Виды и схемы стабилизаторов напряжения

Принципиальная схема

Основой любого не импульсного блока питания является низкочастотный силовой трансформатор. В данном случае это тороидальный довольно тяжелый трансформатор типа TST250W/24V. Его номинальное выходное переменное напряжение 24V при токе 10А и входном напряжении 230V.

Рис. 1. Принципиальная схема мощного стабилизатора напряжения +19В.

У данного трансформатора нет никаких колодок для подключения или клемм, — просто «колесо» с четырьмя проводами для подключения.

Конечно, можно применить любой другой трансформатор с вторичным напряжением 20-25V. В магазинах промышленного электрооборудования можно приобрести другой трансформатор соответствующей мощности на 24V, например, на Ш-образ-ном сердечнике.

Переменное напряжение с вторичной обмотки силового трансформатора Т1 поступает на выпрямительный мост VD1 и конденсатор С1, сглаживающий пульсации.

В принципе, соглашусь, что емкости 2200 мкФ при токе 10А не слишком достаточно. Но, это же не УНЧ питаем. На задней стенке ноутбука вообще стоит значок пульсирующего напряжения. Так что для данного случая, этого вполне достаточно.

Стабилизатор напряжения сделан на основе микросхемы 7812. Но её выходное напряжение равно 12V, а нам нужно 19V, плюс максимальный ток 1А, а нужно, как было решено, 10А.

Выходная мощность была увеличена за счет транзистора VТ1 типа КТ819, на котором сделан эмиттерный повторитель выходного напряжения стабилизатора А1.

Напряжение стабилизации было поднято за счет стабилитрона VD2, это Д814А, его напряжение стабилизации 8V. Так что 12+8=20. Однако, около одного вольта падает на транзисторе VТ1, так что выходит как раз как и надо.

Выбор схемы включения

На практике применяют разные инженерные решения. В частности, для подключения светодиодных светильников производители предлагают импульсные источники питания. Эти устройства выполняют свои функции с помощью частотного преобразования и модуляции сигнала. Для управления ключом устанавливают микросхемы. Для дозированного накопления энергии используют дроссель.

Импульсный стабилизатор тока

Для упрощения в данной статье рассмотрена линейная стабилизация. Устройства, созданные по этой схеме, не создают сильные электромагнитные помехи. В этом – главное отличие от импульсных аналогов.

Импульсные стабилизаторы

Использование простых конструкций на транзисторах имеет недостаток – на ключевом элементе выделяется большая мощность рассеивания, которая тем больше, чем больше разница между входным и выходным параметром.

Главное отличие импульсных устройств – в том, что транзисторы работают в ключевом режиме, управляя накоплением и отдачей энергии реактивными элементами. Энергия, запасенная дросселем или конденсатором, позволяет не только стабилизировать напряжение, но и повышать его или инвертировать полярность.

Собранные на дискретных элементах импульсные преобразователи сложны в конструировании и регулировке. Сейчас выпускаются схемы, выполненные в виде интегральных микросхем, которым требуется импульсный ключ только для увеличения мощности. Устройства практически не требуют регулировки и обладают высокой надежностью.

Микросхема импульсных устройств

Качество компонентов

В реальности производитель очень важен. Всегда старайтесь покупать стабилизаторы, да и любые детали от крупных производителей и у проверенных поставщиков. Я лично предпочитаю STMicroelectronics. Их отличает эмблема ST в углу.

Ноунейм стабилизаторы или производства дедушки чаньханьбздюня очень часто имеют значительный разброс значений выходного напряжения от изделия к изделию. На практике встречалось, что стабилизатор 7805, который должен давать 5 вольт выдавал 4.63, либо же некоторые образцы давали до 5.2 вольта.

Ладно бы это, напряжение то он держит постоянным, но проблема еще и в том, что в несколько раз сильнее выбросы, фон и больше потребление самого стабилизатора. Думаю вы поняли.

Как собрать лабораторный блок из китайских модулей

На торговых площадках в интернете можно приобрести готовые китайские модули, на основе которых можно построить неплохой лабораторный источник питания.

ЛБП строится по структуре линейного источника, но составляющие имеют совершенно другой принцип работы. Так, вместо обмоточного трансформатора можно применить плату WX-DC2416 36V-5, которая при питании от сети 220 вольт переменного тока на выходе выдает 36 вольт постоянного при токе до 5 А.

Плата импульсного преобразователя 220VAC/26VDC.

В качестве стабилизатора можно применить плату на базе микросхемы LM2596. В продаже имеется несколько вариантов таких плат, удобнее всего использовать модуль с готовым техническим решением по регулировке максимального тока. Отличить такой модуль можно по наличию трех (а не одного) подстроечных резисторов на плате.

Плата на базе LM2596 с регулировкой максимального тока, расположение выводов и потенциометров.

При подаче на вход 35 вольт путем регулировки на выходе можно получить 1,5..30 вольт постоянного напряжения. Производитель декларирует наибольший ток в 3 ампера, но на практике уже при токах, превышающих 1 А микросхема начинает греться. Для отдачи максимальной мощности нужен дополнительный радиатор достаточной площади. Есть сведения, что микросхема комфортно работает и при нагрузке до 4 А при условии организации принудительного обдува теплоотвода.

Для оперативной регулировки надо выпаять два крайних подстроечных резистора и заменить их потенциометрами, которые надо вывести на переднюю панель блока питания. Чтобы получился полноценный блок питания надо добавить еще прибор для измерения тока и напряжения. Его также можно приобрести через интернет. Удобнее применять измеритель в едином блоке, чем два прибора отдельно.

Цифровой блок вольтметр-амперметр.

Осталось только добавить тумблер питания, клеммник для подключения потребителя, связать модули в единую систему и поместить в корпус. По габаритам неплохо подойдет корпус от неисправного компьютерного блока питания.

Соединение китайских модулей в БП.

Некоторые пользователи жалуются, что выходное напряжение грязновато. Это не удивительно, ведь блок питания импульсный. Если это не устраивает владельца БП, можно попробовать исправить проблему установкой дополнительных конденсаторов (показаны на схеме). Емкость подбирается экспериментально, но не менее 1000 мкФ.

Для наглядности рекомендуем к просмотру серию тематических видеороликов.

Лабораторный источник питания при самостоятельном изготовлении обходится совсем недорого. Многие комплектующие могут быть извлечены из куч радиохлама, имеющегося у каждого любителя электронных самоделок. Но служить ЛБП будет долго и принесет большую пользу.

Характеристики стабилизаторов

Какое же напряжение подавать, чтобы стабилизатор работал как надо? Для этого ищем даташит на стабилизаторы и внимательно изучаем. Нас интересуют вот эти характеристики:

Output voltage – выходное напряжение

Input voltage – входное напряжение

Ищем наш 7805. Он выдает нам выходное напряжение 5 Вольт. Желательным входным напряжением производители отметили напряжение в 10 Вольт. Но, бывает так, что выходное стабилизированное напряжение иногда бывает или чуть занижено, или чуть завышено.

Для электронных безделушек доли вольт не ощущаются, но для прецизионной (точной) аппаратуры лучше все таки собирать свои схемы. Здесь мы видим, что стабилизатор 7805 может нам выдать одно из напряжений диапазона 4,75 – 5,25 Вольт, но при этом должны соблюдаться условия (conditions), что ток на выходе в нагрузке не будет превышать 1 Ампера. Нестабилизированное постоянное напряжение может “колыхаться” в диапазоне от 7,5 и до 20 Вольт, при это на выходе будет всегда 5 Вольт.

Рассеиваемая мощность на стабилизаторе может достигать до 15 Ватт – это приличное значение для такой маленькой радиодетали. Поэтому, если нагрузка на выходе такого стабилизатора будет кушать приличный ток, думаю, стоит подумать об охлаждении стабилизатора. Для этого ее надо посадить через пасту КПТ на радиатор. Чем больше ток на выходе стабилизатора, тем больше по габаритам должен быть радиатор. Было бы вообще идеально, если бы радиатор еще обдувался вентилятором.

Особенности расчета характеристик


Чтобы установить параметрический аппарат, понадобится вычислить мощность, вольтаж на входе, ток базы транзисторов. К примеру, максимальное напряжение на выходе равняется 14 В, минимальное на выходе – 1,5 В, а максимальный ток – 1 А. Зная параметры, производится расчет:

  1. Входное напряжение. Используется формула Uвх=Uвых+3. Цифра – коэффициент падения напряжения на участке перехода от коллектора к эмиттеру.
  2. Максимальная мощность, которую рассеивает транзистор. Для подбора в пользу большей величины понадобится справочник. Применяются такие формулы: Pmax = 1.3 (Uвх-Uвых) Imax = 1.3 (17-14) = 3,9 Вт; Pmax = 1.3 (Uвх-Uвых1) Imax = 1.3 (17-1.5) = 20,15 Вт.
  3. Ток транзисторной базы. Расчеты производятся по формуле: Iб max = Imax/h21Э min. Последний показатель равен 25, поэтому 1/25 = 0,04 А.
  4. Параметры балластного тиристора. Применяется формула Rб = (Uвх-Uст)/(Iб max+Iст min )= (17-14)/(0,00133+0,005) = 474 Ом. Iст min – ток стабилизации; Uст – напряжение стабилизации, которое выдает стабилитрон.

Регулируемый стабилизатор тока

Универсальный регулируемый вариант

Меня как радиолюбителя со стажем 20 лет радует ассортимент продаваемых готовых блоков и модулей. Сейчас  из готовых блоков можно собрать любое устройство за минимальное время.

Цена начинается от 35руб. за DC-DC преобразователь напряжения, драйвер подороже и отличается двумя тремя подстроечными резисторами, вместо одного.

Для более универсального использования лучше подходит регулируемый драйвер. Основное отличие, это установка переменного резистора в цепи, задающей амперы на выходе. Эти характеристики могут быть указаны в типовых схемах включения в спецификациях на микросхему, даташит, datasheet.

Слабые места таких драйверов, это нагрев дросселя и диода Шотки. В зависимости от модели ШИМ контроллера, они выдерживают то 1А до 3А без дополнительного охлаждения микросхемы. Если выше 3А, то требуется охлаждение ШИМ и мощного диода Шотки. Дроссель перематывают более толстым проводом или заменяют на подходящий.

КПД зависит от режима работы, разницы напряжения между входом и выходом. Чем выше коэффициент полезного действия, тем ниже нагрев стабилизатора.

Место для монтажа и комплектующие

Следует помнить, что установка стабилизатора напряжения в доме должна выполняться только после счетчика учета электроэнергии. Хоть и малое ее количество берет прибор для своей работы, но даже за эти крохи может оштрафовать энергонадзор. Также нужно знать, что после самостоятельного монтажа вся ответственность за возможные последствия целиком ложиться на хозяина дома.

Данный прибор плохо переносит повышенную влажность. Поэтому для его установки, необходимо выбрать сухое помещение с хорошей циркуляцией воздуха. А если для монтажа выбрана ниша, нужно проверить из чего состоят облицовочные материалы. Необходимо полностью исключить рядом с прибором все то, что может легко воспламениться.


Настенный стабилизатор напряженияИсточник trimhouse.ru

К месту, где будет размещаться стабилизатор, требуется свободный подход, для удобства в его обслуживании. А если он навешивается на стену, то нужно позаботиться о надежном креплении. К тому же и сама перегородка должна быть достаточно крепкой и соответствовать нормам пожарной безопасности.

Чтобы правильно подключить стабилизатор напряжения, необходимо грамотно подобрать кабель. Можно взять обычный ПВС с тремя жилами. Только требуется правильно подобрать их сечение. Обычно сверяются с вводным кабелем, который подключается к автомату главного ввода. Лучше подобрать жилы идентичные его проводам.

Если в приборе не предусмотрена функция байпаса, то желательно реализовать ее своими силами. Можно воспользоваться автоматом модульного типа. Но когда возникнет необходимость отключить стабилизатор, работающий на холостом ходу, то сначала нужно обесточить весь дом, а затем перекинуть провода. Это крайне неудобно.


Байпас для стабилизатора напряженияИсточник nergos.ru

Поэтому лучше приобрести трехпозиционный переключатель и дополнительный провод типа ПУГВ. Последний и выполнит роль обходной линии, которая запитает дом на прямую, если в сети напряжение в норме, при отключенном стабилизаторе. А специальный тумблер позволит проводить эту операцию одним щелчком.

Эксперты рекомендуют подключать стабилизатор к сети через УЗО. Это также советует и производитель прибора. Можно использовать обычный вводный дифференциальный автомат. Он вполне способен справиться с утечками электроэнергии.

Видео описание

Видео продемонстрирует, как правильно подключить стабилизатор напряжения «Ресанта» на весь дом:

Подключение стабилизатора

Перед монтажными работами обязательно обесточивают весь дом. Для этого достаточно выключить вводной автомат в распределительном щитке. Но лучше и после этого проверить отсутствие напряжения в сети дома специальным указателем.

Правильно подключить стабилизатор напряжения поможет сам производитель. Обычно на корпус прибора наносится схема, которая и станет маленькой шпаргалкой. Но, в основном, процесс довольно прост. Необходимо только сначала найти на корпусе контактные клеммы.

Если их три, то действия следующие:

  • Находится фазный провод, идущий от вводного автомата. На колодке в корпусе стабилизатора выбирается клемма с надписью «Вход». Производится соединение.
  • К контакту с названием «Выход» необходимо подключить фазный провод, который отвечает за распределение нагрузки. То есть, идущий по всему зданию.
  • На нулевую клемму стабилизатора подсоединяют жилу, идущую от автомата с нулевым потенциалом. Причем провод подключают сначала к прибору, а затем к защите.


Схема подключения стабилизатораИсточник market-crimea.com

Такая схема считается упрощенной, поскольку рабочий ноль объединяется внутри корпуса. Теперь рассмотрим, как правильно установить стабилизатор напряжения в частном доме, если в прибор вмонтирован клеммник на 5 контактов. В этом случае на колодке будет, кроме фазного входа и выхода, еще две такие же клеммы для нуля. А в дополнение еще один контакт с обозначением PE. Он расположен посередине и на него крепиться PE-проводник (защитное заземление).

А далее нужно применить правило для письма и чтения. То есть, двигаться слева-направо. Левая половина клеммника отвечает за вход. К ней подключаем фазу и рабочий ноль, идущие от вводного автомата. К правой половине таким же образом подсоединяем проводку здания. Фазовый провод к одноименному выходу, а ноль на клемму с обозначением «N».

Перед первым включением стабилизатора необходимо выключить все электроприборы в доме и повытаскивать вилки их шнуров из розеток. Правильно подключенный прибор работает без посторонних шумов, почти неслышно.

Видео описание

Видео покажет, как подключить стабилизатор напряжения 220 В для дома:

Базовая конфигурация

Главная задача стабилизатора — обеспечить постоянство выходного напряжения и подавление пульсаций.
Конструкция стабилизатора основана на простейшей схеме, но каждый её элемент я выбирал так, чтобы он идеально выполнял свою функцию:Для максимального подавления входных шумов сопротивление резистора R должно быть максимально, а в внутреннее сопротивление источника опорного напряжения Vref как можно ниже. Да и работать формирователь опорного напряжения будет лучше, если его питать от высокоомного источника. Таким требованиям отвечает источник стабильного тока (ГСТ).

Для высоковольтного стабилизатора я использовал ГСТ на двух транзисторах, что обеспечивает большую стабильность тока при колебаниях питающего напряжения.

Для низковольтных стабилизаторов можно использовать аналогичную схему или просто одиночный диод.

Для высоковольтных стабилизаторов я выбрал значение тока ГСТ около 5мА. Для низковольтных стабилизаторов можно выбрать значение поменьше.

Микросхеме TL431 для нормальной работы требуется минимум 2 мА.

Важное замечание: ГСТ на двух транзисторах может иногда возбуждаться, если использовать высокочастотные транзисторы. Поэтому я выбрал транзисторы  MJ340/350 которые, как показывает мой опыт, работают стабильно. Стабилитроны довольно шумные и кроме того имеют плохой температурный коэффициент

Выходное напряжение при их использовании будет меняться в зависимости от температуры окружающей среды, а если в вашем усилителе активная вентиляция, то тем более. Кроме того, стабильность их внутреннего сопротивления тоже оставляет желать лучшего

Стабилитроны довольно шумные и кроме того имеют плохой температурный коэффициент. Выходное напряжение при их использовании будет меняться в зависимости от температуры окружающей среды, а если в вашем усилителе активная вентиляция, то тем более. Кроме того, стабильность их внутреннего сопротивления тоже оставляет желать лучшего.

Вместо них я использовал TL431 в качестве источника опорного напряжения, так как их шумовые характеристики весьма достойны, они имеют низкое выходное сопротивление и довольно широкий диапазон выходных напряжений, которое устанавливается с помощью простого делителя.

Добро пожаловать в блог сисадмина-паяльщика

Из этой толщины вычтем изоляцию 0,1 мм, и у нас остается 1,1 мм.

Итак, как я уже говорил в предыдущей статье про трехфазные стабилизаторы, трехфазный стабилизатор — это три однофазных.

В конечном итоге каждый домашний электроприбор работает в течение долгого времени и очень редко требует ремонта. Электронная плата Что же заставляет двигаться двигатель автотрансформатора? Даташит документацию на транзисторы можно скачать в конце статьи.

Эти конденсаторы не характеризуются высоким качеством. Сам сервопривод состоит из двигателя, на котором располагается электрический контакт щетка.

Ремонт электромеханического стабилизатора АСН-10000/1-ЭМ

Сильное загрязнение контактирующих витков автотрансформатора Таким образом, ускорение загрязнения набирает лавинообразный характер, что приводит к быстрому износу контактов автотрансформатора и выгоранию контактной щетки, после чего стабилизатор перестанет выдавать напряжение. Сердцем аппарата является повышающий автотрансформатор.

Так, появляется вероятность выхода из строя выходного каскада управления двигателем. В его конструкции присутствует сервопривод, который и осуществляет запуск и отключение обмоток в устройстве. С чего вдруг ему снесло голову…….

Ремонт стабилизаторов Ресанта может выполняться как в домашних условиях, так и в специализированной мастерской. Попытаться произвести ремонт поврежденного. Кроме этих транзисторов от перегрева выгорают резисторы R45 и R46, включенные в их коллекторную цепь. В электросетях, где отмечаются частые скачки напряжения, электродвигатель может сломаться уже через год после начала использования оборудования. Что такое контрольная цепь, её отличие от аварийной и тепловой цепей, и почему ремонт любой серьезной автоматики надо начинать с проверки контрольной цепи — подробно расписано , очень рекомендую, если дочитали до этого места Второе — отсутствие вентилятора охлаждения, в данном случае охлаждение естественное.

Осуществляем данную манипуляции для обоих контактов — верхнего и нижнего. Нужно осуществить подачу на выходы двигателя тока мощностью в 5 В. Это происходит за счет размыкания контактов реле KL см. Стабилизатор напряжения. Ресанта, отзыв пользователя.

Стабилизаторы на микросхемах

Линейный делитель отличается подачей нестабильного напряжения на вход и снятием стабильного с плеча делителя. Выравнивание осуществляет делительное плечо, поддерживающее постоянное сопротивление. Устройства отличаются простотой конструкции, отсутствием помех в работе. Микросхемы соединяются последовательно или параллельно.

Последовательные стабилизаторы


Последовательный стабилизатор на биополярном транзисторе Последовательные устройства характеризуются включением элемента регулировки параллельно с нагрузкой. Существует две модификации:

  • С биполярным транзистором. Не имеет авторегулируемого контура, стабильность напряжения зависит от величины тока и температурных показателей. В качестве токового усилителя используется эмиттерный повторитель или транзистор составного типа.
  • С контуром авторегулировки. Компенсационный прибор работает по принципу выравнивания выходного и опорного номинала. Часть напряжения на выходе снимается с резистивного делителя, а потом сравнивается при помощи стабилитрона. Контуром регулирования является петля обратной связи со сдвигом по фазе 180 градусов. Стабилизация тока производится резистором или источником питания.

Специфика параллельного стабилизатора


Простой мощный параллельный стабилизатор на транзисторах Параллельный прибор отличается включением элемента регулировки параллельно подаваемой нагрузке. Стабилитрон используется полупроводникового или газоразрядного типа. Схема востребована для регулирования сложных устройств.

Снижение нестабильного показателя напряжения на входе осуществляется при помощи резистора. Допускается использовать двухполярный автомат с высокими показателями дифференциального сопротивления на отдельном участке.

Ну так и зачем всё это нужно то?

Теперь вы знаете, чем стабилизатор напряжения отличается от стабилизатора тока и можете ориентироваться в их многообразии. Возможно, вам так и не стало понятно, зачем эти штуки нужны.

Пример: вы хотите запитать 3 светодиода от бортовой сети автомобиля

Как вы можете узнать из , для светодиода важно контролировать именно силу тока. Используем самый распространенный вариант соединения светодиодов: последовательно соединены 3 светодиода и резистор

Напряжение питания — 12 вольт.

Резистором мы ограничиваем ток на светодиоды, чтобы они не сгорели. Падение напряжения на светодиоде пусть будет у нас 3.4 вольта. После первого светодиода остается 12-3.4= 8.6 вольт. Нам пока хватает. На втором потеряется еще 3.4 вольта, то есть останется 8.6-3.4=5.2 вольта. И для третьего светодиода тоже хватит. А после третьего останется 5.2-3.4=1.8 вольта. При желании добавить четвёртый светодиод — уже не хватит. Если напряжение питания поднять до 15В, то тогда хватит. Но тогда и резистор тоже надо будет пересчитать. Резистор — простейший стабилизатор (ограничитель) тока. Их часто ставят на те же ленты и модули. У него есть минус — чем ниже напряжение, тем меньше будет и ток на светодиоде (закон Ома, с ним не поспоришь). Значит, если входное напряжение нестабильно (в автомобилях обычно так и есть), то предварительно нужно стабилизировать напряжение, а потом можно ограничить резистором ток до необходимых значений. Если используем резистор, как токовый ограничитель там, где напряжение не стабильно, нужно стабилизировать напряжение.

Стоит помнить, что резисторы имеет смысл ставить только до определенной силы тока. После некоторого порога резисторы начинают сильно греться и приходится ставить более мощные резисторы (зачем резистору мощность рассказано в о этом приборе) . Тепловыделение растёт, КПД падает.

Тоже называют светодиодным драйвером. Часто те, кто не сильно разбирается в этом, стабилизатор напряжения называют просто драйвером светодиодов, а импульсный стабилизатор тока — хорошим

светодиодным драйвером. Он выдаёт сразу стабильное напряжение и ток. И почти не нагревается. Вот так он выглядит:

78L05 это наверное самый распространенный стабилизатор напряжения на 5 Вольт. Маломощный аналог 7805.

Практически каждая мировая фирма производящая интегральные схемы выпустила аналог этой микросхемы, обычно первые две буквы предваряющие обозначение 78L05 указывают на фирму, например: LM78L05, TS78L05, KA78L05.

Конечно в любом случае, чтобы узнать параметры и цоколевку корпуса микросхемы лучше прочитать официальный datasheet. Но вот что мне не нравиться в официальной документации, что цоколевка приведена ненаглядно, и когда что-то чинишь или настраиваешь приходиться смотреть сразу на две картинки: соответствия названия и номера вывода и расположение номера вывода на самом корпусе. То что в этой микросхеме первый вывод является выходом, а последний — входом пару раз меня сбивало с толку и я неправильно разводил плату. Дабы в дальнейшем избежать подобных казусов, я пририсовал название выводов прямо на рисунки корпусов в исполнениях SO-8, SOT-89, TO-92.

Проще схем наверное не бывает: сам стабилизатор и два конденсатора. Чтобы стабилизатор работал правильно (нормально стабилизировал и не генерировал пульсации) стабилизатора на вход и выход необходимо подключить конденсаторы. Причем их номиналы не должны быть меньше 0,33 мкФ и 0,1 мкФ соответственно.

Если стабилизатор питается выпрямленным напряжением частотой 50Гц, то входной конденсатор приходиться увеличивать, ставить электролитический у которого не маленькое последовательное сопротивление. Поэтому в данном случае к электролитическому конденсатору в параллель нужно поставить керамический.

3 схемы на транзисторах и тиристорах

Для начала рассмотрим схемы защиты блока питания на полупроводниковых компонентах. Они просты, надежны и, главное, обладают большим, чем у схем с электромагнитным реле быстродействием.

Простейшая на биполярном транзисторе

Эта несложная для повторения конструкция подойдет для относительно маломощного (до 5-6 А) блока питания или зарядного устройства для аккумуляторов. В качестве управляющего ключа в блоке защиты используется довольно распространенный и недорогой кремниевый  транзистор КТ819.

Пока ток, протекающий через токоизмерительный резистор R3 в нагрузку не превышает допустимого, управляющий транзистор Т2 закрыт. А Т1 благодаря напряжению смещения с резистора R1 открыт. Нагрузка получает питание. При перегрузке или коротком замыкании на выходе схемы напряжение, вызванное падением на токоизмерительном резисторе R3, открывает T2. Тот в свою очередь запирает ключ Т1, одновременно зажигая светодиод LED1 «Перегрузка». В этом состоянии схема будет находиться до тех пор, пока ток потребления нагрузкой не войдет в допустимый диапазон.

На месте Т1 могут работать транзисторы 2N5490, 2N6129, 2N6288, 2SD1761, BD291, BD709, BD953, КТ729.  Т2 – любой маломощный кремниевый транзистор типа n-p-n. К примеру, популярный  КТ315 с любой буквой. Светодиод – любой индикаторный. Наладка схемы сводится к подбору номинала резистора R3, выполненного из куска нихромового провода. Чем ниже сопротивление резистора, тем выше ток, при котором сработает защита. Силовой транзистор Т1 нужно установить на радиатор с эффективной площадью рассеивания не менее 300 мм2.

На полевом транзисторе

В этой конструкции в качестве силового ключа используется полевой транзистор, имеющий меньшее, чем биполярный падение напряжения и способный коммутировать больший ток.


Схема защиты от КЗ на полевом транзисторе

Пока ток через нагрузку не превышает критический, падение напряжения на токоизмерительном резисторе R1 невелико, транзистор Т2 закрыт. Т1 открывается напряжением, которое подаётся через LED1. В это время ток, протекающий через светодиод и резистор R4 очень мал и светодиод не светится.

При коротком замыкании или перегрузке падение напряжения на токоизмерительном резисторе увеличивается, транзистор Т2 открывается и запирает полевой транзистор, отключая нагрузку. При этом ток через светодиод увеличивается и последний начинает светиться, указывая на перегрузку. Налаживание конструкции сводится к подбору номинала токоизмерительного резистора R1 – чем его сопротивление ниже, тем при большем токе нагрузки включится защита. Защита отключится при снятии питания

В узле можно использовать практически любые полевые транзисторы, выдерживающие ток 15-20 А и соответствующее напряжение. Подойдут, к примеру, IRFZ40, IRFZ44, IRFZ46, IRFZ48. Если ток через нагрузку не будет превышать 8 А транзистору радиатор не нужен. Т2 – любой маломощный кремниевый n-p-n проводимости, скажем КТ315 или КТ3102.

На тиристоре

Эта схема предназначена для защиты от короткого замыкания зарядного устройства, но может работать с любым трансформаторным блоком питания без сглаживающих конденсаторов.


Схема защиты зарядного устройства на тиристоре

Пока ток через нагрузку не превышает нормальный, T1 открыт. При этом при каждой полуволне напряжения коллекторным током открытого транзистора открывается тиристор, питая нагрузку. При коротком замыкании выходное напряжение падает, Т1 закрывается и запирает тиристор. Критическое напряжение, а значит, и порог срабатывания настраивается потенциометром Р1. В схеме можно использовать любой тиристор серии КУ202, Транзистор КТ814 можно заменить на BD136, BD138, BD140. Тиристор необходимо установить на радиатор площадью не менее 300 см2.

Варианты выходных каскадов усилителя

Автором предлагается еще два варианта выходных каскадов усилителя, работающих в разных режимах и позволяющих снизить коэффициент гармоник мощного УМЗЧ. Их упрощенные электрические схемы показаны на рис. 1а и рис.16.

Скорость нарастания выходного напряжения на эквиваленте нагрузки при замкнутой накоротко катушке индуктивности, В/мкс — 10.

Рис. 1. Упрощенные электрические схемы УМЗЧ.

Каждый из усилителей состоит из двух выходных каскадов — основного и вспомогательного, включенных параллельно. Причем основной каскад работает в режиме В, а вспомогательный — в режиме АВ.

Основной каскад усилителя, показанный на рис. 1а, выполнен на транзисторах VT1, VT2, включенных по схеме комплементарного эмиттерного повторителя, работающего в режиме В. Транзисторы VТ3, VТ4 и резисторы R6. R9 образуют вспомогательный каскад,который работает в режиме АВ.

Резисторы R1 . R5 и диоды VD1, VD2 обеспечивают необходимое смещение на базах транзисторов и задают режим работы обоих каскадов.

Как видно из схемы, напряжение смещения на базах транзисторов вспомогательного каскада всегда больше, чем на базах основного каскада на величину падения напряжения на диодах VD1, VD2.

В результате с помощью изменения сопротивления резистора R4 задается напряжение смещения на базах транзисторов VТ1, VТ2, при котором каскад будет работать в режиме В. Резисторы R8, R9 создают необходимую термостабилизацию вспомогательного каскада, а резисторы R6, R7 ограничивают базовый ток транзисторов VТ3, VТ4.

При малых уровнях входного сигнала транзисторы основного каскада VТ1, VТ2 закрыты, и при этом работает только вспомогательный каскад. При этом переменный ток, поступающий в нагрузку, мал, мало и падение напряжения на резисторах R8, R9.

С ростом входного напряжения начинают открываться транзисторы VТ1, VТ2 и увеличивается ток, поступающий в нагрузку от включенных параллельно выходных каскадов. Увеличение тока, протекающего через резисторы R8, R9, приводит к росту падения напряжения на них и ограничению тока транзисторов VТ3 и VТ4.

При максимальном выходном токе, например, при положительной полуволне входного напряжения, транзистор VТ1 полностью открыт, а через транзистор VТ3 при этом протекает в нагрузку гораздо меньший ток, ограниченный в основном резистором R8 и частично R6.

Таким образом, чем больше будет сопротивление резисторов R8, R9, тем на «меньшем уровне будет ограничен максимальный ток транзисторов вспомогательного каскада, а значит, и максимальная мощность в режиме АВ, отдаваемая в нагрузку.

Как показало макетирование, сопротивление резисторов R8, R9 порядка 2. 10 Ом ограничивает максимальный ток транзисторов вспомогательного каскада на уровне 200. 40 мА.

Более сложен выходной каскад, изображенный на рис. 16. Он обеспечивает усиление как по току, так и по напряжению. В основном каскаде (VТ3, VТ4) предусматривается использование мощных составных транзисторов КТ825, КТ827. Вспомогательный каскад VТ5. VТ8 также должен быть собран на составных транзисторах.

Резисторы R1. R11, стабилитроны VD1, VD2, диоды VD3, VD4 и транзисторы VТ1, VТ2 определяют режим работы выходных каскадов, который не меняется при изменении напряжения питания в значительных пределах.

Объясняется это тем, что напряжение смещения на базах транзисторов VТ1, VТ2 поддерживается постоянными стабилитронами VD1, VD2. Работа транзисторов выходного каскада в режиме усиления тока и напряжения обеспечивает максимальный КПД выходного каскада, поскольку в этом случае напряжение насыщения транзисторов минимально, и максимальное значение амплитуды выходного сигнала приближается к напряжению питания.

Как и при коррекции искажений с использованием прямой связи, усилитель мощности, построенный по предложенным схемам, должен иметь достаточно глубокую ООС, обеспечивающую малые нелинейные искажения в широком динамическом диапазоне выходных сигналов.

Очевидно, что наилучшим образом решить эту задачу позволяют современные быстродействующие ОУ. Применив в предварительном каскаде УМЗЧ быстродействующий ОУ и построив его выходной каскад по схеме, указанной на рис. 16, удалось сконструировать усилитель.

Основные неисправности

Из вышеописанного принципа работы электромеханического стабилизатора становится понятно, что когда происходит изменение тока в электросети, происходит одновременное вращение якоря двигателя и движение графитовой щетки.

Постоянное движение сервопривода и является главной слабостью электромеханического устройства. Почему? Потому, что в результате трения щетки о витки катушки происходит чрезмерное нагревание как щетки, так и витков под ней.

Кроме этого, трение вызывает износ щетки и загрязнение медных проводов. Последняя причина обусловливает появление искр.

Учитывая тот факт, что в наших электролиниях ток меняется очень часто, то с такой же частотой происходит движение сервопривода. Такое частое вращение становится причиной выхода из строя самого двигателя.

Примечательной особенностью является то, что поломка двигателя вызывает выход из строя других деталей. Так, появляется вероятность выхода из строя выходного каскада управления двигателем.

Специалисты компании «Ресанта» собирают этот каскад на основе пары транзисторов Q2 TIP41C и Q1 TIP42C. Когда происходит сгорание этих транзисторов, то сгорают и резисторы R45 и R46.

Они являются составляющими коллекторной цепи вышеуказанных транзисторов. R45 и R46 характеризуются сопротивлением в 10 Ом и мощностью в 2 ватта.

Когда есть такие неисправности, то надо провести проверку линейного стабилизатора. Его латвийские специалисты собирают на базе стабилитрона DM4 и транзистора Q3 TIP41C.

Если все эти составляющие электросхемы стабилизатора напряжения электромеханического типа, изготовленного компанией «Ресанта», сгорели, то их в любом случае нужно купить и заменить.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: