А можно заменить на транзисторы МП21, МП25, МП26. Транзисторы ГТ402Г – на ГТ402В; ГТ404Г – на ГТ404В; Выходные транзисторы ГТ806 можно ставить любых буквенных индексов. Применять более низкочастотные транзисторы типа П210, П216, П217 в этой схеме не рекомендую, поскольку на частотах выше 10кГц они здесь работают плоховато (заметны искажения), видимо, из-за нехватки усиления тока на высокой частоте.

Площадь радиаторов на выходные транзисторы должна быть не менее 200 см2, на предоконечные транзисторы не менее 10 см2. На транзисторы типа ГТ402 радиаторы удобно делать из медной (латунной) или алюминиевой пластины, толщиной 0,5 мм, размером 44х26.5 мм.

Пластина разрезается по линиям, потом этой заготовке придают форму трубки, используя для этой цели любую подходящую цилиндрическую оправку (например сверло). После этого заготовку (1) плотно надевают на корпус транзистора (2) и прижимают пружинящим кольцом (3), предварительно отогнув боковые крепёжные ушки.

Кольцо изготовляется из стальной проволоки диаметром 0,5-1,0 мм. Вместо кольца можно использовать бандаж из медной проволоки. Теперь осталось загнуть снизу боковые ушки для крепления радиатора за корпус транзистора и отогнуть на нужный угол надрезанные перья.

Подобный радиатор можно также изготовить и из медной трубки, диаметром 8мм. Отрезаем кусок 6…7см, разрезаем трубку вдоль по всей длине с одной стороны. Далее на половину длины разрезаем трубку на 4 части и отгибаем эти части в виде лепестков и плотно надеваем на транзистор.

Так как диаметр корпуса транзистора где-то 8,2 мм, то за счёт прорези по всей длине трубки, она плотно оденется на транзистор и будет удерживаться на его корпусе за счёт пружинящих свойств. Резисторы в эмиттерах выходного каскада – либо проволочные мощностью 5 Вт, либо типа МЛТ-2 3 Ом по 3шт параллельно. Импортные пленочные использовать не советую – выгорают мгновенно и незаметно, что ведет к выходу из строя сразу нескольких транзисторов.

Наличие искажений в различных классах НЧ-усилителей

Рабочая область транзисторного усилителя класса «А» характеризуется достаточно небольшими нелинейными искажениями. Если входящий сигнал выбрасывает импульсы с более высоким напряжением, это приводит к тому, что транзисторы насыщаются. В выходном сигнале возле каждой гармоники начинают появляться более высокие (до 10 или 11). Из-за этого появляется металлический звук, характерный только для транзисторных усилителей.

При нестабильном питании выходной сигнал будет по амплитуде моделироваться возле частоты сети. Звук станет в левой части частотной характеристики более жестким. Но чем лучше стабилизация питания усилителя, тем сложнее становится конструкция всего устройства. УНЧ, работающие в классе «А», имеют относительно небольшой КПД – менее 20 %. Причина заключается в том, что транзистор постоянно открыт и ток через него протекает постоянно.

Схема самодельного усилителя мощности звуковой частоты.

Транзисторы VT3, VT4, VT5, VT6 устанавливаются на радиаторы. Расчет радиаторов для них. Рассеиваемая мощность для расчета на каждом из транзисторов VT5, VT6 — 30 Вт, на каждом из транзисторов VT3, VT4 — 5 Вт. Ни в коем случае нельзя ставить VT3, VT4 и транзисторы VT5, VT6 на один радиатор, даже с изолирующими прокладками. Нагрев выходных транзисторов VT5, VT6 не должен передаваться транзисторам VT3, VT4.

Устройство питается от двухполярного стабилизированного источника питания +- 30 В. Таким образом напряжение между положительным и отрицательным выводами питания составляет 60 В.

Схема однотактного УНЧ на транзисторе

Самый простой усилитель, построенный по схеме с общим эмиттером, работает в классе «А». В схеме используется полупроводниковый элемент со структурой n-p-n. В коллекторной цепи установлено сопротивление R3, ограничивающее протекающий ток. Коллекторная цепь соединяется с положительным проводом питания, а эмиттерная – с отрицательным. В случае использования полупроводниковых транзисторов со структурой p-n-p схема будет точно такой же, вот только потребуется поменять полярность.

С помощью разделительного конденсатора С1 удается отделить переменный входной сигнал от источника постоянного тока. При этом конденсатор не является преградой для протекания переменного тока по пути база-эмиттер. Внутреннее сопротивление перехода эмиттер-база вместе с резисторами R1 и R2 представляют собой простейший делитель напряжения питания. Обычно резистор R2 имеет сопротивление 1-1,5 кОм – наиболее типичные значения для таких схем. При этом напряжение питания делится ровно пополам. И если запитать схему напряжением 20 Вольт, то можно увидеть, что значение коэффициента усиления по току h21 составит 150. Нужно отметить, что усилители КВ на транзисторах выполняются по аналогичным схемам, только работают немного иначе.

биполярные транзисторы.

На резисторе R1 теперь можно вычислить значение падения – это разница между напряжениями базы и питания. При этом напряжение базы можно узнать по формуле – сумма характеристик эмиттера и перехода «Э-Б». При питании от источника 20 Вольт: 20 – 9,7 = 10,3. Отсюда можно вычислить и значение сопротивления R1=10,3В/60 мкА=172 кОм. В схеме присутствует емкость С2, необходимая для реализации цепи, по которой сможет проходить переменная составляющая эмиттерного тока.

Если не устанавливать конденсатор С2, переменная составляющая будет очень сильно ограничиваться. Из-за этого такой усилитель звука на транзисторах будет обладать очень низким коэффициентом усиления по току h21

Нужно обратить внимание на то, что в вышеизложенных расчетах принимались равными токи базы и коллектора. Причем за ток базы брался тот, который втекает в цепь от эмиттера

Возникает он только при условии подачи на вывод базы транзистора напряжения смещения.

УКВ ЧМ приемник на основе синхронно-фазового детектора

Этот простой приемник, работающий в диапазоне 65.8-73 МГц имеет минимум деталей и  прост для повторения даже начинающими радиотехниками. Взглянем на принципиальную схему конструкции.

Схема однотранзисторного УКВ приемника

Сигнал, принятый антенной Ant1, поступает на колебательный контур С2, L1. Перестраивая контур конденсатором С2, мы можем выделить конкретную частоту из общего сигнала в диапазоне 65.8-73 МГц (УКВ ЧМ диапазон). Выделенный сигнал через конденсатор С3 подается на базу транзистора Т1. Резистор R1 задает начальное смещение этому транзистору, который одновременно является фазовым детектором, усилителем постоянного тока, фильтром низких частот и усилителем низкой частоты.

Детектирование происходит за счет n-p переходов, которые, по сути, являются диодами. Вместо конденсатора между эмиттером и коллектором, необходимого для обеспечения генерации, используется тот же транзистор, имеющий емкость коллекторного перехода порядка 8 пФ. Выделенный сигнал НЧ подается на головные телефоны.

В качестве антенны используется отрезок монтажного провода возможно большей длины. Головные телефоны – любые электромагнитные с максимально возможным сопротивлением. Катушка L1 бескаркасная. Ее наматывают на подходящей оправке проводом ПЭВ диметром 0.5 мм. Количество витков – 14.

Настройка приемника сводится к подстройке индуктивности катушки L1 путем сжатия и растяжения витков. Она должна быть такой, чтобы рабочий диапазон приемника лежал в той области, где число станций максимально. Это легко проконтролировать, использовав любой УКВ приемник как контрольный. После настройки катушку нужно залить парафином во избежание микрофонного эффекта. Чтобы приемник смог принимать станции так называемого FM диапазона 87-108 МГц, количество витков L1 нужно уменьшить до 8-10.

При повторении конструкции необходимо расположить элементы на плате так же, как они расположены на принципиальной схеме.

Принципиальная схема транзисторного УМЗЧ

Свою транзисторную схему я снабдил однополярным стабилизированным питанием и с разделительным выходным конденсатором (как в старые добрые времена).

ООС по постоянке и переменке складываются с входным сигналом в одной точке. На всю схему только один транзистор работает по схеме с ОЭ, что благоприятно сказывается на устойчивости, и делает ненужными корректирующие конденсаторы.

Он, разгруженный мощным повторителем, определяет всё усиление по напряжению. Этим объясняется и достаточно небольшая глубина ОС.

К тому же эта пара транзисторов, является довольно мощным линейным однотактным усилителем, имеющим токовое управление.

Рис. 1. Принципиальная схема УМЗЧ на шести транзисторах в эмуляторе Electronics Workbench.

Входной эмиттерный повторитель обеспечивает преобразование входного напряжения в управляющий ток. Далее выходной повторитель — и в нагрузку. Как мне кажется, короче тракт усиления сделать невозможно. И уменьшить задержку сигнала ОС тоже. Хотя…В конце статьи я об этом приписал. Вот самый простой вариант схемы

Чем не 4-я группа сложности – всего 6 транзисторов! На типы транзисторов внимание можно не обращать — я выбирал из того, что было в коллекции Workbench, а ему всё равно, какие напряжения и токи выдерживает тот или иной тип транзистора

Даже такой примитив уже будет звучать прилично. А дальше — уже 7 транзисторов. И больше не надо. Разве что параллелить выходные для умощнения.

Рис. 2. Принципиальная схема УМЗЧ на семи транзисторах в эмуляторе Electronics Workbench.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: