Схема защиты акустических систем

Включаем!

начального уровня

Еще раз напомню, что вместо можно применить и ; при этом напряжение питания двухполярного источника должно составлять ±22 В для , ±16 В для , и ±12 В для TDA2006.

Настоятельно советую повторить этот проект всем желающим, чтобы приобрести опыт и построить неплохой усилитель для радиокомплекса. Не случайно девизом проекта я выбрал слоган «Не мечтай, действуй!» .

В интернете сейчас представлено огромное количество различных усилителей звука, на любой вкус и цвет, под любые нужны. Как известно, даже самые надёжные усилители имеют свойство выходить из строя, например, из-за неправильных условий эксплуатации, перегрева или неправильного подключения. В этом случае велика вероятность того, что высокое питающее напряжение окажется на выходе усилителя, и, следовательно, беспрепятственно окажется прямо на динамиках акустической системы. Таким образом, вышедший из строя усилитель утягивает за собой «в мир иной» подключенную к нему акустическую систему, которая может стоить гораздо дороже самого усилителя. Именно поэтому крайне рекомендуется подключать усилитель к колонкам через специальную плату, которая называется защитой акустических систем.

Схема защиты акустических систем усилителя «Бриг-001»

Рис. 1. Схема защиты акустических систем усилителя «Бриг-001»

При появлении на выходе усилителя любого из каналов постоянного напряжения положительной полярности открывается транзистор VT1, который шунтирует цепь базы составного транзистора на общий провод. При этом ток через реле К1 уменьшается настолько, что оно отпускает контакты и отключает акустические системы от усилителя. Конденсатор С1 предотвращает срабатывание реле К1 от переменного напряжения выходного сигнала.В случае, если на выходе усилителя появится напряжение отрицательной полярности, оно поступит через делитель R6, R7 на базу составного транзистора, в результате реле К1 отпустит и отключит нагрузку от усилителя.

Случай появления на выходах усилителя равных по модулю двухполярных напряжений учтен выбором различных значений резисторов R1 и R2.Таким образом, акустическая система защищена от постоянного напряжения любой полярности на выходе усилителя.

Подобная схема защиты акустических систем проработала в одном из моих усилителей более двух десятков лет, и ни разу не подвела, хотя около половины указанного срока усилитель трудился на увеселительных мероприятиях.

Достоинства:
простота и надежность; практически полное отсутствие ложных срабатываний; универсальность применения.

Недостатки:
Отсутствует схема отключения акустических систем при пропадании питания.Этот недостаток был принесен в угоду простоте и надежности устройства.

В схеме защиты установлены пассивные инфразвуковые фильтры нижних частот второго порядка (соответственно C3, C5, R10, R12 и C4, C6, R11, R13) и сенсоры аварийного постоянного напряжения на выходе усилителя (VT2, VT4, VT6 и VT3, VT5, VT7). При напряжении любой полярности более 1,5 В открывается соответствующий ключ (VT2 или VT3 для положительной полярности постоянного напряжения и VT4, VT6 или VT5, VT7 – отрицательной). При аварии база составного транзистора VT8, управляющего последовательно включенными электромагнитным реле К1 и К2, через низкоомный антизвоновый резистор R5 надежно соединяется с общим проводом, размыкая соединение выходов акустических систем через контакты реле.

Интегрирующая цепь R1, C2 в базовой цепи транзистора VT1 обеспечивает задержку подключения акустических систем при включении питания (на время 1,8 с), тем самым предотвращается проникновение в акустическую систему помех, вызванных переходными процессами в усилителе.Схема защиты универсальна и может использоваться с другими УМЗЧ. В таблице, размещенной в правом верхнем углу схемы рис. 5 указаны номиналы R6, R7, которые необходимо изменить в соответствии с напряжением питания Uп усилителя.

Технические характеристики:
Напряжение питания, В=+25…45
Время задержки включения, с=1,8
Порог срабатывания защиты, В=более ±1,5
Выходной ток для питания реле, мА=до 100
Размеры печатной платы, мм=75х75

Детали модернизированной схемы устройства защиты акустических систем.

VT1…VT3, VT6, VT7 – Транзистор BC546B (ТО-92) – 5 шт.,VT4, VT5 – Транзистор BC556B – 2 шт.,VT8 – Транзистор КТ972А – 1 шт.,VD1 — Стабилитрон КС212Ж (BZX55C12, 12V/0,5W, корпус DO-35) – 1 шт.,VD2 — Диод 1N4004 – 1 шт.,K1, К2 — Реле электромеханическое (1C, 12VDC, 30mA, 400R) BS-115C-12A-12VDC – 2 шт.,R1 — Рез.-0,25-220 кОм (красный, красный, желтый, золотистый) – 1 шт.,R2 — Рез.-0,25-1 м (коричневый, черный, зеленый, золотистый) – 1 шт.,R3, R4 — Рез.-0,25-11 кОм (коричневый, коричневый, оранжевый, золотистый) – 2 шт.,R5 — Рез.-0,25-10 Ом (коричневый, черный, черный, золотистый) – 1 шт.,R6 — Рез.-0,25-2,2 кОм (красный, красный, красный, золотистый) – 1 шт.,R7 – Перемычка,R8…R11 — Рез.-0,25-22 кОм (красный, красный, оранжевый, золотистый) – 4 шт.,R12, R13 — Рез.-1-22 кОм (красный, красный, оранжевый, золотистый) – 2 шт.,C1, C2 — Конд.47/25V 0511 +105 °С – 2 шт.,C3 – C6 — Конд.47/50V 1021 NPL (47/25V 1012 NPL) – 4 шт.,Клеммник 2к шаг 5мм на плату TB-01A – 5 шт.

печатной платой

Рис. 9. Клещи для зачистки провода и обжима наконечников – помощник при монтаже усилителя

Связанные материалы

Усилитель на STK433-060 в Бриг-001, нужна помощь с защитами…Варианты цепей защиты входа интегратора УМЗЧ…Устройство защиты акустических систем на базе схемы А. Котова. Универсальное, простое, надёжное…TA7317P – микросхема для устройств защиты акустических систем…uPC1237, NTE7100 — универсальное устройство защиты акустических систем…WinISD Pro — программа расчета акустических систем…Создание акустических систем в домашних условиях. С.М. Афонин…Разработка встроенных систем с помощью микроконтроллеров PIС. Уилмсхерст Т….Автоматическое включение/выключение сабвуфера на микроконтроллере PIC12F675…Блок защиты АС при старте или поломке усилителя…Высококачественные акустические системы и излучатели. Алдошина И. А., Войшвилло А. Г….Ламповые усилители. Методика расчета и конструирования. Климов Д.А….

Использование элементов защиты в целях профилактики

Не только человеческое тело может быть носителем статического заряда. Например, сетевые кабели накапливают потенциал при работе, а статический разряд может произойти, когда кабель присоединяется к разъему ПК.

Профилактика электростатического разряда и его последствий заключается в использовании схем защиты чувствительных устройств
от импульсных всплесков при переходных процессах. Этого можно достичь, разместив параллельно основной схеме элементы защитыустройства гашения импульсов. К полупроводниковым приборам, применяемым в качестве
устройств защиты, относят металлооксидные
варисторы, полупроводниковые приборы общего назначения и специальные полупроводниковые ограничители напряжения. В течение
переходного процесса ток будет протекать через устройство гашения импульсов. В свою очередь, это приведет к снижению значения переходного напряжения в основной схеме.

Устройства гашения импульсов, предлагаемые компанией Semtech, можно подразделить
на две категории: ограничители сигнала и электронные ключи. Каждый из типов устройств
оптимизирован для определенных условий переходного процесса. В качестве ограничителей
и ключевых устройств выступают TVS-тиристоры и TVS-диоды.

1. Электронные ключевые устройства
На первоначальном этапе устройства гашения импульсов (электронные ключи — TVS-тиристоры) находятся в закрытом состоянии.
Это состояние длится до тех пор, пока не будет
подано напряжение переключения, замыкающее ключ. По сравнению с ограничителями (см. ниже) электронные ключи способны мани-
пулировать большими значениями экстратоков.
Недостатком электронных ключей является то,
что для возврата устройства в непроводящее состояние необходимо понижать значение прямого тока до определенного уровня отключения.

2. TVS-диоды

Ограничитель напряжения — это полупроводниковый диод, работающий на обратной
ветви ВАХ с лавинным пробоем или на прямой ветви BAX. Он предназначен для защиты
от перенапряжения интегральных и гибридных схем, радиоэлектронных компонентов
и пр. У полупроводниковых ограничителей
напряжения ВАХ аналогична стабилитрону.
В условиях нормальной работы ограничители
являются высокоимпедансной нагрузкой по
отношению к защищаемой схеме и служат для
защиты цепи. В идеале устройство выглядит
как разомкнутая цепь с незначительным током утечки. Когда напряжение переходного
процесса превышает рабочее напряжение цепи, импеданс ограничителя понижается и ток
переходного процесса начинает течь через ограничитель. Мощность, образовавшаяся при
переходном процессе, рассеивается в пределах
устройства и ограничивается максимально допустимой температурой перехода.

Когда линейное напряжение достигает нормального уровня, ограничители автоматически
возвращаются в высокоимпедансное состояние.
TVS-диоды— пример таких ограничителей.

На рис 1. показаны переходные процессы, возникшие в цепи в результате разряда молнии.
Отчетливо видно, что ограничитель (LC03-3.3)
отлично справляется со своей задачей и обеспечивает необходимую защиту от разрядов.
По этому принципу работают все ограничительные устройства компании Semtech.

Рис.1. Ограничение всплеска напряжения

Основной атрибут TVS-диодов— параметр
времени реакции. Время реакции на обратной
ветке ВАХ (ветка лавинного пробоя) составляет несколько пикосекунд. Компания Semtech
представляет широкую номенклатуру TVS-диодов с различным диапазоном рабочих напряжений (от 2,8 до 70 В).

Влияние емкостной нагрузки, которую традиционный TVS-диод создает высокоскоростному сигналу или передаче через длинную линию, приводит к значительному ухудшению
или отражению сигнала. Инновационные разработки TVS-диодов последних лет включают
в себя устройства защиты, обладающие низким емкостным сопротивлением. Методы защиты на основе этих устройств делятся на три
группы: низкоемкостное шунтирование, защита на основе информации о скачках напряжения и низкоемкостной мост.

Использование микросхем

С появлением интегральных микросхем перед радиолюбителями открылись новые возможности, реализация которых привела к появлению оригинальных схем защиты АС. Примером наиболее подходящих микросхем являются 3 нижеприведенных типа.

  1. Тип LM339 (счетверенный компаратор) защищает громкоговорители как от бросков напряжения, так и от высоких показателей постоянного выходного напряжения УНЧ. Такие микросхемы обеспечивают необходимую

    .

  2. дают возможность запитать схему защиты АС непосредственно от сигнала звуковой частоты. Благодаря данной микросхеме отключение динамиков происходит при перегрузке и/или появлении на выходе УНЧ напряжения разных полярностей.

  3. является оптимальным вариантом, подразумевающим защиту «все в одном», а именно: наличие режима mute, защиты от постоянного напряжения на выходе, термозащиты, задержки включения и даже отключения выхода в случае выключения УНЧ тумблером. В последнем варианте усилитель сразу выключится, а не будет продолжать работать от конденсаторов блока питания.

На заметку! Существуют и другие варианты защиты громкоговорителей акустики, реализованные на базе транзисторов и интегральных микросхем. При этом все они используют для подключения/отключения звуковых колонок к выходу УНЧ электромеханические реле, контакты которых имеют большую нелинейность, что пагубно влияет на качество воспроизведения фонограмм.

↑ Дополнения

Как подключить устройство защиты (рис. 5) к мостовому УМЗЧ?Александр (Allroy) не только задал вопрос, но и испытал предложенное решение на практике, за что ему большое спасибо.

На рисунке схематично показано подключение двух мостовых усилителей, питаемых от двухполярного источника, к устройству защиты АС.


Выводы 2, 3, 6 и 7 устройства защиты АС оставляем свободными. Выход 1-1 (2-1) мостового УМЗЧ 1 (УМЗЧ 2) соединяем с выводом 4 (8) устройства защиты АС. Вывод 1 (5) устройства защиты АС соединяем с соответствующей клеммой для подключения АС. Другую клемму для подключения АС соединяем с выходом 1-2 (2-2) мостового УМЗЧ.

Между выходом 1-2 (2-2) мостового УМЗЧ и конденсатором С5 (С6) устройства защиты АС включаем дополнительный резистор, сопротивление которого не должно быть равно сопротивлению резистора R12 (R13). Выберем сопротивление дополнительного резистора, например, 18 кОм (см. описание схемы защиты усилителя «Бриг», рис. 1).

Как уменьшить коэффициент нелинейных искажений в схемах защиты АС

Известно, что контактные группы электромеханических реле в схемах защиты акустических систем, с помощью которых осуществляется подключение/отключение последних к выходу УНЧ, значительно увеличивают коэффициент нелинейных искажений воспроизводимого аудиосигнала. Уменьшить нелинейные искажения, возникающие в системах защиты АС, можно различными способами, однако все они приводят к усложнению их электрических схем. Так, радиолюбители из Японии предложили защитить акустику от воздействия постоянного напряжения


путем устранения возможности его появления на входе последнего.

Интеграторы входного/выходного напряжения

На выходе современных усилителей достаточно часто используются интеграторы, которые следят как за выходным, так и за входным напряжением, компенсируя возникающие изменения смещением режимов работы входных каскадов. Компенсация обеспечивается включением контактов реле в цепь общей отрицательной обратной связи (ОООС)


. При этом даже в случаях, когда контакты реле разомкнуты, интегратор обеспечивает наличие обратной связи по постоянному току, что дает возможность УНЧ работать в штатном режиме.

На примере усилителя звука в авто, собранного на китайской


видно, что и наличие интегратора необязательно. Ведь если громкоговорители не подключены, то цепь ОООС замыкается через резистор R1 и контакты реле К1.1. При этом источник тока на транзисторе Т1 выключен, и микросхема переведена в режим mute. А при подсоединении АС контакты К1.2 переключаются, и цепь ОООС замыкается через резистор R2. В результате источник тока включается, микросхема переводится в рабочий режим, а нелинейность контактных групп реле компенсируется за счет включения их в цепь ОООС.

На заметку! Для большей гарантии в схему введен конденсатор С2, емкость которого достаточна для того, чтобы задержать запуск микросхемы на 0,5-1 сек, что в свою очередь позволит обеспечить надежное срабатывание реле. В результате при включении УНЧ пользователь не услышит в динамиках ни щелчков, ни каких-либо других посторонних звуков.

Симисторные блоки

Радиолюбители, обладающие глубокими знаниями в радиотехнике и имеющие опыт самостоятельного конструирования звуковоспроизводящей аппаратуры класса Hi-End, могут попробовать уменьшить нелинейные искажения, вносимые узлами защиты АС, путем замены механических контактов в сильноточных цепях электронными ключами, собранными на основе оптотиристоров (симисторов). Однако схемы симисторных блоков защиты, одна из которых показана


. отличаются повышенной сложностью, а собранные узлы требуют тщательной настройки.

Принцип действия

Принцип действия УЗИП основан на ослаблении скачка напряжения до значения, которое выдерживают подключенные к сети приборы. Другими словами, данное устройство еще на вводе в дом сбрасывает излишки напряжения на контур заземления, тем самым спасая от губительного импульса дорогостоящее оборудование.

Определить состояние устройства защиты достаточно просто:

зеленый индикатор – модуль рабочий

красный – модуль нужно заменить

При этом не включайте в работу модуль с красным флажком. Если нет запасного, то лучше его вообще демонтировать.

УЗИП это не всегда одноразовое устройство, как некоторым кажется. В отдельных случаях модели 2,3 класса могут срабатывать до 20 раз!

Схема защиты динамиков от постоянного напряжения

Современные схемы защиты могут быть собраны как на транзисторах, так и на интегральных микросхемах. Классические схемы на транзисторах широко применяются в промышленной звуковой аппаратуре и могут быть использованы радиолюбителями для своих разработок. Напряжение питания данной схемы может достигать 65 вольт благодаря использованию стабилизатора. Транзистор VT5 должен устанавливаться на радиаторе. Его замена на BD139 позволит поднять напряжение питания до 120 вольт. В цепи управления электромагнитным реле применён составной транзистор, который можно заменить на КТ972. В качестве VT1,2 можно использовать КТ3102. Кроме отключения акустических систем при появлении на выходе усилителя постоянного напряжения, схема обеспечивает задержку включения динамиков на 1-2 секунды. Схема защиты состоит из двух совершенно одинаковых ключей, поэтому на рисунке показан только один.

Для управления подключением акустических систем используются электромагнитные реле на напряжение 24 вольта и ток 15 мА.

Автоматы или предохранители перед УЗИП

Чтобы сохранить в доме бесперебойное электроснабжение, необходимо также установить автоматический выключатель, который будет отключать узип. Установка этого автомата обусловлена также тем, что в момент отвода импульса, возникает так называемый сопровождающий ток.

Он не всегда дает возможность варисторному модулю вернуться в закрытое положение. Фактически тот не восстанавливается после срабатывания, как по идее должен был.

В итоге, дуга внутри устройства поддерживается и приводит к короткому замыканию и разрушениям. В том числе самого устройства.

Автомат же при таком пробое срабатывает и обесточивает защитный модуль. Бесперебойное электроснабжение дома продолжается.

При этом многие специалисты рекомендуют ставить в качестве такой защиты даже не автомат, а модульные предохранители.

Объясняется это тем, что сам автомат во время пробоя оказывается под воздействием импульсного тока. И его электромагнитные расцепители также будут под повышенным напряжением.

Это может привести к пробою отключающей катушки, подгоранию контактов и даже выходу из строя всей защиты. Фактически вы окажетесь безоружны перед возникшим КЗ.

Поэтому устанавливать УЗИП после автомата, гораздо хуже, чем после предохранителей.

Есть конечно специальные автоматические выключатели без катушек индуктивности, имеющие в своей конструкции только терморасцепители. Например Tmax XT или Formula A.

Однако рассматривать такой вариант для коттеджей не совсем рационально. Гораздо проще найти и купить модульные предохранители. При этом можно сделать выбор в пользу типа GG.

Они способны защищать во всем диапазоне сверхтоков относительно номинального. То есть, если ток вырос незначительно, GG его все равно отключит в заданный интервал времени.

Есть конечно и минус схемы с автоматом или ПК непосредственно перед УЗИП. Все мы знаем, что гроза и молния это продолжительное, а не разовое явление. И все последующие удары, могут оказаться небезопасными для вашего дома.

Защита ведь уже сработала в первый раз и автомат выбил. А вы об этом и догадываться не будете, потому как электроснабжение ваше не прерывалось.

Поэтому некоторые предпочитают ставить УЗИП сразу после вводного автомата. Чтобы при срабатывании отключалось напряжение во всем доме.

Однако и здесь есть свои подводные камни и правила. Защитный автоматический выключатель не может быть любого номинала, а выбирается согласно марки применяемого УЗИП. Вот таблица рекомендаций по выбору автоматов монтируемых перед устройствами защиты от импульсных перенапряжений:

Если вы думаете, что чем меньше по номиналу автомат будет установлен, тем надежнее будет защита, вы ошибаетесь. Импульсный ток и скачок напряжения могут быть такой величины, что они приведут к срабатыванию выключателя, еще до момента, когда УЗИП отработает.

И соответственно вы опять останетесь без защиты. Поэтому выбирайте всю защитную аппаратуру с умом и по правилам. УЗИП это тихая, но весьма своевременная защита от опасного электричества, которое включается в работу мгновенно.

Замечания по схеме

Теперь добавлю от себя: подтверждаю, для устройства действительно нужен хорошо стабилизированный источник питания иначе будут частые ложные срабатывания.

Для стабилизации я использовал схему стабилизатора с регулировкой напряжения на основе микросхемы КРЕН5 (7805) — в публикации про блок питания для моего УНЧ я о ней рассказал.

В зависимости от того какое напряжение питания схемы (20…30В) придется подобрать реле с обмоткой рассчитанной на данное напряжение срабатывания, здесь главное надежное срабатывание и чтобы катушка не перегревалась от перенапряжения. У себя я нашел пачку РЭС-48 с разными паспортами, полистав справочник я выбрал те что мне подходят по напряжению.

К каждой схеме я добавил еще резистор R5 и вывод для подключения светодиода VD4, который будет сигнализировать о срабатывании защиты. Они подключены к коллектору и эмиттеру транзистора VT2.

Таким образом при срабатывании защиты транзистор VT2 закроется и напряжение через реле и резистор поступит на светодиод — что будет сигнализировать о срабатывании.

Также при включении схемы, пока работает реле времени, светодиод светится, а потом при переходе защиты в рабочий режим он гаснет. Получается простая индикация, которой вполне достаточно чтобы отследить состояние защиты.

Re: При увеличении громкости выключается ресивер

. перепробовали кучу вариантов, поняли, что вырубается только при подключенных тылах.

Всё логично. Если фронт 4 Ом, то тыл дж быть 8..16 Ом. В инструкции той же Ямахи сие расписано

В том вся и фишка, что как только поменяли провода — все наладилось, ресивер перестал выключаться на любой громкости. К импедансу колонок это не имело никакого отношения, особенно учитывая демпинг фактор ресиверов Ямаха. Вот такие бывают странные бигуди

. как только поменяли провода — все наладилось, ресивер перестал выключаться на любой громкости.

Значит, где-то просто коротило Демпинг фактор здесь не причем

Кстати, на старых Ямах громкость регулируется без ухода в +дБ, поэтому -40 дБ для старой модели мж быть адекватно -20 дБ для новой.

Тут может не только импеданс, но и напруга в сети виновата!

Напруга в сети, как правило, сильно скачет! 160 или 240В это далеко не рекорд. Локальные во времени прыжки происходят за считанные секунды (типа сосед включил кондишн), и этого достаточно, чтобы сработала защита реса

В Херсоне в жару наверняка провалы те еще

Схема улучшенной защиты для АС

Большими возможностями обладает устройство защиты рис.2.

Рис. 2. Принципиальная схема защиты акустических систем от бросков выходного напряжения, питается от источника питания УМЗЧ.

Оно предохраняет громкоговорители от бросков выходного напряжения как при включении, так и при выключении питания, при неисправности УМЗЧ и в моменты вероятного отказа последнего — при понижении или полном исчезновении одного или обоих напряжений питания, а также при превышении ими предельно допустимых значении (это может иметь место при питании от стабилизированных источников) и, наконец, отключает их при подсоединении головных стерео телефонов. Питается устройство от того же двуполяного источника, что и выходные каскады УМЗЧ.

В момент включения питания начинает заряжаться конденсатор С3, поэтому транзистор VT2 открыт, VT3 закрыт, реле К1 обесточено и громкоговорители отключены. Как только напряжение на конденсаторе достигает значения

— напряжение стабилизации стабилитрона VD9), состояния указанных транзисторов изменяются на обратные, срабатывает реле К1 и громкоговоритель подключаются к выходам каналов УМЗЧ.

Время задержки подключения:

Приведенная формула справедлива при условии: .

Время задержки при указанных на схеме номиналах элементов: .

Напряжение стабилизации стабилитрона VD11 выбрано из условия .

При понижении напряжении любого источника питания на величину, большую чем транзистор VT3 закрывается и реле К1 отключает громкоговорители от УМЗЧ.

Стабилитроны VD7 и VD9 в цепях баз соответственно транзисторов VT1, VT2 одинаковы и выбраны с учётом следующего. Как видно из схемы, для того, чтобы открылся транзистор VT2 (а следовательно, закрылся транзистор VT3 и отпустило реле К1), напряжение питания должно удовлетворять условию:

, где и — соответственно напряжение и минимальный ток стабилизации стабилитрона VD9.

Отсюда: . При указанных на схеме номиналах и типах деталей

, а это значит, что при устройство отключит громкоговорители, если отрицательное напряжение питания возрастёт (по отношению к номинальному) на 2,8 В.

Транзистор VT1 открывается по цепи VD1 — R5 — VD7, идентичной цепи VD6 — R7 — VD9. Это приводит к открыванию транзистора VT2 и закрыванию транзистора VT3, т.е. к отключению громкоговорителей при увеличении на 8 В напряжения питания положительной полярности.

В случае появления на выходе УМЗЧ постоянного положительного напряжения транзистор VT2 открывается током протекающим через резистор R3 (или R4), VD4 (VD5) и цепь R7VD9. Условие его открывания в этом случае выглядит так:

Если же напряжение на выходе УМЗЧ имеет отрицательную полярность, по цепи R3 (R4) — VD2 (VD3) — R5 — VD7 открывает транзистор VT1.

Для подключения стереотелефонов служит розетка ХS1, с которой механически связан выключатель SA1. При установке вилки стереотелефонов в розетку контакты выключателя размыкаются, реле К1 отпускает и громкоговорители отключаются от УМЗЧ.

То же происходит и при выключении питания УМЗЧ кнопкой SB1 (А1 — источник питания). Поскольку коллекторная цепь транзистора VT3 и цепь сетевого питания разрываются практически одновременно, громкоговорители отключаются до начала переходного процесса и щелчок не прослушивается.

В устройстве применено реле РЭС-22 (паспорт РФ-4.500.130). Неполярные оксидные конденсаторы С1, С2 — К50-6. Транзистор КТ815В можно заменить любым другим с допустимым напряжением коллектор — эмиттер более 50 В и максимальным током коллектора ни менее значения , где — — сопротивление обмотки реле К1).

Вместо стабилитронов КС527А можно использовать КС482А, КС510А, КС512А, КС175Ж, КС182Ж, КС191Ж и т.п., соединив нужное число приборов для получения напряжения стабилизации, выбранного приведённым формулам. Диоды VD1 — VD6, VD8, VD10, VD12 — любые кремниевые маломощные с обратным напряжением более 50 В.

↑ Сборка платы

Мощность паяльника должна быть не более 25…30 Вт. Пайку легче произвести припоем с канифолью ПОС61М. Также приветствуется жидкий флюс для радиомонтажных работ

Важно не переусердствовать и не допускать его затекания под корпуса элементов. Следует помнить о недопустимости перегрева элементов

Время пайки одного контакта не должно превышать 3 с.

Отформуйте выводы резисторов и установите их на печатную плату. Выполните пайку электролитических конденсаторов, соблюдая полярность. Установите полупроводниковые элементы (транзисторы, диод, диодный мост, микросхему стабилизатора напряжения). При расположении надписей на плате к себе порядковые номера транзисторов VT1…VT6 следующие: VT2, VT1; VT4, VT3 и VT6, VT5.

После завершения пайки проведите проверку монтажа, обращая особое внимание на правильность установки полярных электролитических конденсаторов, транзисторов, микросхемы стабилизатора, диода и выпрямительного моста. Проконтролируйте качество паек и исправьте огрехи, если имеются

Внешний вид собранной платы показан в начале статьи.

Электросхемы защиты динамиков

Транзисторные схемы защиты динамиков от постоянного напряжения обладают рядом существенных недостатков, поэтому хорошим решением проблемы будет использование схемы на интегральных компараторах. Устройство собрано на одной микросхеме, включающей четыре компаратора, и одном n-p-n транзисторе средней мощности. Контактные группы реле на схеме не показаны, но они включаются в разрыв цепей, соединяющих выходы усилителя звуковой частоты и акустические системы. Четыре диода на входе схемы выполняют защиту схемы от броска напряжения в результате неисправности усилителя звуковой частоты. Резистор R8 позволяет установить порог срабатывания от 0 до ± 1,75 V.

В схеме применены двойные интегрирующие RC цепи, поскольку одиночные цепи работают некорректно. С увеличением ёмкости конденсатора, время срабатывания увеличивается, а уменьшение ёмкости приводит к ошибочным срабатываниям на больших уровнях громкости. Данное схемное решение позволяет использовать устройство на усилителях с киловаттной мощностью. Гарантированное время срабатывания устройства не превышает 75-80 мсек. Для обеспечения задержки подключения акустических систем к выходу усилителя используется конденсатор С6. При указанной ёмкости время задержки включения составляет 2 секунды.

Схема электрощита с УЗИП

Схема качественно укомплектованного с точки зрения защиты от всех скачков и перепадов напряжения распределительного щита, должна выглядеть примерно следующим образом.

На вводе перед счетчиком — вводной автоматический выключатель, защищающий прибор учета и цепи внутри самого щитка. Далее счетчик.

Между счетчиком и вводным автоматом — УЗИП со своей защитой. Электроснабжающая организация конечно может запретить такой монтаж. Но вы можете обосновать это необходимостью защиты от перенапряжения и самого счетчика.

В этом случае потребуется смонтировать всю схемку с аппаратами в отдельном боксе под пломбой, дабы предотвратить свободный доступ к оголенным токоведущим частям до прибора учета.

Однако здесь остро встанет вопрос замены сработавшего модуля и срыва пломб. Поэтому согласовывайте все эти моменты заранее.

После прибора учета находятся:

реле напряжения УЗМ-51 или аналог 

УЗО 100-300мА – защита от пожара

УЗО или дифф.автоматы 10-30мА – защита человека от токов утечки

простые модульные автоматы

Если с привычными компонентами при комплектации такого щитка вопросов не возникает, то на что же нужно обратить внимание при выборе УЗИП?

На температуру эксплуатации. Большинство электронных видов рассчитано на работу при окружающей температуре до -25С. Поэтому монтировать их в уличных щитках не рекомендуется.

Второй важный момент это схемы подключения. Производители могут выпускать разные модели для применения в различных системах заземления.

Например, использовать одни и те же УЗИП для систем TN-C или TT и TN-S уже не получится. Корректной работы от таких устройств вы не добьетесь.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: