Усилитель звука 200 ватт

STK413, STK415, STK430, STK430II, STK430III, STK433, STK435, STK436, STK437, STK439, STK441, STK443, STK4332, STK4352, STK4362, STK4372, STK4392, STK4412, STK4432

Перечисленные микросхемы фирмы Sanyo выполнены в корпусах SIP10 с 16 выводами и представляют собой двухканальные усилители мощности низкой частоты в гибридном исполнении с идентичными схемами цоколевками и различными параметрами. Предназначены для использования в магнитофонах, электрофонах, телевизионных и радиоприемниках, другой аудиоаппаратуре высокого класса. В микросхемах отсутствует защита выхода от короткого замыкания в нагрузке. Для получения максимальной выходной мощности микросхемы необходимо установить на теплоотвод радиатор. Некоторые из основных параметров микросхем (выходные параметры для одного канала) следующие:

Микросхема Uccnom Uccmax Icc0 ΔF Rвых. Pвых. Кг Ку
STK413 18V 29V 60mA 30Hz-20KHz 3W 0,02% 26dB
STK415 24V 32V 60mA 30Hz-20KHz 6.5W 0,02% 26dB
STK430 25V 41V 60mА 30Hz-20KHz 10W 0,02% 26dB
STK430II 26V 43V 60mА 30Hz-20KHz 15W 0,02% 26dB
STK430III 31V 50V 60mА 30Hz-20KHz 20W 0,02% 26dB
STK433 23V 32V 60mА 30Hz-20KHz 5W 0,02% 26dB
STK435 27V 39V 60mА 30Hz-20KHz 7W 0,02% 26dB
STK436 32V 50V 60mA 30H2-20KHZ 10W 0,02% 26dB
STK437 33V 50V 60mА 30Hz-20KHz 10W 0,02% 26dB
STK439 39V 56V 60mА 30H2-20KHZ 15W 0,02% 26dB
STK441 44V 63V 60mА 30Hz-20KHz 20W 0.02% 26dB

STK075G, STK077G, STK078G, STK080G, STK082G, STK084G, STK085, STK086G

Интегральные микросхемы фирмы STK075G, STK077G, STK078G, STK080G,STK082G, STK084G, STK085, STK086G фирмы Sanyo выполнены в корпусах SIP 10 с 10 выводами и представляют собой усилители мощности низкой частоты в гибридном исполнении с идентичными схемами цоколевками и различными параметрами. Предназначены для использования в магнитофонах, электрофонах, телевизионных и радиоприемниках, другой аудиоаппаратуре высокого класса с двухполярным питанием. В микросхемах отсутствует защита выхода от короткого замыкания в нагрузке. Для получения максимальной выходной мощности микросхемы необходимо установить на теплоотвод радиатор. Некоторые из основных параметров микросхем следующие:

Микросхема Uccnom Uccmax Icc0 ΔF Rвых. Pвых. Кг Ку
STK075G ±20V ±28V 45mA 30Hz-20KHz 15W 0,02% 26dB
STK077G ±22V ±32V 45mA 30Hz-20KHz 20W 0,02% 26dB
STK078G ±25V ±35V 45mA 30Hz-20KHz 24W 0,02% 26dB
STK080G ±27V ±39V 45mA 30Hz-20KHz 30W 0,02% 26dB
STK082G ±30V ±43V 45mA 30Hz-20KHz 35W 0,02% 26dB
SТК084G ±35V ±50V 45mA 30Hz-20KHz 50W 0,02% 26dB
STK085 ±38V ±55V 45mA 30Hz-20KHz 60W 0,02% 26dB
STK086G ±42V ±55V 45mA 30Hz-20KHz 70W 0,02% 26dB

Микросхема К561ИЕ8. Описание

Рейтинг:  5 / 5

Подробности
Категория: Микросхемы
Опубликовано: 11.02.2018 12:27
Просмотров: 6161

Довольно популярная микросхема К561ИЕ8 (зарубежный аналог CD4017) является десятичным счетчиком с дешифратором. В своей структуре микросхема имеет счетчик Джонсона (пятикаскадный) и дешифратор, позволяющий переводить код в двоичной системе в электрический сигнал появляющийся на одном из десяти выходов счетчика. Счетчик К561ИЕ8 выпускается в 16 контактном корпусе DIP. Технические параметры счетчика К561ИЕ8: — Напряжение питания: 3…15 вольт — Выходной ток (0): 0,6 мА — Выходной ток (1): 0,25 мА — Выходное напряжение (0): 0,01 вольт — Выходное напряжение (1): напряжение питания — Ток потребления: 20 мкА — Рабочая температура: -45…+85 °C

Назначения выводов К561ИЕ8 : — Вывод 15 (Сброс) — счетчик сбрасывается в нулевое состояние при поступлении на данный вывод сигнала лог.1. Предположим, вы хотите, чтобы счетчик считал только до третьего разряда (вывод 4), для этого вы должны соединить вывод 4 с выводом 15 (Сброс). Таким образом, при достижении счета до третьего разряда, счетчик К561ИЕ8 автоматически начнет отсчет с начала. — Вывод 14 (Счет) – вывод предназначен для подачи счетного тактового сигнала. Переключение выходов происходит по положительному фронту сигнала на выводе 14. Максимальная частота составляет 2 МГц. — Вывод 13 (Стоп) – данный вывод, в соответствии от уровня сигнала на нем, позволяет останавливать или запускать работу счетчика. Если необходимо остановить работу счетчика, то для этого необходимо на данный вывод подать лог.1. При этом даже если на вывод 14 (Счет) по-прежнему будет поступать тактовый сигнал, то на выходе счетчика переключений не будет. Для разрешения счета вывод 13 необходимо соединить с минусовым проводом питания. — Вывод 12 (Перенос) – данный вывод (вывод переноса) используются при создании многокаскадного счетчика из нескольких К561ИЕ8. При этом вывод 12 первого счетчика соединяют с тактовым входом 14 второго счетчика. Положительный фронт на выходе переноса (12) появляется через каждые 10 тактовых периодов на входе (14). — Выводы 1-7 и 9-11 (Q0…Q9) — выходы счетчика. В исходном состоянии на всех выходах находится лог.0, кроме выхода Q0 (на нем лог.1). На каждом выходе счетчика высокий уровень появляется только на период тактового сигнала с соответствующим номером. — Вывод 16 (Питание) – соединяется с плюсом источника питания. — Вывод 8 (Земля) – данный вывод соединяется с минусом источника питания. Временная диаграмма работы счетчика К561ИЕ8

Оставлять комментарии могут только зарегистрированные пользователи

Pinout

Understanding the pinout of this IC is vital when repairing stereo amplifiers. I have drawn this diagram showing the power supply and audio output pins. These are the most important pins when diagnosing amplifier faults.

If you had an amplifier that was not working then these are the pins to check. Pin 3 and Pin 12 should both be receiving –Vcc from the power supply. Pin 9 should be receiving +Vcc from the power supply.

Pin 6 and Pin 7 are typically joined as they provide the positive phase and negative phase of the amplified output signal in a push-pull design. These pins should output 0 V DC when there are no input signal. The same applies to the Right channel on Pin 10 and Pin 11.

In a faulty chip the internal transistor pairs — which are arranged in a Darlington configuration — become short and one can expect the full rail voltage (+Vcc or –Vcc) at the load output pins. Obviously when this happens, one would want the speaker protection mechanism to prevent the load relay from engaging. If there is no protection circuitry, then obviously the speaker coils will burn out.

Основные технические характеристики MC34063

  • Широкий диапазон значений входных напряжений: от 3 В до 40 В;
  • Высокий выходной импульсный ток: до 1,5 А;
  • Регулируемое выходное напряжение;
  • Частота преобразователя до 100 кГц;
  • Точность внутреннего источника опорного напряжения: 2%;
  • Ограничение тока короткого замыкания;
  • Низкое потребление в спящем режиме.

Понять как работает микросхема проще всего по структурной схеме.
Разберем по пунктам:

  1. Источник опорного напряжения 1,25 В;
  2. Компаратор, сравнивающий опорное напряжение и входной сигнал с входа 5;
  3. Генератор импульсов сбрасывающий RS-триггер;
  4. Элемент И объединяющий сигналы с компаратора и генератора;
  5. RS-триггер устраняющий высокочастотные переключения выходных транзисторов;
  6. Транзистор драйвера VT2, в схеме эмиттерного повторителя, для усиления тока;
  7. Выходной транзистор VT1, обеспечивает ток до 1,5А.

Генератор импульсов постоянно сбрасывает RS-триггер, если напряжение на входе микросхемы 5 – низкое, то компаратор выдает сигнал на вход S сигнал устанавливающий триггер и соответственно включающий транзисторы VT2 и VT1. Чем быстрее придет сигнал на вход S тем больше времени транзистор будет находиться в открытом состоянии и тем больше энергии будет передано со входа на выход микросхемы. А если напряжение на входе 5 поднять выше 1,25 В, то триггер вообще не будет устанавливаться. И энергия не будет передаваться на выход микросхемы.

Производители этой микросхемы (например Texas Instruments) в своих datasheets пишут, что её работа основана на широтно-импульсной модуляции (PWM). Даже если и можно назвать то, что делает MC34063 ШИМом, то очень уж примитивным.

  • Самый главный недостаток MC34063 – отсутствие встроенного усилителя ошибки. Поэтому пульсации выходного напряжения получаются достаточно большими. И не просто так в рекомендациях по применению предлагается на выход преобразователя устанавливать дополнительный LC-фильтр.
  • Второй недостаток – не простое подключение внешнего МДП транзистора.

Мое же мнение, что если требуется низкий уровень пульсаций, либо большая мощность преобразователя, то лучше использовать другие микросхемы – с внутренним усилителем ошибки и с драйвером работающим с полевыми транзисторами.

MC34063 для нетребовательных к пульсациям и мощности применений!

Усилитель на STK402-020…STK402-120

Сегодня хотелось бы вам рассказать об усилителе который, по моему мнению, является отличным решением по соотношению цена-мощность-качество. И так, в главной роли у нас сегодня микросхема серии STK. Микросхемы stk – гибридные микросхемы которые выполнены на бескорпусных транзисторах по толсто пленочной технологии и лазерной подгонкой номиналов всех сопротивлений. Я, как и довольно большое количество радиолюбителей считаю эти усилители, одним из лучших и обходящие по качеству звучания всем известные TDA и LM. Конечно можно вспомнить и ламповые усилители но это довольно размытая тема да и к тому же сегодня уже становится не просто найти стоящие лампы и трансформаторы, а если и удается то цены на подобные экспонаты не самые низкие. Ну что касается микросхем, так они только набирают оборот и, найти необходимые детали обвязки к ним не составляет никакого труда. Если копнуть в глубь промышленности и рассмотреть спектр микросхем которые устанавливают на свои звуковоспроизводящие устройства большинство фирм то можно увидеть занимательную тенденцию, к примеру если рассмотреть практически любую акустическую систему бюджетного уровня (1000-2000 руб.) то в лучшем случае вы там найдете tda7294 или tda2050. Производители прибегают к подобным решением в виду того что микросхемы этого ряда не придирчивы к питанию, им требуется крайне малое количество внешней обвязки (резисторов, конденсаторов, катушек), а порой и не требуют вообще. Если же попытаться рассмотреть уже более дорогие и качественные АС то в большинстве случаев можно увидеть либо транзисторные усилители, либо те самые STK. В этой статье мы рассмотрим микросхему STK402-120S одним из достоинств линейки “STK402-020…STK402-120” является то, что каждая из этих микросхемы имеет абсолютно одинаковую обвязку, а последнее значение (..120) обозначает максимальную мощность которую эта микросхема способна предоставить (120W). А значит каждый сможет выбрать ту мощность, которая нужна именно ему, а если она перестанет его устраивать будет достаточно заменить только микросхему на более высокий наминал ну и в некоторых случаях и силовой трансформатор на более высокое напряжение.И так думаю стоит переходить с практике и начнем мы с параметров всего модельного ряда:

И характеристики конкретного нашего усилителя:

После оглашения всех характеристик думаю можно перейти к сборке. И сборку как полагается мы начнем с питания. Здесь используется система двуполярного питания или как его еще называют питание со средней точкой. Вот схема нашего блока питания:

В блоках питания подобного типа есть и минус и плюс и земля (корпус). Напряжение указанное в параметрах а именно +-39 В это напряжение которое должно быть между плюсомминусом и землей т.е. между плюсом и минусом должно быть 78 В.Затем рассмотрим схему самого усилителя:

Выходные резисторы на 0,22 Ом и 4,7 Ом должны иметь мощность минимум 2 Вт остальные можно взять по 0,25 Вт. Так же максимальное напряжение электролитических конденсаторов на 100 и 10 Мкф должно быть выше напряжения питания.Ну теперь думаю можно перейти к сборке. Мне частично повезло и в руки попал старый музыкальный центр из которого и была позаимствована не малая часть деталей.Опять таки начнем с блока питания. Это и была основная часть которую я позаимствовал.

Трансформатор выдавал +- 50 но это вполне входит в допустимые параметры нашей микросхемы. Возникла лишь одна проблема.. В виду того что сглаживающие конденсаторы находились на другой плате их пришлось выпаивать и изготавливать собственную плату:

Дальше стоит взяться за сам усилитель, в виду того что элементов слишком много о навесном монтаже (как в случае с TDA) не может идти и речи. И так вот фотографии сборки усилителя:

Вот итоговая фотография, чтобы не возникло вопросов сразу скажу что большая часть неполярных конденсаторов в данном случае в таких же корпусах как и резисторы. Ко всему прочему на этой фотографии не достает двух выходных резисторов на 4,7 Ом. На этом большая часть работы подошла к концу, осталось лишь убрать все компоненты в корпус и закрепить микросхему на радиатор. В моем случае я решил воспользоваться все тем же корпусом от музыкального центра.

Если вся схема была спаяна верно и подано верное питание то усилитель заработает сразу без всяких настроек. И в итоге мы получили довольно качественный усилитель который вполне может удовлетворить потребность в мощном и качественном звуке. Думаю многие как и я после использования усилителей на STK вряд ли уже вернутся к TDA или LM.

STK021, STK024, STK031, STK035

Интегральные микросхемы STK021, STKO24, STK031 и STK035 фирмы Sanyo выполнены в корпусах SIP10 с 10 выводами и представляют собой усилители мощности низкой частоты в гибридном исполнении с идентичными схемами цоколевками и различными параметрами. Предназначены для использования в магнитофонах, электрофонах, телевизионных и радиоприемниках, другой аудиоаппаратуре высокого класса. В микросхемах отсутствует защита выхода от короткого замыкания в нагрузке. Для получения максимальной выходной мощности микросхемы необходимо установить на теплоотвод радиатор. Некоторые из основных параметров микросхем следующие:

Микросхема Uccnom Uccmax Icc0 ΔF Rвых. Pвых. Кг Ку
STK021 38V 54V 60mA 30Hz-20KHz 15W 0,02% 26dB
STK024 44V 60V 70mA 30Hz-20KHz 20W 0,02% 26dB
STK031 48V 66V 70mA 30Hz-20KHz 25W 0,02% 26dB
STK035 54V 70V 70mA 30Hz-20KHz 30W 0,02% 26dB

Особенности и недостатки

Особенностью таймера является внутренний делитель напряжения, который задаёт фиксированный верхний и нижний порог срабатывания для двух компараторов. Ввиду того что делитель напряжения нельзя исключить, а пороговым напряжением нельзя управлять, область применения NE555 сужается.

Таймер на биполярных транзисторах имеет один существенный недостаток, связанный с переходом выходного каскада из одного состояния в противоположное. Каждое переключение сопровождается паразитным сквозным током, который в пике может достигать 400 мА, увеличивая тепловые потери. Решение проблемы заключается в установке полярного конденсатора ёмкостью до 0,1 мкФ между выводом управления (5) и общим проводом. Благодаря ему, повышается стабильность при запуске и надёжность всего устройства. Кроме того, для повышения помехоустойчивости цепь питания дополняют неполярным конденсатором 1 мкФ.

Технические характеристики

TDA2822M не требует для работы больших напряжений и обладает высоким коэффициентом усиления (до 41 дБ). Выходная мощность (PO) зависит он конфигурации системы и её электронной обвязки. Чаще всего для включения схемы используют номинальные для неё 9 В (иногда обычную крону). При таком питании можно получить заявленные производителем 1,0-1,4 Вт на стандартные 8-ми омные колонки, но с достаточно большими уровнями гармонических искажений в 10 % (TDA), не приемлемыми для прослушивания музыки.

При питании от 6 В на 8-ми омных динамиках можно получить до 300-380 мВт, но тоже с высокими TDA до 10 %. Некоторые радиолюбители заявляют о получении выходной мощностью в 2 Вт при питания в 12 В, но не учитывают работу устройства на предельных своих возможностей. В техническом описании (datasheet) данные о таких экстремальных режимах эксплуатации (с напряжением более 9 В), производителями не представлены. Приведем максимально возможные значения параметров.

Максимальные параметры

Абсолютные (предельно допустимые) значения параметров для TDA2822M:

  • напряжение питания (VS) до 15 В;
  • выходной ток (IO) до 1 А;
  • рассеиваемая мощность (Ptot) до 1.4 Вт (при TCASE до 50 °C);
  • диапазон рабочих температур (TA) от -20 до 70 °C;
  • температура хранения (Tstg) от -40 до +150 °C.

Не стоит превышать предельно допустимые значения параметров. Это приведёт к появлению высоких искажений, сильному нагреву микросхемы и вероятности скорого выхода её строя. Для охлаждения можно использовать небольшой радиатор, хотя в большинстве случаев он не нужен.

Слушать музыку с искажениями — не самое приятное занятие. Для получения приемлемого качества звучания и уменьшение уровня TDA чаще всего уменьшают выходную мощность (PO). Например при работе усилителя в мостовом режиме, для уменьшения TDA до 0,2% в 8-ми омной нагрузке, необходимо снизить PO до 0,5 Вт.

Cхемы включения

Многие параметры зависят не только от напряжения питания но и от того, какая схема включения у TDA2822M. На рисунке представлены её два основных варианта применения. Слева для работы двух каналов (стерео), а справа в одноканальном (режим моста). Последний можно использовать, например, для подключения сабвуфера.

Электрические характеристики

Рассмотрим электрические характеристики TDA2822M из datasheet (на русском языке). Производители приводя их в отдельных таблицах для разных схем включения. Номинальное напряжение питания (VS) 6 В, если не указано иного. Температура устройства не должна превышать +25°C. Дополнительные режимы измерений указаны в отдельном столбце. Вот параметры при работе в режиме стерео.

Ниже представлены электрические параметры при работе устройства в мостовой схеме. Рабочая температура и номинальное напряжение такие же, как и при включении в стерео режиме.

Аналоги

У TDA2822M есть современный аналог от южнокорейской компании Samsung — микросхема КА2209. Чаще всего именно её предлагают как альтернативу. Из импортных устройств также можно рекомендовать NJM2073. Из отечественных, идентичной по параметрам считается 174УН22, и более старые 174УН34 и 174УН31, но они уже давно не выпускаются.

Price

I was looking to buy one of these to repair a vintage amplifier and found
that the prices varied quite a lot. This is obviously a discontinued
product; however, there may be some old stock available for sale on eBay. Considering that the amplifier I was repairing was an old one
and was not worth much I was willing to go as high as a fiver and no more. There are plenty of sellers selling these from China as well,
however you should lookout for fakes. I found a seller on eBay who was providing a one-year guarantee, and accepting returns, and his price was within my budget.

Places such as eBay provide excellent buyer protection, and therefore it is
usually no problem buying from sellers abroad.

STK1030, STK1040, STK1050, STK1050II, STK1060, STK1060II, STK1070, STK1070II, STK1080II, STK1100II

Интегральные микросхемы STK1030, STK1040, STK1050, STK1050II, STK1060, STK1060II, STK1070, STK1070II, STK1080II и STK1100II фирмы Sanyo выполнены в корпусах SIP10 с 10 выводами и представляют собой выходные модули усилителей мощности низкой частоты в гибридном исполнении с идентичными схемами цоколевками и различными параметрами. Предназначены для использования в магнитофонах, электрофонах, телевизионных и радиоприемниках, другой аудиоаппаратуре высокого класса с двухполярным питанием. В микросхемах отсутствует защита выхода от короткого замыкания в нагрузке. Для получения максимальной выходной мощности микросхемы необходимо установить на теплоотвод радиатор. Некоторые из основных параметров микросхем следующие:

Микросхема Uccmin Uccmax Icc0 ΔF Rвых. Pвых. Кг Ку
STK1030 ±28V ±40V 45mA 30Hz-20KHz 30W 0,01% 26dB
STK1040 ±33V ±48V 45mA 30Hz-20KHz 40W 0,01% 26dB
STK1050 ±36V ±53V 45mA 30Hz-20KHz 50W 0,01% 26dB
STK1050II ±38V ±55V 45mA 30Hz-20KHz 50W 0,01% 26dB
STK1060 ±40V ±56V 45mA 30Hz-20KHz 60W 0,01% 26dB
STK1060II ±40V ±56V 45mA 30Hz-20KHz 60W 0,01% 26dB
STK1070 ±40V ±56V 45mA 30Hz-20KHz 60W 0,01% 26dB
STK1070II ±43V ±63V 45mA 30Hz-20KHz 70W 0,01% 26dB
STK1080II ±45V ±65V 45mA 30Hz-20KHz 80W 0,01% 26dB
STK1100II ±50V ±68V 45mA 30Hz-20KHz 100W 0,01% 26dB

Понижающий преобразователь на МС34063

Понизить напряжение значительно проще – существует большое количество компенсационных стабилизаторов не требующих катушек индуктивности, требующих меньшего количества внешних элементов, но и для импульсного преобразователя находиться работа когда выходное напряжение в несколько раз меньше входного, либо просто важен КПД преобразования.
В технической документации приводиться пример схемы с входным напряжение 25 В и выходным 5 В при токе 500мА.

  • C1 – 100 мкФ 50 В;
  • C2 – 1500 пФ;
  • C3 – 470 мкФ 10 В;
  • DA1 – MC34063A;
  • L1 – 220 мкГн;
  • R1 – 0,33 Ом;
  • R2 – 1,3 кОм;
  • R3 – 3,9 кОм;
  • VD1 – 1N5819.

Данный преобразователь можно использовать для питания USB устройств. Кстати можно повысить ток отдаваемый в нагрузку, для этого потребуется увеличить емкости конденсаторов C1 и C3, уменьшить индуктивность L1 и сопротивление R1.

Корпус BGA

BGA (Ball Grid Array) — матрица из шариков.

Корпус BGA

В корпусе BGA выводы заменены припойными шариками. На одной такой микросхеме можно разместить сотни шариков-выводов. Экономия места на плате просто фантастическая. Поэтому микросхемы в корпусе BGA применяют в производстве мобильных телефонов, планшетах, ноутбуках и в других микроэлектронных девайсах.

Микросхемы в корпусе BGA на плате мобильного телефона.

Технология BGA является апогеем микроэлектроники. В настоящее время мир перешел уже на технологию  корпусов microBGА, где расстояние между шариками еще меньше, и можно  уместить  даже тысячи(!) выводов под одной микросхемой!

Корпус 201.16-5, 201.16-6  

Корпус 201.14-1, 201.14-2 Корпус 201.14-8, 201.14-9
Корпус 201.14-10 Корпус 201.16-5, 201.16-6
Корпус 201.16-12, 201.16-16 Корпус 201.16-13, 201.16-15
   
Корпус 209.24-1  
Корпус 239.24-1, 239.24-2, 239.24-7, 239.24-6 Корпус 244.48-8, 244.48-11
Корпус 401.14-1, 401.14-4 Корпус 401.14-3
Корпус 401.14-5 Корпус 402.16-1
Корпус 402.16-7 Корпус 402.16-11
Корпус 402.16-18 Корпус 402.16-21, 402.16-32, 402.16-23, 402.16-33, 402.16-25
Корпус 402.16-34 Корпус 405.24-1, 405.24-2
Корпус 405.24-7 Корпус 2101.8-1, 2101.8-2
Корпус 2104.18-1 Корпус 2106.16-1
Корпус 2107.18-1, 2107.18-2, 2107.18-3, 2107.18-4 Корпус 2108.22-1
Корпус 2120.24-1 Корпус 2121.28-1
Корпус 2123.40-1 Корпус 2140.20-2
Корпус 4105.14-1, 4105.14-2 Корпус 4105.14-4
Корпус 4106.16-3 Корпус 4109.20-1
Корпус 4112.16-2 Корпус 4114.24-1
Корпус 4118.24-1, 4118.24-2, 4118.24-3 Корпус 4117.22-3
Корпус 4119.28-1 Корпус 4122.40-1
Корпус 4134.48-2 Корпус 4152Ю.20-1, 4153.20-6

«Четырехсторонние» корпуса типа «Н»
Корпус 4116.8-3 Корпус 4116.4-2
   
Корпус 1102.9-5 Корпус 238.18-1
   
Корпус 210.Б.24-1 Корпус 2121.28-6
   
Корпус 2123.40-6 Корпус 238.18-3
   
Корпус 301.12-1 Корпус 3107.12-1
   
Корпус 301.8-2 Корпус 3001.8-1

Назначение выводов микросхемы.

Давайте теперь кратко рассмотрим назначение выводов и работу микросхемы (её блоков), а потом посмотрим это практически;

1. CMP — выход усилителя ошибки. Служит для коррекции АЧХ усилителя ошибки, с этой целью между выводами 1 и 2 обычно подключается конденсатор емкостью около 100 пФ. С помощью этого вывода, можно установить коэффициент усиления усилителя ошибки с помощью дополнительного резистора, который подключается к этим же выводам, что и конденсатор, а так же ещё и управлять работой контроллера.
Если на этом выводе уменьшить напряжение ниже 1-го вольта, то на выходе микросхемы (вывод 6) будет уменьшаться длительность импульсов, уменьшая при этом выходное напряжение (мощность) БП.

2. VFB — вход обратной связи усилителя ошибки. Используется в основном для регулировки (стабилизации) выходного напряжения

Если напряжение на этом выводе превысит 2,5 вольта (подаётся с внутреннего источника на не инвертирующий вход усилителя ошибки), то длительность (скважность) выходных импульсов начнёт уменьшаться, уменьшая тем самым выходное напряжение БП

3. IS — сигнал обратной связи по току. Этот вывод обычно присоединен к резистору в цепи истока ключевого транзистора. В момент перегрузки МОП транзистора, напряжение на резисторе увеличивается и при увеличении его более 1-го вольта, импульсы на выходе 6 прекращаются и выходной транзистор закрывается.

4. RC — это вход генератора пилообразного напряжения и сюда подключается задающая RC- цепочка, для установки частоты внутреннего генератора.
Резистор от этого вывода подключается к выводу 8 — это вывод опорного напряжения 5 вольт, а конденсатор к общему проводу.
В основном на практике частота задающего генератора выбирается в диапазоне 35…85 кГц, и в RC-цепочке не рекомендуется использовать керамические конденсаторы.
Частота генератора рассчитывается по следующей формуле; — 1,72/R(кОм) * С(мкФ).

5. GND — общий вывод для первичной цепи. Этот вывод не должен быть напрямую соединён с общим выводом вторичных цепей схемы.

6. OUT — выход ШИМ–контроллера, подключается к затвору ключевому транзистору через резистор или параллельно соединенные резистор и диод (анодом к затвору).

7. VCC — вход питания ШИМ-контроллера, на этот вывод микросхемы подаётся напряжение питания в диапазоне от 16 вольт до 34. Более 34 вольт на микросхему подавать не рекомендуется, так как микросхема обладает защитой от перенапряжения, и если напряжение питания на ней превысит 34 вольта — микросхема отключится.

8. REF — выход внутреннего источника стабильного опорного напряжения 5 вольт, ток его нагрузки может достигать 50 мА.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: