Стабилитрон как датчик температуры

Внутренняя принципиальная схема 1-го канала ИМС LM324

LM324 содержит 4 операционных двухступенчатых усилителя с частотной компенсацией. Первый каскад – входной дифференциальный, собран на элементах Q20 и Q18 с буферными транзисторами Q21 и Q17 и дифференциального преобразователя на Q3 и Q4. Первая ступень не только усиливает входные сигналы, она определяет уровни сдвига сигналов и нормализует характеристику крутизны. Такое схемное решение позволяет применить в компенсационной линии конденсатор очень малой емкости – 5,0 пФ), что увеличивает эффективность использования полезной площади кристалла. Дифференциальный каскад на транзисторах с разделенными коллекторами Q20 и Q18 преобразует входные напряжения в ток. Другая особенность этой ступени в том, что при питании усилителя однополярным напряжением не происходит насыщения транзисторов дифференциального каскада.

Второй каскад — это стандартный усилительный каскад. Для нагрузки он является источником тока.

Все 4 усилителя на рабочие режимы выводятся одним узлом смещения. Благодаря этому каждый усилитель обладает хорошими показателями температурной стабильности и подавления шумов по линии питания.

С использованием Arduino

Есть много схем описывающих цифровой термометр с использованием микроконтроллера Ардуино. Все они однообразно берут измеренную температуру от датчика и отображают ее на дисплее, который имеет достаточно небольшой размер. То есть, на улице такую систему конечно использовать можно, но требуется отображающий экран помещать поближе к людям или вообще монтировать его внутри помещений.

Чем хорош микроконтроллер, что шкалой может выступать не только цифровой индикатор. Хотя и последний имеет право на жизнь, для считывания показаний в тех местах, где не видно уличный информатор. Что касается последнего, — в его роли можно использовать длинную самодельную линейку (в роли которой способна выступать и обычная доска любых габаритов), с нанесенной разметкой и перемещаемой сервоприводом стрелкой, демонстрирующей текущие значения температуры.

Механизм

Общая конструкция механизма выглядит следующим образом:

Нижний и верхний конец шкалы определяется физическим положением установленных выключателей, которые замыкает собой подвижный указатель, при достижении предела размеченной длины. Требуется последнее только для стартовой калибровки механизма при первом запуске системы.

Чтобы на точность представленного измерителя не влияли внешние погодные факторы (подвижная струна и направляющая удлиняются в жару и сокращаются при холоде), рекомендуется верхний ролик и поддерживающую проволоку закреплять на жестких пружинах «в натяг».

Схема

Несколько замечаний по схеме. Для числового вывода информации о температуре используется цифровой индикатор TM1637. Дополнительно, описанный ранее механизм, отображает значение на «аналоговой» шкале с помощью биполярного тактового двигателя М1. S1 — блокирующий выключатель, устанавливаемый сверху шкалы, S2 — снизу.

Однократное нажатие кнопки S3 переключает Ардуино в поиск положения нулевой температуры (при этом загорится светодиод LED1). «Стрелка», указывающая градусы, передвинется на требуемый уровень, для последующей отметки места начала измерений. Далее, пользуясь установленным максимумом и минимумом, с помощью линейки, размечают остальную шкалу ниже и выше нуля.

Повторное нажатие S3 переключит устройство в стандартный режим работы. Светодиод погаснет, а стрелка передвинется на позицию, соответствующую текущей температуре.

Питание на ULN2003A подается от иного источника, чем тот, который поддерживает работу самого микроконтроллера. Последнее сделано во избежание «наводок» паразитными токами двигателя на общую схему.

Управляющий скетч

Для работы с TM1637 понадобиться библиотека Groove 4Digital Display, ее адрес:

Скетч можно скачать здесь: https://cloud.mail.ru/public/4gRK/ri7sjm19N

Точность

Округления до целой части в скетче, привели к снижению точности показаний до ближайшего градуса на аналоговой шкале. На числовом индикаторе, подобной проблемы не наблюдается — он отображает полученную температуру корректно.

Что такое компаратор напряжения

Принцип функционирования компаратора напряжения (КН) можно сравнить с весами рычажного типа. Когда на одну чашу весов укладывается эталонная гиря, а на другую — измеряемый продукт. В то время, когда вес продукта будет одинаковым с массой контрольного веса, чаша с эталонным весом поднимается выше, после чего процесс взвешивания заканчивается.


Применение компараторов

В КН вместо гирь функционирует основное напряжение, а продукт заменяет входящий сигнал. Когда образуется логическая «1» на выходе компаратора, начинается процесс сопоставления значений напряжения. Для проверки такого прибора не потребуется выполнения трудозатратной схемы. Достаточно подключить выходной вольтметр, а на вводы — регулируемое напряжение. При смене входных параметров на вольтметре будет видима функциональность КН, параметры настройки задаются схемой.

Аналоговые полупроводниковые датчики

Типовая схема включения полупроводникового термометра с коррекцией 

Простые аналоговые полупроводниковые датчики практически в чистом виде реализуют идею измерения температуры, с помощью определения падения напряжения на p-n переходе. Для устранения всех отрицательных явлений, связанных с работой такого перехода, используется специальная схема, содержащая в своем составе два чувствительных элемента (транзистора) с различными характеристиками. Выходной сигнал формируется как разность падений напряжения на каждом чувствительном элементе. При вычитании значительно сокращаются негативные моменты. Дальнейшее повышение точности измерения осуществляется калибровкой датчика с помощью внешних цепей.

 Основной характеристикой датчика температуры является точность измерений. Для полупроводниковых моделей она колеблется от ±1°С до ±3.5°С. Самые точные модели редко обеспечивают точность лучше чем ±0.5°С. При этом данный параметр сильно зависит от температуры. Как правило, в суженном диапазоне от  -25° до 100°С точность в полтора раза выше, чем в полном диапазоне измерений -40°С до +125°С. Большинство аналоговых датчиков температуры, иначе называемых интегральными датчиками, содержит три вывода и включается по схеме диода. Третий вывод обычно используется для целей калибровки. Выходной сигнал датчика представляет собой напряжение, пропорциональное температуре. Величина изменения напряжения различна и, например, составляет 10мВ/градус. Для точного определения значения температуры необходимо знать падение напряжения при каком-либо ее фиксированном значении. Обычно в качестве такового используется значение начала диапазона измерений либо 0°С.

Примеры аналоговых датчиков температуры

Модель Диапазон измерений Точность Температурный коэффициент Производитель
LM35 от -55°С до +150°С  ±2°С  10 мВ/°С   National Semiconductor
LM135 от -50°С до +150°С  ±1.5°С  10 мВ/°С   National Semiconductor
LM335 от -40°С до +100°С  ±2°С  10 мВ/°С   National Semiconductor 
TC1047 от -40°С до +125°С  ±2°С  10 мВ/°С   Microchip
TMP37  от -40°С до +125°С  ±2°С 20 мВ/°С   Analog Devices

Кроме простых датчиков, производители предлагают также готовые интегральные системы термостатирования. Подобные микросхемы, например LM56 от National Semiconductor, оснащены выходом для управления нагрузкой. Температура срабатывания выхода задается в виде заводской установки, либо с помощью навесных элементов, подключаемых к специальным входам задания. Невысокое качество регулирования, обеспечиваемое данными элементами, компенсируется их простотой использования и сверхнизкой стоимостью готовых систем управления.

Безопасность при эксплуатации

Иногда, не все каналы lm324 используются в проекте. Если это так, то неиспользуемые должны быть подключены таким образом, чтобы не влиять на другие. Варианты подключения неиспользуемых каналов смотрите в даташите производителя.

При определенных условиях полярность выходного напряжения может стать инвертированной, что может повредить микросхему. Это характерно в схемах компаратора и повторителя напряжения. Для того, чтобы избежать появление отрицательного напряжения (инверсии фазы) на входе, производители рекомендуют добавлять последовательно на неинвертирующий вход схемы резистор, который будет ограничивать входной ток до 1 мА и ниже. Такая величина входного тока позволит снизит риск повреждения устройства.

Все входы операционных усилителей не должны быть подключены на землю на прямую. Всегда необходимо добавлять некоторое сопротивление, чтобы ограничить ток до 10 мА и меньше. Все входные контакты должны включать диод от входа до Gnd. В схемах с двумя источниками питания, контакт Gnd будет отрицательным. Тем не менее, во время включения, выключения питания или случаях внезапной неисправности по напряжению, вывод Gnd может стать положительным. Если это произойдет, то по заземленному входному контакту потечет большой ток, способный повредить микросхему.

Добавление последовательного резистора от 1 кОм до 10 кОм на входе может избавить ее от поломки.Не допускается подключение к источнику питания с обратной полярностью, так как lm324n может перегреться и выйти из строя.

Производители

Ниже представлены даташит основных производителей lm324:

Производитель российского аналога микросхемы Электроника и связь.

Микросхема LM324 — операционный усилитель общего применения. LM324 выпускается в двух типах корпусов: DIP и SOIC. В состав LM324 входят четыре независимых операционных усилителя. Диапазон напряжений от 3в до 30в (+15, -15). Микросхема LM324 может работать как при однополярном, так и при двухполярном питании. Диапазон рабочих температур от 0 до +70 градусов по Цельсию.

LM324 схемы включения

Итак, где же предлагает использовать LM324 Texas Instruments:

Кстати TI выпускает 324-тые уже более 40 лет – с 1975. Большое количество операционных усилителей может понадобиться как для схем с большим количеством однотипных каналов, так и в сложных схемах. Например счетверенный LM324 пригодятся как ни кстати в схеме биквадратного фильтра.

15 thoughts on “ Микросхема LM324 – счетверенный операционный усилитель ”

Документация на LM324 от разных производителей: TI, Onsemi, Fairchild. Интресно, что номенклатура корпусов у всех разная. Ну и куча отличий по мелочи.

Ничего удивительного в этом нет, производители закупают материалы с разной долей посторонних примесей, вот это и отражается на выходных параметрах. При производстве компонентов с одинаковой маркировкой главное точно воспроизвести основную схему. Корпус при этом можно выбрать любой, позволяющий рассеивать номинальную мощность.

Не, напряжение смещения у него все же большое. Примерно такое же смещение нуля имели некоторые отечественные ОУ, при том они считались не самыми лучшими. Для работы с сигналами переменного тока LM324 сгодится, но если попытаться использовать ее в качестве УПТ, то «плавание» усиленного напряжения не позволит работать с сигналами малого уровня.

В качестве оффтопа: я тут недавно добыл горстку OP07. Тоже далеко не самые новые операционные усилители, но с напряжением сдвига менее 100 микровольт. По быстрому спаял на них и каких-то советских прецизионных резисторах диффусилитель на макетке. Получил устройство адекватно усиливающее напряжения около 1 милливольта с коэффициентом усиления 100. Блин, я даже не знал, что такое может быть. Пробовал раньше нечто подобное делать на ОУ широкого применения, так напряжение на выходе полностью зависело от направления ветра на Марсе и фаз Луны.

У LM324 самые явные плюсы на мой взгляд, это возможность однополярного питания и четыре ОУ в одном корпусе. Очень ценные свойства для переносной малогабаритной аппаратуры, где вес, размеры и нетребовательность к источнику питания имеют решающее значение.

Как раз OP07 самым доступный из прецизионных операционников: на али от 6 долларов 100шт. Вот правда не знаю оригинальные ли 6 центовые ОУ. С таким смещение прекрасно подойдут для усиления сигнала с шунтов.

Я на алиэкспресс брал OP07. За оригинальность ничего не скажу, но с напряжением смещения у них все в порядке. Самому не верилось, что за копейки можно приобрести высокоточные ОУ, но работают отменно. А вот прецизионные резисторы по дешевке уже не купишь. Хорошо, знакомый отдал мне пару сотен советских С2-29 разных номиналов, использую их в ответственных случаях.

По резисторам нормальная фирма Yageo, ставил их токовые шунты. На али есть прецизионные резисторы Yageo 0805 0,125Вт 0.1% ±25ppm/°C. Стоят 20$ за 200шт. и 120$ за 5000шт. Но это одного номинала, очень жалко что наборы только на 1% и 5%. Был бы набор 5000шт, получалось бы за 2,4 цента отличный резистор.

В нашу цифровую эру в устройствах остается большой процент операционных усилителей, компараторов, оптопар и другой мелочевки, которую при ремонте так или иначе необходимо проверять. И каждый раз с ремонтом подобных устройств возникает проблема проверки этих компонентов на исправность, особенно счетверенных. А быстро их проверить не получается.

Да ну нафик… Панелька на куске макетной платы, несколько резисторов, двуполярный источник питания, вольтметр, вот и все что нужно для быстрой проверки ОУ. Спаять схему усилителя, подключить, измерить напряжение на выходе при подаче какого-то напряжения на вход, убедиться в наличии нуля на выходе в отсутствии сигнала. Все это делается за 15 минут.

Чем лучше у устройства с ремонтопригодностью тем оно больше по размерам и дороже. Мелкие детали труднее паять, но пользоватся компактным устройством удобнее, чем горомоздким но ремонтопригодным.

Вот кстати фото счетверенного L324 из цветного принтера Xerox Phaser 6000.

Рядом элементы в корпусах sot-23, 1206, 0603.

Ну, это естественно и касается не только электронных устройств. Полностью ремонтно-пригодных вещей становится все меньше и меньше. Как правило — это дорогучие эксклюзивы несущие не только практическую, но и эстетическую ценность. Частично же ремонтируемых — гораздо больше. Платку там, блочёк поменять целиком или дисплей — таких сколько угодно. Да и с полностью ремонтно-пригодными часто поступают таким же образом, потому как быстрей, хоть и дороже. Но время тоже деньги, так что все решает экономическая целесообразность.

Компаратор. Описание и применение. Часть 1

Эта статья содержит основную информацию о работе компараторов напряжения построенных на интегральных микросхемах и может быть использована в качестве справочного материала для построения различных схем.

В электронике, компаратор представляет собой устройство, которое сравнивает между собой два электрических сигнала и выводит цифровой сигнал, указывающий на увеличение одного входного сигнала над другим. Компаратор имеет два аналоговых входа и один цифровой выход.

Компаратор, как правило, построен на дифференциальном усилителе с высоким коэффициентом усиления. Компараторы широко используются в устройствах, которые измеряют и оцифровывают аналоговые сигналы, например, в аналого-цифровых преобразователях (АЦП)

Примеры работы компаратора приведены на основе микросхемы LM339 (счетверенный компаратора напряжений) и LM393 (сдвоенный компаратор напряжения). Эти две микросхемы по своему функционалу идентичны. Компаратор напряжения LM311 так же может быть использован в данных примерах, но он имеет ряд функциональных особенностей.

Обозначение и технические характеристики

Компаратор – это устройство, которое сравнивает два разных напряжения и силу тока, выдает конечный силовой сигнал, указывая на большее из них, одновременно производя расчет соотношения. У него есть две аналоговые вводные клеммы с положительным и отрицательным сигналом и один двоичный цифровой выход, как и у АЦП. Для отображения сигнала используется специальный индикатор.

УГО отображение компаратора выглядите следующим образом:


Фото – УГО компаратора

Изначально использовался только интегрированный компаратор напряжения (MAX 961ESA, PIC 16f628a), который известен как высокоскоростной. Он требует определенного дифференциального напряжения в определенном диапазоне, который существенно ниже, чем напряжение сети питания. Эти приборы не допускают никаких других внешних сигналов, которые находятся вне диапазона напряжения сети.

Сейчас гораздо чаще используется аналоговый цифровой компаратор (Attiny/ Atmega 2313), у которого транзисторный ввод. У него вводный потенциал сигнала находится в диапазоне менее 0,3 Вольт и не поднимается выше. Устройство может быть также ультра быстрого типа (стереокомпаратор), благодаря чему входной сигнал меньше обозначенного диапазона, к примеру, 0,2 Вольта. Как правило, используемый диапазон ограничивается только конкретным входным напряжением.


Фото – Компаратор

Помимо простого прибора, также существует видеоспектральный компаратор на ОУ (операционном усилителе). Это прибор, у которого очень тонко сбалансирована разница входа и высокого сопротивления сигнала. Благодаря такой характеристики, операционный компаратор используется в низкопроводимых схемах с небольшим вольтажем.


Фото – схема компаратора

В теории, частотный операционный усилитель работает в конфигурации с открытым контуром (без отрицательной обратной связи) и может быть использован в качестве компаратора низкой производительности. Но при этом, не инвертирующий вход (+ V) находится на более высоком напряжении, чем на инвертирующий (V-). Высокое усиление, выходящее из операционного усилителя, провоцирует выход низкого напряжения на входе в устройство.

Когда неинвертирующий вход падает ниже инвертирующего входа, выходной сигнал насыщается при отрицательном уровне питания, то он все равно может проводить импульсы. Выходное напряжение ОУ ограничивается только напряжением питания. Принципиальная электрическая схема ОУ работает в линейном режиме с отрицательной обратной связью, с помощью сбалансированного сплит-источника питания (питание от ± V S ). Многие приборы, работающие с компаратором, также имеют свойство фиксировать полученные данные при помощи видео-, фото- или документальной записи. Эти электронные принципы не работают в системах, где используются разомкнутые контуры и низкопроводящие элементы.


Фото – простой компаратор

Но у компараторного усилителя существует несколько существенных недостатков:

  1. Операционные усилители предназначены для работы в линейном режиме с отрицательной обратной связью. Но при этом, ОУ имеет более длительный режим восстановления;
  2. Почти все операционные усилители имеют конденсатор внутренней компенсации, который ограничивает скорость нарастания выходного напряжения для высокочастотных сигналов. Исходя из этого, данная схема немного задерживает импульс;
  3. Компаратор не имеет внутреннего гистерезиса.

Из-за этих недостатков, компаратор для управления различными схемами, в большинстве случаев, используется без усилителя, исключением является генератор.

Компаратор предназначен для производственных процессов с ограниченным выходным напряжением, которое легко взаимодействует с цифровой логикой. Поэтому его часто используются в различных термических приборах (терморегулятор, реле температуры). Также его применяют для сравнения сигналов и сопротивлений таких устройств, как таймер, стабилизатор и прочая схемотехника.

Фото – аналоговый компаратор

Видео: компараторы

Приставка к мультиметру на датчике LM35 и переделка вольтметра в термометр

Обычно в недорогих мультиметрах отсутствует функция измерения температуры. Но этот недостаток легко и недорого можно устранить, при том еще очень быстро. Получим довольно точный приборчик для измерения температуры состоящий всего из нескольких радиодеталей. Основу будет составлять специальная микросхема типа LM35 полученная с Алиэкспресс (цена примерно 30р).


Этот датчик темпратуры выглядит как обычный транзистор в пластмассовом корпусе ТО92(бывает исполнение в других корпусах: ТО-46, TO-220 и SO). Температуру она может измерить от -55 до +150°C.


Благодаря практически линейной зависимости температуры от выходного сигнала обеспечиваются довольно точные показания. Например—при +20°C на выходе датчика будет 200 мВ, а при +100°C-1000 мВ. Схема использования LM35 при измерении температуры от +2 до+150°C.


Схема использования LM35 при измерении температуры от -55 до+150°C.


Для изготовления этой самоделки понадобятся: — датчик LM35 -1шт; — тестер -1шт; — подстроечный многооборотный резистор любой от 10 кОм до 100 кОм – 1 шт; — макетная плата; — металлический корпус от конденсатора МБМ или металлическая трубка -1шт; — силиконовый герметик; — батарейка «Крона» или любая на напряжение от 3 В; — цифровой вольтметр-1шт; — соединительные провода ; — паяльник; — клемник. Шаг 1.Сборка приставки к тестеру. Будем собирать основную плату электронного термометра.


От макетной платы отрежем кусок нужного размера, чтобы разместилась батарейка, клемник и подстроечный резистор. Можно сделать и печатную плату или произвольно распаять схему на любом диэлектрическом материале.

Шаг 2. Настройка и проверка приставки. Подключаем питание и подстроечным резистором настраиваем показания по другому термометру. Мультиметр включен на предел измерения 200 мВ. Далее сравнил показания поместив датчик в холодную и горячую воду. Разница оказалась в десятые доли градуса.


На этом настройка закончена, можно пользоваться термометром LM35 как приставкой к тестеру.

Шаг 3. Переделка вольтметра в термометр. Также можно применить эту приставку как базовую и сделать электронный цифровой термометр из электронного вольтметра.


Он был включен по двухпроводной схеме- подключаем к источнику напряжения и он питается от него и показывает значение напряжения. Нужно переделать его на трехпроводную схему-питание отдельно и измерительный вход отдельно. Это сделать просто, надо удалить резистор R3 (сопротивление 0 Ом). Это даст еще возможность (если применять вольтметр по его прямому назначению) расширить предел измерения. По двухпроводной схеме включения пределы измерения от 4 до 30 В, по трехпроводной составит от 0 до 100 В.


Припаиваем выход температуры из приставки на LM35 к процессору (в точку указанной в фото). Заклеиваем горящюю точку на вольтметре черной изолентой, после второй цифры вольтметра наклеиваем белую точку.


Остается подстроечным резистором выставить реальную температуру на вольтметре. Также проверим показания по образцовому термометру.


Последним шагом изготовления самоделки будет размещение в подходящем корпусе. Нашел небольшую распредкоробку – в нее как раз уместилась и платка и вольтметр. Наружу выходят провода датчика и питания. Можно запитать схему и от аккумулятора и разместить его в корпусе, тогда прибор будет полностью автономен.


Датчик LM35 имеет большую сферу применения. Он применяется в бортовых компьютерах автомобилей, в терморегуляторах, прекрасно сочетается с Ардуино. Все зависит от ваших потребностей и фантазий.

В видео подробней показано как сделать приставку для бюджетного тестера и переделать вольтметр в термометр.

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Примеры использования операционного усилителя LM324

Светодиодный индикатор акустического сигнала на LM324

Низкочастотный сигнал с выхода усилителя подается на инвертирующие входы всех операционных усилителей LM324. Прямые входы их подключены к делителю напряжения построенного из цепи постоянных резисторов R2…R9. Переменным резистором можно выставить необходимую чувствительность светодиодного индикатора. Сопротивления R12…R19 ограничивают максимальный ток, протекающий через светодиоды.

Простая светодиодная мигалка на ОУ LM324

Схема позволяет плавно поочередно включать и выключать светодиоды. Светодиодная мигалка построена на операционном усилителе LM324 и двух транзисторах разной проводимости. От сопротивления резистора R3 и емкости конденсатора C1 зависит скорость переключения светодиодов.

Представляет собой микросхема LM324 четыре одинаковых по характеристикам операционных усилителя (ОУ), собранных в едином корпусе, работающих от одного источника питания в большом диапазоне напряжений. Каждый операционник имеет в своем составе входной дифференциальный каскад, защиту от КЗ и внутреннюю частотную коррекцию при единичном усилении.

Характеристики и дешевизна этого прибора обеспечивают ее широкое применённые в радиолюбительских схемах и в промышленной электронике. Она отлично подходит для работы в компактных переносных электронных устройствах.

Она производится в корпусах DIP-типа: пластиковом CDIP, керамическом PDIP или SO-типа для поверхностного монтажа: SOIC, TSSOP. Конструктивно устройство имеет 14 выводов. Поэтому, в некоторых технических описаниях, встречается обозначение DIP-14 или SO-14.

Назначение выводов для разных корпусов идентичное: 2,3, 5,6, 9,10, 13,12 — входы, 1,7,8,14 – выход, 4 – плюс источника питания, 11 – минус источника питания.

Технические характеристики

Электрические параметры
(при U пит. +5 В и T A +25 °C):

  • Напряжение смещения на входе Uсм (V IO) от 2…7 мВ (mV);
  • Входной ток смещения Iвх.(I IB) от 45…100 нА (nA);
  • Выходное нап. Uвых. (Vout): от 0… Uпит. – 1,5 В (V);
  • Коэффициент усиление (K): 100 дБ (dB);
  • Ширина полосы пропускания (f) 1 МГц;
  • Ток потребления без нагрузки I пот. (I CC): не более 700 мкА (µA);
  • Разность входных токов (ток сдвига) Iсдв. (I IO) от 5…30 нА (nA);
  • Рассеиваемая мощность P Р макс (P tod) зависит от типа корпуса: PDIP 1130 мВ(mW); CDIP 1260 мВ(mW); SOIC 800 мВ(mW).
  • Диапазон рабочих температур окружающей среды T A: 0…+70°C;
  • Температура хранения T хран. (T str):-65… +150 °C.

Особенности.

Дифференциальный диапазон входного напряжения достигает напряжения питания. Для lm324 нижний предел диапазона входного синфазного сигнала на 0,3 В ниже, чем V — , а размах выходного напряжения ограничен снизу значением V — . Как на входах, так и на выходе предельное значение состовляет на 1,5 В меньше, чем V +.

Частота единичного усиления fi (от 100 КГц до 30 МГц), это частота на которой коэффициент усиления микросхемы (К) становится равным единице (0 дБ).

Имеет внутреннюю частотной коррекции для единичного усиления.

Диапазон входного синфазного напряжения включает землю.

Длительность короткого замыкания T кз (Tsc) на выходе неограниченна.

Вывод

Вот мы и прошли с вами очень важную тему, касающуюся компараторов напряжения. Если на этом этапе вам что-то непонятно, убедитесь, что вы понимаете общий принцип работы этих элементов. Детальные знания внутренней структуры компаратора сейчас не понадобятся, поэтому вам не нужно сосредотачиваться на этом — самое главное, вы можете воссоздать практическое упражнение.

Если в настоящее время вы не видите практического применения компаратора, подождите, пока мы не начнем комбинировать его с другими элементами, например, аналоговыми датчиками. Для этого, в следующей статье, мы построим лампу, которая автоматически включается после наступления темноты, а также соберем простой термостат.

Описание выводов

Микросхема реализована в стандартных корпусах DIP, SO

и имеет 8 выводов для подключения к цепям питания и формирования сигналов. Два из них (4,

В схеме операционного усилителя имеются 2 ячейки со стандартной топологией выводов и без цепей коррекции. Поэтому для реализации более сложных и технологичных устройств потребуется предусматривать дополнительные схемы преобразования сигналов.

Микросхема является популярной и используется в бытовых приборах

, эксплуатируемых при нормальных условиях, и в особых с повышенной или пониженной температурой окружающей среды, высокой влажностью и прочими неблагоприятными факторами. Для этого интегральный элемент выпускается в различных корпусах.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: