Двухламповый сверхгенеративный приёмник на 6н1п (28,0 — 29,7 и 144 — 146 мгц)

Назначение гетеродина и принцип гетеродинного приёма

На заре радиоприёма при построении схем приёмников обходились без гетеродинов. Выделенный входным колебательным контуром сигнал усиливался, а после детектировался и подавался на усилитель низкой частоты. С развитием схемотехники возникла проблема построения усилителя радиочастоты с большим коэффициентом усиления.

Для перекрытия большого диапазона он выполнялся с широкой полосой пропускания, что делало его склонным к самовозбуждению. Переключаемые усилители получались слишком сложными и громоздкими.

Все изменилось с изобретением гетеродинного приёма. Сигнал с перестраиваемого (или фиксированного) генератора подается на смеситель. На другой вход смесителя подается принимаемый сигнал, а на выходе получается огромное количество комбинационных частот, представляющих собой суммы и разности частот гетеродина и принимаемого сигнала в различных сочетаниях. Практическое применение обычно имеют две частоты:

  • fгетеродина-fсигнала;
  • fсигнала- fгетеродина.

Эти частоты называются зеркальными по отношению друг к другу. Приём ведется на одном канале, второй отфильтровывается входными цепями приёмника. Разность называется промежуточной частотой (ПЧ), её значение выбирается при проектировании приёмного или передающего устройства. Остальные комбинационные частоты отфильтровываются фильтром промежуточной частоты.

Для промышленной аппаратуры существуют стандарты для выбора значения ПЧ. В любительской аппаратуре эта частота выбирается из разных условий, включая наличие комплектующих для построения узкополосного фильтра.

Выделенная фильтром промежуточная частота усиливается в усилителе ПЧ. Так как эта частота фиксирована, а полоса пропускания невелика (для передачи голосовой информации вполне достаточно 2,5…3 кГц), усилитель для неё легко выполнить узкополосным с большим коэффициентом усиления.

Существуют схемы, где используется суммарная частота – fсигнала+ fгетеродина. Такие схемы называются схемами с «преобразованием вверх». Такой принцип упрощает построение входных цепей приёмника.

Существует и техника прямого преобразования (не путать с прямым усилением!), при которой приём ведется почти на частоте гетеродина. Такая схемотехника отличается простотой конструкции и настройки, но у аппаратуры прямого преобразования есть врожденные недостатки, заметно ухудшающие качество работы.

В передатчике также применяются гетеродины. Они выполняют обратную функцию – переносят низкочастотный промодулированный сигнал на частоту передачи. В связной аппаратуре может быть несколько гетеродинов. Так, если применяется схема с двумя или более преобразованиями частоты, в ней используются, соответственно, два и более гетеродинов. Также в схеме могут присутствовать гетеродины, выполняющие дополнительные функции – восстановление подавленной при передаче несущей, формирование телеграфных посылок и т.п.

Мощность гетеродина в приёмнике невелика. Несколько милливатт в большинстве случаев достаточно для любых задач. Но сигнал гетеродина, если позволяет схемотехника приёмника, может просачиваться в антенну, и его можно принять на расстоянии нескольких метров.

Радиоприемник для начинающих

Александр ДМИТРИЕНКО (RA4NR). Радио №5, 2001, с.66,67.

Постройка радиоприемника для прослушивания любительских станций была и остается проблемой для начинающих коротковолновиков и наблюдателей. Журнал «Радио» уже предлагал достаточно простой вариант KB приемника на 160 м, выполненного на одной микросхеме. Автор данной статьи описывает доработку и усовершенствование этого приемника.

Очень понравилась работа приемника прямого преобразования В.Т. Полякова, опубликованного в журнале «Радио» . Конструкция легко повторяема и весьма эффективна. Например, в диапазоне 160 м на не слишком длинную антенну в зимнюю ночь были приняты SSB сигналы радиостанций всех радиолюбительских районов России, а телеграфом и стран Европы: ОН. DL. LZ. SM и др. Приемник оказался простым в налаживании и потому весьма подходящим в качестве первой конструкции начинающего радиолюбителя-коротковолновика. Под впечатлением его хорошей работы была разведена печатная плата и собрано несколько экземпляров на различные диапазоны. Для повышения удобства эксплуатации схема приемника немного усложнена. В основном это коснулось входной цепи, где добавлен плавный аттенюатор R1R2T1, и выходной — собран дополнительный каскад усиления мощности на транзисторах VT1, VT2. В самом приемнике после смесителя улучшена фильтрация сигнала за счет введения П-образного ФНЧ. Реализована также упомянутая автором регулировка усиления по низкой частоте. Полностью схема приведена на рис. 1. Теперь, кроме ручки настройки. в приемнике есть еще три регулятора — «аттенюатор входа», «усиление ВЧ» и «усиление НЧ». с помощью которых общее усиление можно распределить по тракту приемника более рационально в соответствии с конкретной обстановкой в эфире.

Схемы узлов. Принципы действия.

Часть принципиальной схемы приёмника, включающая узлы 1, 2, 12, приведена на рис. 2. Малошумящий усилитель (1) выполнен на арсенид-галлиевом полевом транзисторе VT1 типа КТ602А. Необходимое для работы транзистора напряжение обеспечивает компенсационный стабилизатор на транзисторе VT2 типа КТ3117А и стабилитроне VD3 КС156А. 

Для защиты транзистора VT1 от статических разрядов к антенному входу присоединены встречно включённые кремниевые диоды VD1,VD2 КД503А. Контура L1,C2; L2,C5; L3,C7 обеспечивают по основному каналу приёма первого преобразователя частоты.

Первый преобразователь частоты (2) собран по кольцевой схеме на полупроводниковых диодах VD4 – VD7 типа КД514А. Широкополосные трансформаторы на ферритовых кольцах Т1,Т2 обеспечивают согласование цепей приёмника. Незначительные потери при преобразовании компенсирует усилитель на транзисторе VT6 КТ368А. Согласование этого усилителя с полосовым фильтром (3) осуществляется с помощью широкополосного трансформатора Т3.

Первый гетеродин Г1  (10) собран по трёхкаскадной схеме с умножением частоты.

Задающий генератор 10.1 собран на транзисторе VT3 типа КТ316А. Колебания генератора стабилизированы кварцевым резонатором с частотой 13,8 МГц. Контур L4,C14 в коллекторной цепи транзистора настроен на пятую гармонику, т.е. на 69 МГц. 

Каскад 10.2 на транзисторе VT4 КТ316А является удвоителем частоты. Контур L5,C18 в его коллекторной цепи настроен на частоту 130 МГц.

Каскад 10.3 на транзисторе VT5 КТ325В усиливает колебания с частотой 130 МГц. С контура L6,C23 колебания первого гетеродина подаются на преобразователь частоты (2).

Рис.3. Высокочастотный блок (соотв. Рис.2)

Схема второго преобразователя частоты (4) и генератора плавного диапазона Г2 показаны на рис.4.

Перестраиваемый полосовой фильтр (3) выполнен на контурах L7,C30; L8,C33; L9,C36. Перестройка фильтра осуществляется совместно с перестройкой частоты колебательного контура L12,C44 генератора плавного диапазона Г2 с помощью трёхсекционного конденсатора переменной ёмкости С33, С36, С44. Контур L7,C30 настраивается отдельно. С целью более точного сопряжения фильтра переменный конденсатор С30 установлен на передней панели приёмника.

Второй преобразователь частоты (4) выполнен по балансной схеме на полевых транзисторах VT7,VT8 типа КП303Г. Нагрузкой преобразователя служит вход электромеханического фильтра Z1 ЭМФ9Д500-3В (5).

Второй гетеродин приёмника Г2 выполнен на полевом транзисторе VT9 КП303Г. Частота колебаний гетеродина плавно изменяется с помощью конденсатора С44. Нагрузкой стоковой цепи транзистора служит дроссель ДР4. Высокочастотное напряжение с части витков дросселя подаётся на широкополосный трансформатор Т4, а затем в истоковые цепи транзисторов VT7, VT8.

Схема каскадов усилителя промежуточной частоты (6), продукт-детектора (7) и кварцевого гетеродина Г3 (12) показана на рис. 5.

С выхода электромеханического фильтра Z1 колебания с промежуточной частотой поступают на вход первого каскада усилителя промежуточной частоты. Этот каскад выполнен на малошумящем полевом транзисторе КП303Е. Дополнительная селекция (подавление соседних частот) осуществляется с помощью электромеханического фильтра Z2.

Второй и третий каскады усиления ПЧ выполнены по однотипным схемам на двухзатворных полевых транзисторах КП350А. Стоковыми нагрузками каскадов являются контуры L10, C53 и L11, C59, настроенные на промежуточную частоту 500 кГц. С катушки L11 колебания поступают на вход продукт-детектора (7). Усиление тракта ПЧ можно изменять подачей соответствующего напряжения на второй затвор транзистора VT11 через резистор R25.

Продукт-детектор выполнен по кольцевой схеме на кремниевых полупроводниковых диодах VD9 – VD12.Кварцевый генератор Г3 (12) выполнен на транзисторе VT13 типа КТ312В. В схеме использован кварцевый резонатор Х2 с частотой колебаний 500 кГц. С резистора эмиттерной цепи колебания генератора подаются на соответствующий вход продукт-детектора.

С выхода детектора (7) низкочастотный сигнал поступает для дальнейшего усиления на усилитель низкой частоты.В данной конструкции была использована готовая плата усилителя низкой частоты от ЭПУ “ Концертный”, которая соответствовала требованиям, предъявляемым к данной конструкции. Схема усилителя низкой частоты (8) в работе не приводится.

Дополнение от 20.12.19

Новая версия индикатора, в которой исправлено большинство ошибок, а так же правильнее переделан темброблок.

Проверенный вариант подсветки стрелки: светодиод, снятый с LED-ленты, тонкий МГТФ, немного термоклея в нужных местах…

…резистор на 180 Ом с той же ленты и пять вольт питания. Очень пригодились освободившиеся от деталей старого стабилизатора «пятачки».

Фольгой-самоклейкой заделал полосу под шкалой, которая очень сильно просвечивается. Черный корпус этого недостатка лишен, там только точечные засветы в местах, где крепятся молдинг и решетка.

Наблюдение из жизни: ночью корпус просвечивает по верхней грани. И еще по правой, когда стрелка стоит у «десятки» на шкале. Все заклеивать — ни фольги, ни терпения не хватит.

Опять отломанный фиксатор антенны опять заменил откушенным выводом какой-то радиодетали.

Августовские записи на этом обрываются — всё вышеперечисленное было сделано за четыре дня. Зато с Bluetooth-трактом пришлось полгода вести позиционную войну. За это время изменилось многое: в Заборске я почти не бываю, радио там не слушаю, пилить, сверлить и красить на улице забросил. Но я ведь пообещал «ВЭФу», что сделаю из него беспроводной усилитель. Поэтому — пару слов о «военных действиях».

Плата управления питанием Bluetooth-модуля (на заднем плане) и ее схема (справа). Триггер CD4013 по длительному нажатию выключателя (с него появляется +Uупр) включает или выключает изолированный DC-DC преобразователь B0505S. Изначально предназначалась для «ВЭФ 216», когда этого «ВЭФ 317» даже не виднелось на горизонте.

Концепция запрещала сверлить в приемнике лишние дыры, поэтому выключатель, управляющий триггером, расположился под штоком переключателя «БШН/АПЧ». Второй выключатель (с фиксацией) стоит под переключателем «АМ/УКВ»; он подает питание на схему триггера

Задумывалось, что Bluetooth можно включить только в режиме УКВ по долгому нажатию кнопки «БШН/АПЧ» (и неважно, нажимать ее или отжимать, лишь бы длительно)

Впрочем, несмотря на гальваническую развязку цепей, «ВЭФ» гудел и свистел так же, как и без преобразователя (я потер все свои видео на эту тему, но вот хороший пример). В ходе проверки самых сумасбродных гипотез Bluetooth-интерфейсом обзавелись компьютерная акустика Genius, несколько человек, которым я продал «не взлетевшие» Bluetooth-приемники, а потом еще один мой «полноразмерный» усилитель. Триггер же после серии разочаровывающих экспериментов перешел в комплект «ВЭФ 317» — его проще разбирать, чем «216-й».

Не помогли и обкладывания платы керамическими конденсаторами в лошадиных дозах. Но зато удалось избавиться от высоких «электролитов», заимев к тому же большую емкость фильтров. Отсюда вытекает вывод — следующую версию триггера собирать максимально на SMD.

Требования к параметрам гетеродина

Основное требование к сигналу гетеродина – спектральная чистота. Если гетеродин вырабатывает напряжение, отличное от синусоиды, то в смесителе возникают дополнительные комбинационные частоты. Если они попадают в полосу прозрачности входных фильтров, это приводит к дополнительным каналам приёма, а также к появлению «поражённых точек» — на некоторых частотах приёма возникает свист, мешающий принимать полезный сигнал.

Другое требование – стабильность уровня выходного сигнала и его частоты

Второе особенно важно при обработке сигналов с подавленной несущей (SSB (ОБП), DSB (ДБП) и т.п.) Неизменность выходного уровня получить несложно применением стабилизаторов напряжения для питания задающих генераторов и правильным выбором режима активного элемента (транзистора)

Постоянство частоты зависит от стабильности задающих частотных элементов (ёмкости и индуктивности колебательного контура), а также от неизменности ёмкости монтажа. Нестабильность LC-элементов определяется, большей частью, изменяющейся во время работы гетеродина температурой. Для стабилизации компонентов контура их помещают в термостаты, а также применяют специальные меры для температурной компенсации уходов значений ёмкости и индуктивности. Катушки индуктивности обычно стараются сделать полностью термостабильными.

Для этого применятся специальные конструкции – катушки мотают с сильным натяжением провода, витки заливают компаундом, чтобы исключить сдвиг витков, провод вжигают в керамический каркас и т.п.

Для уменьшения влияния температуры на ёмкость задающего конденсатора его составляют из двух или более элементов, подбирая их с различными значениями и знаками температурного коэффициента ёмкости так, чтобы они взаимно компенсировались при нагреве или охлаждении.

Из-за проблем с термостабильностью не получили большого распространения гетеродины с электронным управлением, где в качестве ёмкости используется варикапы. Их зависимость от нагрева носит нелинейный характер, и скомпенсировать её очень сложно. Поэтому варикапы применяют только в качестве элементов расстройки.

Ёмкость монтажа складывается с ёмкостью задающего конденсатора, и её нестабильность также приводит к уходу частоты. Чтобы избежать нестабильности монтажа, все элементы гетеродина надо монтировать очень жестко, чтобы избежать даже минимальных сдвигов друг относительно друга.

Настоящим прорывом в построении задающих генераторов явилась разработка в 30-х годах прошлого столетия технологии порошкового литья в Германии. Это позволило изготавливать сложные трехмерные формы для узлов радиоаппаратуры, что дало возможность достигнуть невиданной на тот момент жёсткости монтажа. Это позволило вывести надежность систем радиосвязи вермахта на новый уровень.

Смотрите это видео на YouTube

Если гетеродин неперестраиваемый, частотозадающим элементом обычно служит кварцевый резонатор. Это позволяет получить чрезвычайно высокую стабильность генерации.

В последние годы наметилась тенденция перехода в применении в качестве гетеродинов вместо LC-генераторов цифровых синтезаторов частоты. Стабильность выходного напряжения и частоты в них достигается легко, а вот спектральная чистота оставляет желать лучшего, особенно если сигнал генерируется с помощью недорогих микросхем.

На сегодняшний день на смену старым технологиям радиоприёма приходят новые, такие как DDC – прямая оцифровка. Не за горами время, когда гетеродины в приёмной аппаратуре исчезнут как класс. Но это наступит не так скоро, поэтому знания о гетеродинах и принципах гетеродинного приёма будут востребованы ещё долго.

Что такое импульсный блок питания и где применяется

Что такое оптрон, как работает, основные характеристики и где применяется

Что такое триггер, для чего он нужен, их классификация и принцип работы

Что такое ШИМ — широтно-импульсная модуляция

Преобразователи напряжения с 12 на 220 вольт

Что такое делитель напряжения и как его рассчитать?

Монтаж радиоприемника

Самодельная печатная плата приемника сделана под схему оригинала и уже дорабатывалась в полевых условиях для предотвращения самовозбуждения. Плата установлена на шасси при помощи термоклея. Для экранировки дросселя L3 применен алюминиевый экран подключенный к общему проводу. Магнитная антенна в первых вариантах шасси устанавливалась в верхней части приемника. Но периодически на приемник клались металлические предметы и сотовые телефоны, которые нарушали работу аппарата, поэтому магнитную антенну поместил в подвал шасси, просто приклеив ее к панели. КПЕ с воздушным диэлектриком установлен при помощи винтов на панель шкалы, там же закреплен регулятор громкости. Выходной трансформатор применен готовый от лампового магнитофона, допускаю, что для замены подойдет любой трансформатор от китайского блока питания. Выключатель питания на приемнике не предусмотрен. Регулятор громкости обязателен. В ночное время и на «свежих батареях» приемник начинает звучать громко, но из-за примитивной конструкции УНЧ при воспроизведении начинаются искажения, устраняющиеся снижением громкости. Шкала приемника изготовлена спонтанно . Внешний вид шкалы составлен при помощи программы VISIO, с последующим переводом изображения  в негативный вид. Готовая шкала печаталась на плотной бумаге  лазерным принтером. Шкалу обязательно надо печатать на плотной бумаге, при перепаде температур и влажности офисная бумага пойдет волнами и прежний вид не восстановит. Шкала полностью приклеивается к панели. В качестве стрелки применена медная обмоточная проволока. В моем варианте это красивая обмоточная проволока от сгоревшего китайского трансформатора. Стрелка фиксируется на оси при помощи клея. Ручки настройки сделаны от крышек газированных напитков. Ручка нужного диаметра просто при помощи термоклея приклеивается в крышку.

Печатная плата
Плата с элементами
Магнитная антенна
Крепление стрелки

Шкала приемника
Ручка настройки
Ручка регулятора громкости
Приемник в сборе

Вдумчивая перестройка блока УКВ на FM

Он у меня давным-давно был перестроен, но читатель Дмитрий подбросил пару идей, и я решил проверить, могу ли сделать ещё лучше.

Могу. Поэтому почти полностью переписал статью об «УКВ-2-08С». Если очень вкратце, то:

1. Увидел на SDR-приёмнике, что гетеродин перестраивается от 97,85 МГц до 122,47 МГц (это даёт принимаемый диапазон 87,15 — 111,77 МГц — чуть шире, чем надо). У кого нет SDR-приёмника — могут выставить радио в телефоне на приём частоты 98,2 МГц, и вращать гетеродинную катушку L3 до появления тишины на этой частоте. «ВЭФ» при этом будет принимать 87,5 МГц.

2. Покрутив гетеродин, лишний раз убедился, что «зеркалка» от 107,7 МГц — по-прежнему 86,3 МГц. Поэтому спрятал её куда-то за цифру «10» на шкале.

3. Первые два «ВЭФа» я перестраивал вообще на слух, дальше придумал подключать светодиод к 14-й ноге микросхемы К174ХА6 из блока ДЧМ, и судить о правильности настройки по его яркости.

Ещё один шаг от органолептического метода к полноценным измерениям. Теперь вместо яркости светодиода — напряжение в конкретных числах.

Вращением сердечника L2 добиваемся наибольшего напряжения в положении «около 87 МГц», а ротором подстроечного конденсатора C8 — в положении «около 108 МГц». Повторяем это несколько раз.

4. Сердечником L1 настраиваем входной контур на середину диапазона.

Иными словами — добиваемся наибольшего напряжения в положении «около 100 МГц».

5. Если напряжение по-прежнему невысоко, и приём не радует — есть катушка L4 , которая отвечает за уровень сигнала с блока УКВ на блок ДЧМ. Можно его повысить, однако при слишком мощном сигнале могут пролезать ранее незаметные шумы и «зеркалки».

В итоге вышло так, что:

До перестройки: U = 1,51 В @ 87,5 МГц U = 2,02 В @ 100,5 МГц U = 2,07 В @ 107,7 МГц

После перестройки: U = 2,20 В @ 87,5 МГц U = 2,06 В @ 100,5 МГц U = 2,23 В @ 107,7 МГц

В результате — «ВЭФ» стал намного увереннее принимать станции из нижней части FM-диапазона

Всё это — без хитрых приборов (так как SDR-приёмник вообще не обязателен), важно только знать принцип работы супергетеродина

Наконец-то разобрался, что делают эти лепестки возле разъёма на динамик, и к которым есть доступ через заднюю крышку приёмника. При замыкании чем-то металлическим — выключают БШН. Наверное, было нужно при наладке на заводе.

Сверхрегенеративный радиоприемник на FM диапазон

Сверхрегенеративный радиоприемник обладает высокой чувствительностью (до ед. мкВ) при достаточной простоте. На рис. 4 приведен фрагмент схемы сверхрегенеративного радиоприемника Е. Солодовникова (без УНЧ, который может быть выполнен по одной из приводимых ранее схем — Простейшие усилители низкой частоты на транзисторах) [Рл 3/99-19].

Рис. 4. Схема сверхрегенеративного радиоприемника Е. Солодовникова.

Высокая чувствительность приемника обусловлена наличием глубокой положительной обратной связи, благодаря которой коэффициент усиления каскада после включения радиоприемника довольно быстро возрастает до бесконечности, схема переходит в режим генерации.

Для того чтобы самовозбуждение не происходило, а схема могла работать как высокочувствительный усилитель высокой частоты, используют очень оригинальный прием. Как только коэффициент усиления каскада усиления возрастет выше некоторого заданного уровня, его резко снижают до минимума.

График изменения коэффициента усиления от времени напоминает пилу. Именно по этому закону изменяют коэффициент усиления усилителя. Усредненный же коэффициент усиления может доходить до миллиона. Управлять коэффициентом усиления можно при помощи специального дополнительного генератора пилообразных импульсов.

На практике поступают проще: в качестве такого генератора используется по двойному назначению сам высокочастотный усилитель. Генерация пилообразных импульсов происходит на неслышимой ухом ультразвуковой частоте, обычно десятки кГц. Для того чтобы ультразвуковые колебания не проникали на вход последующего каскада УНЧ, используют простейшие фильтры, выделяющие сигналы звуковых частот (R6C7, рис. 4).

Сверхрегенеративные приемники обычно используют для приема высокочастотных (свыше 10 МГц) сигналов с амплитудной модуляцией. Прием сигналов с частотной модуляцией возможен за счет преобразования частотной модуляции в амплитудную и последующего детектирования эмиттерным переходом транзистора полученного таким образом амплитудно-модулированного сигнала.

Преобразование частотной модуляции в амплитудную происходит в случае, если приемник, предназначенный для приема амплитудно-модулированных сигналов, настроить неточно на частоту приема частотно-модулированного сигнала.

При такой настройке изменение частоты принимаемого сигнала постоянной амплитуды вызовет изменение амплитуды сигнала, снимаемого с колебательного контура: при приближении частоты принимаемого сигнала к частоте резонанса колебательного контура амплитуда выходного сигнала растет, при удалении от резонансной — снижается.

Наряду с неоспоримыми достоинствами, схема «сверхрегенератора» обладает массой недостатков. Это — невысокая избирательность, повышенный уровень шумов, зависимость порога генерации от частоты приема, от напряжения питания и т.д.

При приеме радиовещательных ЧМ-сигналов в диапазоне FM —  100…108 МГц или сигналов звукового сопровождения телевидения, катушка L1 представляет собой полувиток диаметром 30 мм с линейной частью 20 мм. Диаметр провода — 1 мм. L2 имеет 2…3 витка диаметром 15 мм из провода диаметром 0,7 мм, расположенных внутри полувитка.

Для диапазона 66…74 МГц катушка L1 содержит 5 витков диаметром 5 мм из провода 0,7 мм с шагом 1…2 мм. L2 имеет 2…3 витка такого же провода. Обе катушки не имеют каркасов и расположены параллельно друг другу. Антенна выполнена из отрезка монтажного провода длиной 50… 100 см. Настройку устройства осуществляют потенциометром R2.

Постройка корпуса

Для изготовления корпуса было выпилено несколько дощечек из листа облагороженной ДВП толщиной 3мм со следующими размерами: — лицевая панель размером 210мм на 160мм; -две боковых стенки размером 154мм на 130мм; — верхняя и нижняя стенка размером 210мм на 130мм; — задняя стенка размером 214мм на 154мм; — дощечки для крепления шкалы приемника размером 200мм на 150мм и 200мм на 100мм.

Конструкция ящика

При помощи деревянных брусков склеен ящик с использованием клея ПВА. После полного высыхания клея края и углы ящика шлифуются до полукруглого состояния. Шпаклюются неровности и изъяны. Шлифуются стенки ящика и повторно края и углы. При необходимости опять шпаклюем и шлифуем ящик до получения ровной поверхности. Размеченное на лицевой панели окно шкалы вырезаем чистовой пилкой электролобзика. Электродрелью просверлены отверстия для регулятора громкости, ручки настройки и переключения диапазонов. Края полученного отверстия также шлифуем. Готовый ящик покрываем грунтом (автомобильный грунт в аэрозольной упаковке) в несколько слоёв с полным высыханием и выравниваем неровностей наждачной шкуркой. Также автомобильной эмалью красим ящик приемника. Из тонкого оргстекла вырезаем стекло окна шкалы и аккуратно приклеиваем его с внутренней стороны лицевой панели. В конце примеряем заднюю стенку и устанавливаем на ней необходимые разъёмы. На днище при помощи двойного скотча крепим пластмассовые ножки. Опыт эксплуатации показал, что для надежности ножки надо либо приклеивать намертво или крепить винтами к днищу.

Крепление ножек
Задняя стенка
Отверстия для ручек

Акт 2. huxfluxdeluxe наносит ответный удар

И вот июнь, со всеми его радостями и горестями разных типоразмеров, подошел к концу. Электричка привезла меня домой, к сотне незаконченных и тысяче неначатых дел, среди которых в первом ряду размахивал антенной «ВЭФ 216».

Проверив на исправность каждую деталь и дорожку в темброблоке, я дошел до наиболее невероятной версии — регуляторы. Предчувствие не подвело — регулятор громкости R9 (справа) оказался неправильным — 220 кОм, линейный, без отводов тонокомпенсации. Точно такой же, как на тембре. По понятным теперь причинам не было R8

иC5 — а толку от них?

На C7 не смотрите, это наследие одного из вариантов «ВЭФ 317». Ни на «печатке» в инструкции к «216-му», ни на «железе», ни в инструкциях к «214-му», «221/222» и одному из вариантов «317-го» его нет (а в другой схеме на «317-й» он есть). У моего «317-го» не было. Ну а что, завод имеет право вносить изменения в конструкцию без ухудшения потребительских качеств, не извещая об этом потребителей. Вот только тут что-то эти качества конкретно ухудшились.

Слева — правильный регулятор: 100 кОм, обратно-логарифмический, с отводами. Снял с донорского темброблока от «ВЭФ 214».

Просто интересно — это «косяк» сборщиков, или не было нужных потенциометров, поэтому «колхозили» как могли? Неисправность, мягко скажем, необычная, ведь всегда свято веришь в то, что запаяно всё правильное, как на схеме. А главное, что подкупает — пломба. Ведь от копаного аппарата можно ожидать чего угодно, хотя бы даже соединенных по выходу стабилизаторов 9 и 14 вольт на моей «Вильме», когда её покупал. А тут новенькое всё, но с завода диверсия. И вполне возможно, что именно поэтому приёмник немного послушали и упрятали в коробку — орет как дурной, регулировка тембра неадекватная… Небось, ещё подумали «VEF уже не тот».

Регулятор этот я когда-то разбирал, чистил и смазывал — очень уж туго ходил ползунок. Помогла , разве что заклепки я не срубывал, а высверливал маленьким сверлом, а при сборке скреплял половинки загнутой медной проволокой. Сейчас пришлось опять его разбирать, потому что как был тугим, так и остался. Спасла только полная пересадка ползунка от родного регулятора на 220 кОм.

Громкость стала регулироваться нормально, а вот тембр — ну никак! Странно, да? Начинаешь верить во всякую темброблочную эзотерику. Искал-искал, заменил даже регулятор тембра, пока не нашел расколотый напополам R7 (сам же, наверное, копытами и сломал). И вот после замены — долгожданная регулировка! Правда, снова с червинкой: если в любом другом «ВЭФ 216» явно заметен переход «бас-ВЧ», то здесь разницы почти нет. Только на краях регулятора чуть заметно «больше ВЧ» или «больше НЧ» (но в НЧ положении нет и неприятного бубнения, так что результат в целом нормальный). Возможно, это из-за сопротивления регулятора 180 кОм (написано 220, и у родного тоже 220 честных, а тут как-то не задалось), возможно, из-за динамика 3ГДШ-2 (обычно здесь 2ГДШ-2). В общем, темброблок я осилил, больше сюда не полезу, иначе ещё и он будет сниться.

Акт 5. Нельзя просто так взять и…

ну, например, собрать приёмник. То есть собрать-то можно, но на финальном электропрогоне обязательно вылезет какая-то гадость. И хоть я отнюдь не золотоухий эксперт, но прослушивание FM-эфира разочаровало — звук очень, если можно так сказать, «путанный», «мутный», даже, пардон — «транзисторный». Особенно это слышно на малой громкости — басы жужжащие, похожие на звучание чиптюна или любой другой восьмибитной музыки. Стал разбираться.

Классическая «ступенька» на выходе двухтакта. Регулировка с помощью R66 сделала синусоиду красивой, но звук как был дрянным, так и остался (в АМ, надо сказать, искажения не так слышны, но AUX и FM просто раздражают своим жужжанием). Подобрал комплементарную пару КТ814Б/КТ815Б с почти одинаковыми h21 — мимо. Попутно нашел «другую землю» — полезно, но тоже не в точку.

А «вточка» оказалась «ВЭФом 214», чей динамик 3ГДШ-1 вполне прилично заработал от усилителя «ВЭФ 216», и наоборот — динамик от «216-го» так же отвратительно жужжит, когда он подключен к «214-му».

И опять этот «ВЭФ» ловит меня на доверии. Обычно в УНЧ звук портит всё, что только можно («армяне», «флажки», КТ315, разводка «земли», монтаж), но не динамик. Динамики не ломаются, динамики не портятся, с динамиками всегда всё ха-ра-шо!

Да щаззз, как оказалось.

Я не знаю, как правильно называются четыре картонных накладки по краям диффузора, но верхняя левая приклеена криво.

Отдельно от лицевой панели динамик заиграл хорошо, без лишних призвуков, но стоит только его привинтить, как начинается жужжание. Решение — закрепить его чуть иначе, с маленьким перекосом относительно того положения, в которое он стремится сесть. Нужный угол искал на слух — закручиваю винты и слушаю радио, как начинается «модуляция» — чуть ослабляю крепёж и немного поворачиваю динамик вокруг оси.

Немного фото на память — выставил его на тот же OLX, где и взял, пусть ищет нового хозяина. В этот раз не делал ни аудиовхода, ни выхода 3,5-мм на наушники — указал, что могу это сделать по спецзаказу, а то ведь вдруг кто хочет максимальной аутентичности, раз уж коробка есть (эдак ещё придётся подсветку отрывать и FM назад в УКВ перегонять!).

Такие дела. «Коробочный приёмник» не всегда означает, что он не требует никаких вложений. Иногда, может, их надо даже больше, чем какому помоечному найдёнышу.

Итог

Хочется сказать, что собранный приёмник, имея небольшую чувствительность, не подвержен воздействию радио помех от телевизоров и импульсных источников питания, а качество воспроизведения звука от промышленных АМ приемников отличается чистотой и насыщенностью. Во время всяких энергетических аварий приёмник остаётся единственным источником прослушивания программ. Конечно схема приемника примитивная, есть схемы более качественных аппаратов с экономичным питанием, но этот сделанный своими руками приемник работает и со своими «обязанностями» справляется. Отработанные батареи исправно дожигаются. Шкала приемника сделана с юмором и приколами — этого никто не замечает почему-то!

Если возникнут вопросы или предложения по конструкции, готов поделиться информацией и обсудить предложения. И хочется предложить для любителей попаять набор, конструктор для сборки супергетеродинного приёмника по смешной цене, вот ссылка http://ali.pub/4bw820.

Итоговый видеоролик

Самодельный радиоприемник прямого усиления

Watch this video on YouTube

Смотрите далее удачную модернизацию этого радиоприемника

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: