Биполярный транзистор: что такое электронный ключ, регулятор тока и принципы их работы. какие существуют схемы включения и методы проверки исправности полупроводниковых переходов

Германий

В конце XIX века германий был впервые выделен и идентифицирован немецким химиком Клеменсом Винклером. Этот материал, названный в честь родины Винклера, долгое время считался малопроводящим металлом. Это утверждение было пересмотрено в период Второй мировой войны, так как именно тогда были обнаружены полупроводниковые свойства германия. Приборы, состоящие из германия, широко распространились в послевоенные годы. В это время нужно было удовлетворить потребность в производстве германиевых транзисторов и подобных устройств. Так, производство германия в США выросло с нескольких сотен килограммов в 1946 году до 45 тонн к 1960 году.

Возможно, вам также будет интересно

Введение Силовые преобразователи на основе ключей из карбида кремния (SiC) отличаются высокой плотностью мощности, они имеют большую величину блокирующего напряжения, меньшее сопротивление открытого канала и лучшую теплопроводность, чем их кремниевые аналоги. По сравнению с SiC JFET или SiC биполярными транзисторами, N-канальные SiC MOSFET являются наилучшей заменой для обычных кремниевых MOSFET или IGBT благодаря более простой

Адаптер Board SKYPER 12 R to SKHI 61 Адаптер предназначен для замены устаревшего драйвера SKHI 61 в прежних разработках (рис. 1). Его использование позволяет в кратчайшие сроки модернизировать оборудование, а также получить опыт работы с новейшим цифровым устройством управления затворами SKYPER 12 R в типовых инверторных приложениях. Печатная плата SKYPER 12 R => SKHI 61

 
Microsemi Corporation объявила о начале производства трех новых устройств из серии биполярных транзисторов с изолированным затвором NPT (non-punch through) с рабочим напряжением 1200 В.
Транзисторы APT85GR120B2, APT85GR120L и APT85GR120J изготавливаются по технологии Power MOS 8, применение которой позволяет снизить потери не менее чем на 20% по сравнению технологическими процессами предыдущих поколений. Транзисторы специально разработаны для применения в силовых устройствах: сварочных аппаратах, преобразователях солнечной энергии, источниках бесперебойного питания и импульсных …

Вход усилителя

Вход усилителя – это клеммы Х1 и Х2.

Х2 это минус входа, а Х1 – плюс. Так как схема на один канал, то УНЧ называется моно.

Фильтрация входного сигнала

Электролитический конденсатор С1 позволяет отделить постоянную составляющую входящего сигнала от переменной.
По-простому, он пропускает только переменный сигналю. Если сигнала нет, или вход усилителя замкнут, то без этого конденсатора транзистор может перейти в режим насыщения (максимальное усиление), и на выходе появится неприятный хрип.

Не путайте этот эффект со свистом. Свист – это влияние положительной обратной связи, а в данном случае будет режим насыщения из-за короткого замыкания на входе. И на выходе усилителя будет слышен именно хрип, а не свит или звук.

Емкость конденсатора подобрана под частоту звукового сигнала. Звук начинается от 20 Гц и до 16 кГц.

Когда стоит использовать полевые МОП-транзисторы?

Биполярные и униполярные транзисторы — очень важные элементы, но возникает вопрос: когда их использовать? Оба типа имеют свои преимущества и недостатки, поэтому в некоторых проектах, один имеет преимущество перед другим. Использование биполярных транзисторов, безусловно, заслуживает внимания, когда схема питается от низкого напряжения (например, 1,5 В или 3,3 В), поскольку для ее работы достаточно напряжения 0,7 В. Униполярный транзистор может быть еще не полностью открыт в этих условиях.

МОП-транзисторы рекомендуются для управления нагрузками, потребляющими токи в диапазоне ампер, поскольку управляющий элемент (например, Arduino) не должен подавать на них питание — этого достаточно, чтобы установить достаточно высокий потенциал. Чтобы полностью открыть транзистор, приложите напряжение, в несколько раз превышающее пороговое напряжение между затвором и истоком (это напряжение включения).

МОП-транзисторы практически не потребляют ток от цепи, которая контролирует их работу!

Использование униполярных транзисторов рекомендуется там, где важно потребление тока. В некоторых проектах, особенно в схемах с питанием от небольших батарей, даже несколько микроампер, потребляемых базой биполярного транзистора, могут значительно сократить время работы устройства

Между эмиттером и коллектором полностью включенного (насыщенного) биполярного транзистора создается постоянное напряжение — обычно 0,2 В, но это значение может быть выше для мощных транзисторов. У униполярных транзисторов есть только сопротивление открытого канала, поэтому падение напряжения на них зависит от протекающего тока.

Напоследок еще одно практическое замечание. Если нам нужно контролировать, например, 10 так называемых сверхярких светодиодов, каждый через отдельный транзистор, то следует использовать 10 биполярных транзисторов вместе с 10 резисторами, по одному на каждую базу. Между тем, использование полевых МОП-транзисторов устранит необходимость в дополнительных резисторах, что сэкономит место на плате.

Сравнение с электронными лампами

До разработки транзисторов вакуумные (электронные) лампы (или просто «лампы») были основными активными компонентами электронного оборудования. По принципу управления наиболее родственен электронной лампе полевой транзистор, многие соотношения, описывающие работу ламп, пригодны и для описания работы полевых транзисторов.

Радиолампа 6Ф12П

Многие схемы, разработанные для ламп, стали применяться для транзисторов и получили развитие, поскольку электронные лампы имеют только один тип проводимости — электронный, а транзисторы могут иметь как электронный, так и дырочный тип проводимости. Так называемый эквивалент воображаемой «позитронной лампы». Это привело к широкому использованию комплементарных схем (КМОП).

Преимущества

Основные преимущества, которые позволили транзисторам заменить своих предшественников (вакуумные лампы) в большинстве электронных устройств:

  • малые размеры и небольшой вес, что способствует развитию миниатюризации электронных устройств;
  • высокая степень автоматизации и групповой характер операций на многих этапах технологического процесса изготовления, что ведёт к постоянному снижению удельной стоимости при массовом производстве;
  • низкие рабочие напряжения, что позволяет использовать транзисторы в небольших по габаритам и энерговооружённости электронных устройствах с питанием от малогабаритных электрохимических источников тока;
  • не требуется дополнительного времени на разогрев катода после включения, что позволяет достичь почти мгновенной готовности к работе транзисторных устройств, сразу после подачи питания;
  • малая, по сравнению с лампами, рассеиваемая мощность, в том числе из-за отсутствия разогрева катода, что способствует повышению энергоэффективности, облегчает отвод избыточного тепла и позволяет повышать компактность устройств;
  • высокая надёжность и большая физическая прочность, стойкость к механическим ударам и вибрации, что позволяет избежать проблем при использовании устройств в условиях любых ударных и вибрационных нагрузок;
  • очень продолжительный срок службы — некоторые транзисторные устройства находились в эксплуатации более 50 лет и при этом не потеряли своей работоспособности;
  • возможность объединения множества элементов в едином миниатюрном конструктивном модуле позволяет значительно повысить степень интеграции и облегчает разработку комбинированных схем высокой сложности, что не представляется возможным с вакуумными лампами.

Уменьшение размеров радиоэлементов

Недостатки

  • Обычные кремниевые транзисторы не работают при напряжениях выше 1 кВ, вакуумные лампы могут работать с напряжениями на несколько порядков выше 1 кВ. Для коммутации цепей с напряжением свыше 1 кВ разработаны IGBT транзисторы.
  • Применение транзисторов в мощных радиовещательных и СВЧ передатчиках нередко, оказывается, технически и экономически нецелесообразным: требуется параллельное включение и согласование многих сравнительно маломощных усилителей. Мощные и сверхмощные генераторные лампы с воздушным или водяным охлаждением анода, а также магнетроны, клистроны, лампы бегущей волны(ЛБВ) обеспечивают лучшее соотношение частотных характеристик, мощностей и приемлемой стоимости.
  • Транзисторы значительно более уязвимы, чем вакуумные лампы, к действию сильных электромагнитных импульсов, которые, в том числе, являются одним из поражающих факторов ядерного взрыва;
  • Чувствительность к радиации и воздействию космических излучений. Для работы в космосе созданы специальные радиационно-стойкие микросхемы для электронных устройств космических аппаратов.

Устройство и принцип действия

Рис.2: Планарный биполярный n-p-n транзистор в поперечном разрезе

Самые первые модели биполярных транзисторов выполнялись с применением металлического германия (полупроводниковый материал). На данный момент для этих целей используется монокристаллический кремний и монокристаллический арсенид галлия.

Рис.3: Монокристаллы кремния и арсенида галлия

Наиболее быстродействующими устройствами являются те, в которых задействован арсенид галлия. По этой причине их наиболее часто применяют как элементы сверхбыстродействующих логических схем и схем сверхвысокочастотных усилителей.

Как уже говорилось выше, структура биполярного транзистора складывается из эмиттерного, базового и коллекторного слоёв с различным уровнем легированности, и каждый слой соединён со своим электродом, представленный омическим (невыпрямляющим) контактом.

Слаболегированный базовый слой транзистора отличается большим уровнем омического сопротивления.

При соотнесении контактов эмиттер-база и коллектор-база можно отметить, что первый уступает по размерам второму.

Подобная конструкция обусловлена следующими моментами:

  • Большой коллекторно-базовый переход позволяет увеличить количество передаваемых от базы к коллектору неосновных носителей заряда (ННЗ);
  • На момент активной работы К-Б-переход функционирует в условиях обратного смещения, что вызывает сильное тепловыделение в зоне коллекторного перехода, поэтому, чтобы улучшить его теплоотводность приходится увеличивать площадь.

Таким образом «идеальный» симметричный биполярный транзистор фигурирует только в теоретических выкладках, а перенос теорию на практическую базу демонстрирует, что наибольшим КПД обладают именно те модели, которые не обладают симметрией.

В режиме активного усиления в транзисторе происходит прямое смещение Э-перехода (он становится открытым), и обратное смещение К-перехода (он становится закрытым). В противоположной ситуации, при закрытии Э-перехода и открытии К-перехода происходит инверсное включение биполярного транзистора.

Если подробнее рассматривать процесс функционирования транзисторов n-p-n типа, то в первую очередь наблюдается переход основных НЗ (носителей заряда) из эмиттерного слоя по Э-Б-переходу в базовый слой. Часть НЗ, представленных электронами взаимодействует с дырками базы, что приводит к нейтрализации обоих зарядов и сопутствующему выделению энергии. Тем не менее, базовый слой достаточно тонок и легирован достаточно слабо, это увеличивает общее время процесса взаимодействия, поэтому гораздо большее количество эмиттерных НЗ успевает проникнуть в коллекторный слой. Кроме того, сказывается действие силы электрического поля, образуемого смещённым коллекторным переходом. Благодаря этой силе значительно увеличивается количество перетягиваемых из базового слоя электронов.

В  результате, значение коллекторного тока практически равняется эмиттерному за вычетом потерь в базовом слое, которыми и исчисляется ток самой базы. Для вычисления значения коллекторного тока используется формула:

Iк = αIэ,

где Iк – коллекторный ток, Iэ – эмиттеный ток, α– коэффициент передачи тока эмиттера.

Спектр значений коэффициента α варьируется от 0,9 до 0,99. Большие значения позволяют производить более эффективную трансляцию тока транзистором. Величина α при этом не определяется тем, какое напряжение демонстрируют К-Б и Б-Э переходы. Как результат, в условиях множества вариантов рабочего напряжения сохраняется пропорциональное соотношение между Iк и Iб. Для нахождения коэффициента данной пропорциональности применяется формула:

β = α/(1 − α).

Значения β  могут находиться в диапазоне 10-100. Отсюда можно сделать вывод о том, что для регуляции работы большого коллекторного тока, вполне можно обходиться током малой силы на базе.

Настройка транзисторного усилителя низкой частоты

Питание обоих усилителей можно осуществить от 3 пальчиковых батарей или же от простого и надежного стабилизатора напряжения построенного на микросхеме LM317.

Настройка усилителя первого варианта сводится к подбору сопротивлений R2 и R4. Величину сопротивлений нужно подобрать такой, чтобы миллиамперметр, подключенный в коллекторную цепь каждого транзистора, показывал ток в районе 0,5…0,8 мА. По второй схеме необходимо также выставить коллекторный ток второго транзистора путем подбора сопротивления резистора R3.

В первом варианте возможно применить транзисторы марки КТ312, КТ3102, или их зарубежные аналоги, однако при этом необходимо будет выставить правильное смещение напряжения транзисторов путем подбора сопротивлений R2, R4. Во втором варианте в свою очередь, возможно применить кремневые транзисторы марки КТ209, КТ361, или зарубежные аналоги. При этом выставить режимы работы транзисторов можно путем изменения сопротивления R3.

В коллекторную электроцепь транзистора VT2 (обоих усилителей) взамен наушников возможно подключить динамик с высоким сопротивлением. Если же необходимо получить более мощное усиление звука, то можно собрать усилитель на TDA2030, который обеспечивает усиление до 15 Вт.

Преимущества схемы Дарлингтона

Транзисторы Дарлингтона используются так же, как одинарные биполярные. Их можно рассматривать как один транзистор с измененными параметрами

Наиболее важной особенностью такого изменения является умножение текущих коэффициентов усиления

Вернемся к примеру, приведенному в начале: объединив мощный транзистор с β = 40 с меньшим значением β, мы получим коэффициент усиления 1600. Для включения нагрузки, потребляющей 5 А, потребуется всего 3 мА — это ток, который успешно обеспечивает большинство микроконтроллеров.

Однако необходимо помнить, что транзисторы в этом соединении загружены неравномерно: большая часть тока проходит через T2. Это означает, что они не обязательно должны быть одного типа. Например, T1 может быть транзистором малой мощности с большим β, что делает результирующее усиление еще выше!

Принцип действия

Физический принцип транзистора NPN

Мы возьмем случай типа NPN, для которого напряжения V BE и V CE , а также ток, входящий в базу, I B , положительны.

В этом типе транзистора эмиттер, подключенный к первой зоне N, поляризован при более низком напряжении, чем у базы, подключенной к зоне P. Таким образом, диод эмиттер / база поляризован напрямую, и ток ( электрон инжекция ) течет от эмиттера к базе.

При нормальной работе переход база-коллектор имеет обратное смещение, что означает, что потенциал коллектора намного выше, чем у базы. Электроны, которые по большей части разлетелись до зоны поля этого перехода, собираются контактом коллектора.

Простая модель транзистора в линейном режиме

В идеале весь ток, идущий от эмиттера, попадает в коллектор. Этот ток является экспоненциальной функцией напряжения база-эмиттер. Очень небольшое изменение напряжения вызывает большое изменение тока (крутизна биполярного транзистора намного больше, чем у полевых транзисторов ).

Ток базы циркулирующей отверстия к передатчику добавляют к рекомбинации тока электронов нейтрализуются в отверстие в основании является базовым током I Б , примерно пропорциональна тока коллектора I C . Эта пропорциональность создает иллюзию того, что ток базы управляет током коллектора. Для данной модели транзистора механизмы рекомбинации технологически сложно освоить, и коэффициент усиления I CI B может быть сертифицирован только выше определенного значения (например, 100 или 1000). Электронные сборки должны учитывать эту неопределенность (см. Ниже).

Когда напряжение база-коллектор достаточно положительное, почти все электроны собираются, и ток коллектора не зависит от этого напряжения; это линейная зона. В противном случае электроны остаются в базе, рекомбинируют, и коэффициент усиления падает; это зона насыщения.

Возможны два других менее частых режима, а именно открытый режим, где поляризация двух переходов, видимых как диоды, препятствует прохождению тока, и активно-инвертированный режим, при котором коллектор и эмиттер меняются местами в «n». плохое состояние. Поскольку конструкция транзистора не оптимизирована для последнего режима, он используется редко.

Принципы дизайна

На первый взгляд биполярный транзистор кажется симметричным устройством, но на практике размеры и легирование трех частей сильно различаются и не позволяют поменять местами эмиттер и коллектор. Принцип работы биполярного транзистора фактически основан на его геометрии, на различии легирования между его различными областями или даже на наличии гетероперехода .

  • Ток через отверстия от базы к эмиттеру должен быть незначительным по сравнению с током электронов от эмиттера. Это может быть достигнуто за счет очень сильного легирования эмиттера по сравнению с легированием основы. Гетеропереход также может полностью блокировать дырочный ток и допускать высокое легирование основания.
  • Рекомбинация электронов (меньшинство) в базе, богатой дырками, должна оставаться низкой (менее 1% для усиления 100). Для этого необходимо, чтобы основание было очень тонким.
  • Площадь коллектора часто больше, чем площадь эмиттера, чтобы гарантировать, что путь сбора остается коротким (перпендикулярным переходам).

Модель для элементарных расчетов.

Доступно несколько моделей для определения рабочего режима транзистора с биполярным переходом, например, модель Эберса-Молла, показанная ниже.

Иногда достаточно упрощенной модели. Таким образом, для NPN-транзистора, если V BC , напряжение между базой и коллектором, меньше 0,4  В, а V BE меньше 0,5  В , транзистор заблокирован и токи равны нулю. С другой стороны, если V BC <0,4  В и V CE > 0,3  В , где V CE — напряжение между коллектором и эмиттером, мы находимся в активном или линейном режиме, с I c = β I b и V BE = 0,7  В для перехода база-эмиттер, который ведет себя как диод. С другой стороны, если при V BE = 0,7  В и V BC = 0,5  В мы не можем иметь V CE > 0,3  В , возьмем V CE = 0,2  В, потому что мы находимся в режиме насыщения и соотношение I c = β I b no дольше держит. Очевидно, что вместо этих упрощений можно использовать модель Эберса-Молла.

Модель Эберса-Молла

Модель транзистора Эберса-Молла в линейном режиме работы

Модель Эберса-Молла является результатом суперпозиции прямой и обратной мод .

Он заключается в моделировании транзистора источником тока, помещенным между коллектором и эмиттером.

Этот источник тока состоит из двух компонентов, управляемых соответственно переходом BE и переходом BC.

Поведение двух переходов моделируется диодами.

Заключение

Устройства SiC являются отличными кандидатами для улучшения силовой электроники, работающей в области среднего и высокого напряжения. От полупроводниковых трансформаторов до электроприводов класса мегаватт, вспомогательных систем питания и твердотельных автоматических выключателей мы показали, как SiC МОП-транзисторы в целом и Supercascode на основе SiC JFET в частности предлагают весьма убедительные преимущества в высокой производительности и упрощении системы. Рост использования в этих приложениях будет стимулировать и развитие силовой электроники на основе SiC в будущем, далеко за пределами бума в области электроавтомобилестроения в 2020-х годах.

Следующая, последняя статья этого цикла предоставит информацию о применении SiC-транзисторов в блоках питания телекоммуникационной аппаратуры и центров обработки данных. Дополнительные сведения по SiC JFET в рассматриваемом контексте представлены в презентации и публикации , а более подробную информацию по этим и другим вопросам применения SiC-транзисторов можно найти на веб-сайте компании UnitedSiC . К сожалению, опубликованный оригинал этой части статьи содержит ряд неточностей, соответственно, он был переработан его автором и вновь опубликован как .

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: