Датчик температуры lm35 подключение

Посмотреть еще

Нужна помощь в выборе продукции или подборе аналога?

Указано наличие на складе в г.Москве. Цены приведены с учетом НДС. Приведенная информация носит справочный характер и не является публичной офертой в соответствии с пунктом 2 статьи 437 ГК РФ. При заказе товара через сайт Вам будет выставлен счет на оплату в режиме онлайн, товар забронирован на 5 рабочих дней и зафиксирована цена на день покупки.

Оплатить товар можно:

  • Банковским переводом
  • Электронными деньгами Яндекс.Деньги
  • Наличными при получении товара (для клиентов из Москвы и Санкт-Петербурга)
  • Наличными через офисы Евросеть, Связной или через любой платежный терминал, принимающий Яндекс.Деньги
  • Пластиковой картой Visa/MasterCard (кроме клиентов из Санкт-Петербурга)

Мы работаем с разными грузовыми компаниями:

  • экспресс-доставка Major Express
  • Деловые линии
  • ТК Энергия
  • почта России
  • терминалы доставки QIWI Post

Забрать заказ можно в наших офисах:

  • Москва, м.Молодежная, ул.Ивана Франко, д.40, стр.2 (через 2 раб.дня)
  • Москва, м.Электрозаводская, ул.Б.Семеновская, д.40 (через 2 раб.дня)
  • С.-Петербург, ул.Зверинская, д.44 (через 5 раб.дня)
  • мы являемся официальным дистрибьютором более 20 мировых производителей комплектующих
  • на товар, подлежащий гарантийному обслуживанию, срок гарантии составляет 6 месяцев
  • мы предоставляем все необходимые сертификаты
  • мы поддерживаем собственный сервисный центр

Типы датчиков температуры

   Есть много различных типов датчиков температуры. От простых контролирующих процесс вкл/выкл термостатического устройства, до сложных контролирующих системы  водоснабжения, с функцией её нагрева применяемых в процессах выращивания растений. Два основных типа датчиков, контактные  и бесконтактные далее подразделяются на резистивные, датчики напряжения и электромеханические датчики. Три наиболее часто используемых датчика температуры это:

  • Термисторы
  • Термопреобразователи сопротивления
  • Термопары

   Эти датчики температуры отличаются друг от друга с точки зрения эксплуатационных параметров.

Без специального режима

Существует ли возможность измерить температуру мультиметром, не имеющим для этого специального режима? Оказывается, это действительно можно сделать, но потребуется немного модернизировать прибор.

Нужно приобрести микросхему ЛМ-35, с ее помощью показатели температуры будут превращены в напряжение, и прибор сможет распознать данные, но укажет их в Вольтах. Например, 0,30 Вольт нужно будет понимать как 30 градусов Цельсия.

Использование микросхемы не требует сложного вмешательства в конструкцию прибора и позволяет использовать любой мультиметр для измерения температуры.

Для того чтобы микросхема работала, вам потребуется:

  • три провода, которые можно будет подключить к 10-омному выходу прибора;
  • отдельный источник питания не менее 4 Вольт, то есть 2 плоских батарейки.

Если надо измерить не только положительную, но и отрицательную температуру, потребуется также подключение источника опорного напряжения.

Сама микросхема подключается просто. Она имеет три разъема для проводов плюсового, минусового значения и выходной датчик. Такой подход позволит преобразовать любой мультиметр, сделав его более функциональным, при этом конструкция обойдется недорого.

Аналоговый термометр

Начнем с самого простого способа изготовления бытового термометра, который не требует знания электрической части. Понадобится:

  • бутылка или любая иная относительно небольшая емкость, главное требование к которой, чтобы соломинка помещалась в нее почти полностью;
  • пластилин;
  • тушь или иной краситель;
  • прозрачная или матовая соломинка для коктейля;
  • содержащая спирт жидкость (духи, одеколоны, водка или любые аналогичные);
  • вода;

Рецепт изготовления: заливаем емкость до края, смесью воды пополам со спиртом. Добавляем краситель и перемешиваем. Опускаем соломинку до половины в жидкость. Фиксируем пластилином, плотно замазав промежуток между ней и стенками.

Позади получившегося индикатора размещают лист бумаги, на котором в зависимости от показаний эталонного градусника и высоты жидкости в соломинке размечают значения температур.

Точность устройства зависит только от качественной градации индикатора. Пределы измеряемой температуры лежат в промежутке от −40 °C до +90 °C.

Типы датчиков температуры

Есть много различных типов датчиков температуры. От простых контролирующих процесс вкл/выкл термостатического устройства, до сложных контролирующих системы водоснабжения, с функцией её нагрева применяемых в процессах выращивания растений. Два основных типа датчиков, контактные и бесконтактные далее подразделяются на резистивные, датчики напряжения и электромеханические датчики. Три наиболее часто используемых датчика температуры это:

  • Термисторы
  • Термопреобразователи сопротивления
  • Термопары

Эти датчики температуры отличаются друг от друга с точки зрения эксплуатационных параметров.

Высокотемпературный градусник

Для тех случаев, когда требуется измерение температуры свыше пределов «выживания» терморезистора, используется термопара. Ее функциональность сохраняется и при 600 градусах Цельсия. Подобный определитель нагрева среды может быть полезен не только на производстве, но и дома. К примеру, определять температуру работы духовки или текущую на жале паяльника.

Схема

Термопара генерирует микроскопический ток, малым напряжением и силой. Для преобразования полученных характеристик, в понятный микроконтроллеру вид, используется шилд Ардуино с микросхемой MAX6675. Вывод показаний осуществляется на числовой индикатор ТМ1637.

Скетч

Скетч, как и в предыдущем случае, требует библиотеки Groove 4Digital Display для управления индикатором. Преобразователь MAX6675 контролируется процедурами из одноименной коллекции, расположенной по адресу:

Скетч можно скачать здесь: https://cloud.mail.ru/public/Y8Yz/jYWsjgY29

Характеристики и спецификации

El LM35 — это устройство, которое не требует дополнительных схем для его калибровки., поэтому им очень легко пользоваться. Например, если мы используем его с Arduino, нам нужно только беспокоиться о диапазоне напряжений, которые он подает на свой выход, зная максимальную и минимальную температуру, которую он может измерить, и сделать простой эскиз, чтобы аналоговый сигнал, который Arduino плата может быть преобразована в цифровую, а температура отображается на экране в градусах Цельсия или может быть преобразована в желаемую шкалу.

Поскольку обычно не бывает слишком жарко, обычно заключены в дешевые пластиковые пакеты и тому подобное. Это возможно благодаря низкому напряжению, необходимому для его работы и его выходной мощности. Это не мощное устройство, которое требует металлической, керамической оболочки и даже радиаторов, как в некоторых случаях.

Среди выдающиеся технические характеристики являются:

  • Выходное напряжение пропорционально температуре: от -55ºC до 150ºC при напряжении от -550 мВ до 1500 мВ
  • Откалиброван для градусов Цельсия
  • Гарантированная точность напряжения от 0.5 ° C до 25 ° C
  • Низкое выходное сопротивление
  • Низкий ток питания (60 мкА).
  • Бюджетный
  • Пакет SOIC, TO-220, TO-92, TO-CAN и др.
  • Рабочее напряжение от 4 до 30 В

Чтобы получить все подробности о LM35, вы можете использовать таблицы предоставлено такими производителями, как TI (Texas Instruments), STMicroelectronics и другими популярными поставщиками датчиков этого типа. Например, здесь вы можете скачать PDF-файл с описанием TI LM35.

Конструктивные особенности датчиков температуры

По типу исполнения температурные датчики представлены сегодня в различном исполнении. В первую очередь это зависит от вида датчика и его применения в той или иной области, но чаще всего встречаются двух типов: с кабельным выводом и с коммутационной головкой.

Датчик с кабельным выводом представляет собой чувствительный элемент, выполненный из меди или платины, заключенный в корпус из латуни либо нержавеющей стали и имеющий кабельный вывод определенной длины с ПВХ либо силиконовой изоляцией. Могут быть как погружного, так и накладного типа.

В зависимости от модели сама монтажная часть имеет разную длину, также могут иметь резьбовое крепление.

Датчики с коммутационной головкой конструктивно выполнены в виде гильзы с накидной гайкой, в которую вставлен чувствительный элемент и коммутационной головки с клеммными выводами.

Головки могут быть как пластиковыми, так и металлического исполнения. Кроме того головки могут быть стандартного или увеличенного исполнения. Увеличенные головки применяются для встраиваемых нормирующих преобразователей, преобразующих значение измеренной температуры в унифицированный выходной сигнал постоянного тока, как правило 4-20мА.

По типу защиты они могут быть обычного исполнения и взрывозащищенного, в этом случае в маркировке  присутствует обозначение Ex — знак соответствия стандартам взрывозащиты.

Также как и термосопротивления, термопары могут быть представлены в виде исполнения с коммутационной головкой и с кабельным выводом.

По исполнению рабочего спая относительно защитного корпуса бывают с изолированным рабочим спаем и неизолированным.

Для удобства монтажа в трубопроводы и быстрой замены датчика в случае необходимости, выпускается специальная арматура в виде бобышек и защитных гильз.

Бобышки ввариваются в трубопровод и в них вставляется защитная гильза, в которую уже в свою очередь вставляется датчик. Вместе с бобышкой в комплекте идет уплотнительная прокладка для обеспечения герметичности.

Мониторинг температуры с помощью Arduino и датчика LM35

Вы можете использовать плату Arduino для контроля температуры воздуха, подключив к ней датчик температуры LM35.

LM35 – это идеальный температурный датчик для измерения температуры окружающей среды.

Он обеспечивает линейный выход, пропорциональный температуре, где 0 В соответствует температуре 0 градусов Цельсия, а изменение выходного напряжения на 10 мВ соответствует изменению температуры на один градус Цельсия.

Датчики LM35 проще в использовании по сравнению с термисторами и термопарами, потому что они очень линейны и не требуют никакой обработки сигнала.

Для отображения температуры мы будем использовать жидкокристаллический дисплей (LCD).

Необходимые комплектующие

  • 1 x Arduino Mega2560;
  • 1 x LCD;
  • 1 x потенциометр 5 кОм;
  • 1 x макетная плата;
  • 1 x датчик температуры LM35;
  • 1 x резистор 1 кОм;
  • перемычки.

Схема соединений

Схема соединений

Подключите компоненты, как показано на рисунке выше. Резистор 1 кОм подключен между выходом LM35 и общим проводом GND, чтобы ограничить ток без влияния на выходное напряжение.

Выводы LCD дисплея

LCD дисплей подключен к Arduino, как показано ниже. Средний вывод потенциометра подключен к выводу 3 LCD дисплея, чтобы изменять его контрастность. Другие два вывода потенциометра подключены к линиям 5V и GND. Вывод включения EN LCD дисплея подключен к выводу 9 Arduino, а вывод дисплея RS подключен к выводу 8 Arduino. Вывод RW дисплея подключен к общему проводу.

Подключение LCD дисплея к Arduino

Вывод LCD дисплеяВывод платы Arduino

DB4
4

DB5
5

DB6
6

DB7
7

RS
8

EN
9

Код

Для записи данных на дисплей программа использует библиотеку LiquidCrystal.h. В функции loop() непрерывно считывается значение на выходе датчика, преобразуется в градусы Цельсия, а затем выводится на LCD.

// LCD библиотека Arduino #include // Определение выводов LCD LiquidCrystal lcd(8,9,4,5,6,7); // инициализация переменных int value=0; float volts=0.0; float temp=0.0; float tempF=0.0; void setup() { pinMode(3,INPUT); // установка вывода 3 Arduino на вход Serial.begin(9600); // открыть последовательный порт и установить скорость 9600 бит/с lcd.begin(16,2); // установить количество строк и столбцов LCD дисплея } void loop() { value=analogRead(A0); // прочитать из A0 volts=(value/1024.0)*5.0; // преобразование в вольты temp= volts*100.0; // поеобразование в температуру в градусах Цельсия tempF=temp*9/5+32; // поеобразование в температуру в градусах Фаренгейта // показать температуру на LCD дисплее Serial.print(“temperature= “); Serial.println(temp); lcd.setCursor(0,0); lcd.print(“TEMP= “); lcd.print(temp); lcd.print(” C”); lcd.setCursor(0,1); lcd.print(“TEMP= “); lcd.print(tempF); lcd.print(” F”); delay(500); }

Видео

Вот и всё! Надеюсь, статья оказалась полезной. Оставляйте комментарии!

Оригинал статьи:

Keep Your Cool: Monitor Temperature with an Arduino

Arduino Mega 2560

Отладочная плата Arduino Mega 2560 построена на микроконтроллере ATmega2560.

Она имеет 54 цифровых входных/выходных выводов (15 из которых могут использоваться в качестве ШИМ выходов), 16 аналоговых входов, 4 порта UART (аппаратных последовательных порта), кварцевый резонатор 16 МГц, подключение USB, разъем питания, разъем ICSP и кнопку перезагрузки. Она содержит всё необходимое для работы с микроконтроллером;…

Набор перемычек (папа-папа)

Набор перемычек папа-папа. 40 штук по 15 см.

Символьный LCD дисплей 16×2 HD44780

Символьный (буквенно-цифровой) LCD дисплей. 2 строки по 16 символов. Построен на базе контроллера HD44780. По умолчанию поддерживается в Arduino IDE с помощью библиотеки LiquidCrystal.

Подключение

Датчик TMP35 имеет три вывода (три ноги). Если посмотреть на датчик со стороны этих выводов и срезом вверх, как показано на рисунке,

то слева будет — положительный контакт питания (+2.7 — 5.5В),по центру — выход на контроллер,и справа — отрицательный контакт питания (земля).

Датчик аналоговый, а значит на его выходе мы имеем не 0 или 1, а напряжение в диапазоне от 0 до 5 вольт. Следовательно, мы должны вспомнить раздел про аналого-цифровое преобразование (АЦП) сигналов в Arduino. Держа в уме, что у Ардуино Уно есть шесть аналоговых входов (A0-A5), подключаем наш датчик по следующей схеме:

Исходный код программы

Чтобы написать код программы для нашего цифрового термометра, мы должны написать код для Arduino, датчика температуры LM35 и ЖК дисплея 16×2. Сначала подключим библиотеку для ЖК дисплея, а затем определим контакты данных и управления для подключения ЖК дисплея и датчика температуры.

После получения аналогового значения напряжения на аналоговом входе A0 мы считываем это значение и сохраняем его в переменной с помощью команды float analog_value=analogRead(analog_pin). После этого мы преобразуем его в цифровое значение температуры по следующей формуле:

float Temperature=analog_value*factor*100

где factor=5/1023, analog_value – аналоговое значение напряжение с выхода датчика температуры.

То есть получаем код вида:

Символ градуса формируем используя стандартный метод с помощью следующего кода:

Далее представлен полный исходный код программы нашего цифрового термометра.

Arduino

#include<LiquidCrystal.h>
LiquidCrystal lcd(7,6,5,4,3,2);
#define sensor A0
byte degree =
{
0b00011,
0b00011,
0b00000,
0b00000,
0b00000,
0b00000,
0b00000,
0b00000
};
void setup()
{
lcd.begin(16,2);
lcd.createChar(1, degree);
lcd.setCursor(0,0);
lcd.print(» Digital «);
lcd.setCursor(0,1);
lcd.print(» Thermometer «);
delay(4000);
lcd.clear();
lcd.print(» Circuit Digest «);
delay(4000);
lcd.clear();
}
void loop()
{
/*———Temperature——-*/
float reading=analogRead(sensor);
float temperature=reading*(5.0/1023.0)*100;
delay(10);

/*——Display Result——*/
lcd.clear();
lcd.setCursor(2,0);
lcd.print(«Temperature»);
lcd.setCursor(4,1);
lcd.print(temperature);
lcd.write(1);
lcd.print(«C»);
delay(1000);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

#include<LiquidCrystal.h>

LiquidCrystallcd(7,6,5,4,3,2);

#define sensor A0

bytedegree8=

{

0b00011,

0b00011,

0b00000,

0b00000,

0b00000,

0b00000,

0b00000,

0b00000

};

voidsetup()

{

lcd.begin(16,2);

lcd.createChar(1,degree);

lcd.setCursor(,);

lcd.print(»    Digital    «);

lcd.setCursor(,1);

lcd.print(»  Thermometer   «);

delay(4000);

lcd.clear();

lcd.print(» Circuit Digest  «);

delay(4000);

lcd.clear();

}

voidloop()

{

/*———Temperature——-*/

floatreading=analogRead(sensor);

floattemperature=reading*(5.01023.0)*100;

delay(10);

/*——Display Result——*/

lcd.clear();

lcd.setCursor(2,);

lcd.print(«Temperature»);

lcd.setCursor(4,1);

lcd.print(temperature);

lcd.write(1);

lcd.print(«C»);

delay(1000);

}

Общее понятие о температурных регуляторах

Приборы, фиксирующие и одновременно регулирующие заданное температурное значение, в большей степени встречаются на производстве. Но и в быту они также нашли своё место. Для поддержания необходимого микроклимата в доме часто используются терморегуляторы для воды. Своими руками делают такие аппараты для сушки овощей или отопления инкубатора. Где угодно может найти своё место подобная система.

В данном видео узнаем что из себя представляет регулятор температуры:

В действительности большинство терморегуляторов являются лишь частью общей схемы, которая состоит из таких составляющих:

  1. Датчик температуры, выполняющий замер и фиксацию, а также передачу к регулятору полученной информации. Происходит это за счёт преобразования тепловой энергии в электрические сигналы, распознаваемые прибором. В роли датчика может выступать термометр сопротивления или термопара, которые в своей конструкции имеют металл, реагирующий на изменение температуры и под её воздействием меняющий своё сопротивление.
  2. Аналитический блок – это и есть сам регулятор. Он принимает электронные сигналы и реагирует в зависимости от своих функций, после чего передаёт сигнал на исполнительное устройство.
  3. Исполнительный механизм – некое механическое или электронное устройство, которое при получении сигнала с блока ведёт себя определённым образом. К примеру, при достижении заданной температуры клапан перекроет подачу теплоносителя. И напротив, как только показания станут ниже заданных, аналитический блок даст команду на открытие клапана.

Профессиональные датчики температуры и их применение

Температура — фундаментальная физическая величина. Для получения точных результатов следует выбрать соответствующий тип датчика или преобразователя с правильным диапазоном измерения. Измерение температуры — одно из самых основных измерений, выполняемых не только в тяжелой промышленности или автоматизации, но и в быту. Отсюда огромная популярность и разнообразие областей применения датчиков температуры. Специализированные модели используются во многих сферах экономики.

Датчики температуры позволяют контролировать температуру, например, в производственных цехах. Параметр, которым является температура, часто играет огромную роль также во время сложных процессов, происходящих в фармацевтической или пищевой промышленности. Температурный измеритель в автоматике может быть датчиком заданного значения, который может включать или выключать кондиционер, или вентилятор. Профессиональные датчики температуры также используются для измерений в металлургических и закалочных печах. В каждом случае необходимо отрегулировать прочность и диапазон измерения узла в зависимости от специфики отрасли, требований процесса или условий данной рабочей среды.

Модуль датчика температуры KY-013

Модуль представляет собой делитель напряжения, в одно из плеч которого включен терморезистор. Сопротивление датчика меняется при изменении температуры, второе плечо делителя образует резистор сопротивлением 10 кОм . Подключение датчика аналогично фоторезистору .

Размер модуля 30 х 15 мм, масса 1 г. Для подключения служит трехконтактный разъем. Центральный контакт – питание +5В, контакт «-» — общий, контакт «S» — информационный.

При изменении температуры происходит изменение сопротивления терморезистора, что приводит к изменению уровня напряжения на сигнальном выводе модуля. Если загрузить в Arduino программу AnalogInput2, то в мониторе последовательного порта среды разработки Arduino IDE можно наблюдать, как меняются показания, снимаемые с аналогового входа платы Arduino. На иллюстрации изменение показаний обусловлено нагревом терморезистора подушечками пальцев.

В общем, это один из простейших аналоговых датчиков, наряду с фоторезистором и потенциометром это датчик с которого обычно начинается изучение работы со встроенным АЦП.

Полезное: Устройство для поиска потерянных вещей

Использование датчика температуры

Подключение датчика температуры

Внутри подобных датчиков находится маленький чип

Чип достаточно тонкий, так что устанавливать датчик надо осторожно. Будьте аккуратны со статическим электричеством при установке датчика

Убедитесь, что питание подключено правильно и находится в диапазоне от 2.7 до 5.5 В – постоянный ток. Не используйте батарейки на 9 В!

Чувствительный элемент датчика находится в пластиковом обрезанном по одной грани цилиндре с тремя «ногами». «Ноги» легко изгибаются для установки на монтажной плате. К ним можно припаять провода. Если вы хотите сделать ваш датчик водонепроницаемым – вот отличный проект с Instructables.

Считывание аналоговых значений температуры

В отличие от датчиков силы и фоторезисторов TMP36 и подобные датчики не работают как резистор. В связи с этим считывать данные температуры получится только с использованием аналогового пина на плате Arduino.

Не забудьте, что для питания необходим диапазон от 2.7 до 5.5 вольт. В приведенной выше схеме подключения датчика температура к Arduino используется пин 5 вольт. Но можно использовать и пин 3.3 вольта. Вне зависимости от напряжения питания, считываемое аналоговое значение напряжения будет находится в диапахоне от 0 до 1.75 В.

Если вы используете 5 В Arduino и подключаете датчик напрямую к аналоговому пину, можно использовать следующие формулы для преобразования 10-битных аналоговых значений в температуру:

Напряжение на пине в миливольтах = (значения с аналогового пина ADC) * (5000/1024)

С помощью этой зависимости мы преобразуем числовое значение в диапазоне 0-1023 с аналогового пина в 0-5000 миливольт (= 5 вольт)

Если вы используете 3.3 Arduino, используйте следующую зависимость:

Напряжение на пине в миливольтах = (значения с аналогового пина ADC) * (3300/1024)

Эта зависимость преобразовывает числовое значение 0-1023 с аналогового пина в 0-3300 миливольт (= 3.3 вольт)

После этого, для преобразования милливольт в температуру, используйте формулу:

Температура в цельсиях = / 10

Работа через приложение «Smacont RC03»

После запуска программы необходимо последовательно выполнить действия 1…9, как показано на в статье «Первое включение модуля SC120».

При соединении с WiFi-модулем, на вкладке «Входы» отображаются цифровые значения входов.
Для перевода цифровых значений входов «IN0», «IN1», к которым подключен датчик температуры LM35DZ, в значение температуры необходимо воспользоваться следующей формулой:
Значение температуры для сенсора LM35DZ рассчитывается по формуле (подробное описание формулы см. выше):
T = (val*3.3/4096)/0.01
где:
T — значение температуры в градусах Цельсия;
val – цифровое значений входов «IN0», «IN1», к которому подключен датчик температуры LM35DZ.

Для того, чтобы приложение «Smacont RC03» автоматически пересчитывало цифровые значения входов «IN0», «IN1» в значения температуры, необходимо выполнить инструкции, указанные на рисунках ниже.

1. Нажать кнопку выбора меню «≡».

2. Выбрать пункт меню «Конфигурация».

3. В окне «Конфигурация» выбрать раздел «3».

4. В поле «Входы. Описание», для входов «У0.0», «У0.1» задать название входов LM35DZ<br>температура 1 и LM35DZ<br>температура 2 соответственно (где <br> — перенос строки).

5. Выбрать раздел «4».

6. В поле «Входы. Формулы», для входов «У0.0», «У0.1» задать формулу (val*3.3/4096)/0.01.

7. Нажать кнопку «<» для выхода из окна «Конфигурация».

Самодельный терморегулятор

При изготовлении терморегулятора для погреба своими руками можно воспользоваться биметаллическим датчиком. Однако механическое прерывание работы нагревателя менее надежно, чем электронная коммутация. Собрать терморегулятор можно на обычной микросхеме.

В зависимости от фантазии создателя и объема задач будущего терморегулятора, потребуется разный набор компонентов. Однако можно выделить несколько основных.

Материалы для создания терморегулятора

При конструировании рабочего устройства обычно используют следующие элементы:

  • стабилитрон – диод, односторонне пропускающий ток;
  • термический резистор – сопротивление меняется в зависимости от колебаний температуры;
  • переменный резистор – регулирует температуру.

Настройка прибора на температуру срабатывания вручную – сложный этап. Облегчить его можно покупкой готового сенсора. У такого датчика температуры воздуха для погреба цифровой сигнал будет подаваться на микроконтроллер.

Контроль температуры в помещении

Для поддержания оптимальной температуры при помощи самодельного или заводского прибора можно выбрать несколько способов:

  1. Включение либо отключение нагревателя. Способ простой и эффективный, но подходит не всегда. Из-за ошибок в регулировке могут возникнуть колебания температуры, опасные для хранящихся запасов.
  2. Контроль режима работы. Меняется либо степень нагрева элемента, либо скорость работы кулера (при использовании тепловентилятора).

Обычно используют первый метод – устройства с подобным принципом работы дешевле и надежнее.

Схема терморегулятора

Полностью понять принцип работы устройства либо собрать его самому поможет электрическая схема. Примеры можно найти в технических руководствах простейших терморегуляторов, например, LM335. Несмотря на то, что прибор был разработан довольно давно, схемы остаются рабочими. Достаточно взять их за основу и дополнять необходимыми узлами.

Схема работы устройства

Принципиальная электрическая схема – это базовая схема, скорее всего, при самостоятельном конструировании к ней добавятся другие элементы, например, устройства для индикации работы. При понимании работы узлов и достаточном знании радиомеханики можно модернизировать систему, например, установить термореле для включения нагревателя.

Печатная плата терморегулятора

Собрать прибор можно на печатной плате. Материал – односторонний стеклотекстолит. Плата помещается в любой подходящий корпус, терморезистор выносится наружу. Калибровку срабатывания реле производят при помощи сопротивлений R2 и R1, выбирая угол вращением ручки.

Схема печатной платы терморегулятора

Работа компаратора

На схеме терморегулятора можно заметить ключевой элемент LM311 – компаратор, имеющий прямой и инверсный входы, а также два выхода. Он действует следующим образом:

  1. Напряжение на прямом входе выше – на выходе устанавливается высокий уровень, транзистор или реле включает нагревательный элемент.
  2. Напряжение выше на инверсном – устанавливается низкий уровень, нагрев отключается.

Термодатчик подключается к инверсному входу, поэтому напряжение на нем будет повышаться по мере роста температуры.

Как соединить устройство с нагревателем

Подключать терморегулятор к нагревательному прибору нужно по схеме, указанной в технической документации. Обычно сложностей возникнуть не должно, так как учитываются все возможные варианты.

Если прибор самодельный, нужно лишний раз убедиться, что конструкция надежная и выполнена правильно. Элементы должны быть тщательно защищены от воздействия влаги, которой не избежать в подвале

Особое внимание стоит уделить качеству пайки и отсутствию замыкания дорожек

Правильный выбор или сборка терморегулятора позволит забыть о проблеме переохлаждения или слишком высокой температуры в погребе. Достаточно настроить контрольные значения и следить за состоянием устройства, все остальное сделает прибор.

Термистор

   Термистор — это чувствительный резистор, изменяющий свое физическое сопротивление с изменением температуры. Как правило, термисторы изготавливаются из керамического полупроводникового материала, такого как кобальт, марганец или оксид никеля и покрываются  стеклом. Они представляют собой небольшие плоские герметичные диски, которые сравнительно быстрое реагируют на любые изменения температуры.

   За счет полупроводниковых свойств материала, термисторы имеют отрицательный температурный коэффициент (NTC), т.е. сопротивление уменьшается с увеличением температуры. Однако, есть также термисторы, с положительным температурным коэффициентом (ПТК), их сопротивление возрастает с увеличением температуры.

Преимущества термисторов

  • Большая скорость реагирования на изменения температуры, точность.
  • Низкая стоимость.
  • Более высокое сопротивление в диапазоне от 2,000 до 10,000 ом.
  • Гораздо более высокая чувствительность (~200 ом/°C) в пределах ограниченного диапазона температур до 300°C.

Зависимости сопротивления от температуры

   Зависимость сопротивления от температуры выражается следующим уравнением:

   где A, B, C — это константы (предоставляются условиями расчёта), R — сопротивление в Омах, T — температура в Кельвинах. Вы можете легко рассчитать  изменение температуры от изменения сопротивления или наоборот.

Как использовать термистор?

   Термисторы оцениваются по их резистивному  значению при комнатной температуре (25°C). Термистор-это пассивное резистивное  устройство, поэтому оно требует производства контроля текущего выходного напряжения. Как правило, они соединены последовательно с подходящими стабилизаторами, образующими делитель напряжения сети.

   Пример: рассмотрим термистор с сопротивлением значение 2.2K при 25°C и 50 Ом при 80°C. Термистор подключен последовательно с 1 ком резистором через 5 В питание.

   Следовательно, его выходное напряжение может быть рассчитано следующим образом:

   При 25°C, RNTC = 2200 Ом;

   При 80°C, RNTC = 50 Ом;

   Однако, важно отметить, что при комнатной температуре стандартные значения сопротивлений различны для различных термисторов, так как они являются нелинейными. Термистор имеет экспоненциальное изменение температуры, а следовательно-бета постоянную, которую используют, чтобы вычислить его сопротивление для заданной температуры

Выходное напряжение на резисторе и температура  линейно связаны.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: