Что такое транзистор: его виды, назначение и принципы работы

Тиристоры и симисторы

Тиристор
— это полупроводниковый прибор, который может находится в двух
состояниях:

  • открытом — пропускает ток, но только в одном направлении,
  • закрытом — не пропускает ток.

Так как тиристор пропускает ток только в одном направлении, для
включения и выключения нагрузки он подходит не очень хорошо. Половину
времени на каждый период переменного тока прибор простаивает. Тем не
менее, тиристор можно использовать в диммере. Там он может применяться
для управления мощностью, отсекая от волны питания кусочек требуемой
мощности.

Симистор — это, фактически двунаправленный тиристор. А значит он
позволяет пропускать не полуволны, а полную волну напряжения питания
нагрузки.

Открыть симистор (или тиристор) можно двумя способами:

  • подать (хотя бы кратковременно) отпирающий ток на управляющий электрод;
  • подать достаточно высокое напряжение на его «рабочие» электроды.

Второй способ нам не подходит, так как напряжение питания у нас будет
постоянной амплитуды.

После того, как симистор открылся, его можно закрыть поменяв
полярность или снизив ток через него то величины, меньшей чем так
называемый ток удержания. Но так как питание организовано переменным
током, это автоматически произойдёт по окончании полупериода.

При выборе симистора важно учесть величину тока удержания
(\(I_H\)). Если взять мощный симистор с большим током удержания, ток
через нагрузку может оказаться слишком маленьким, и симистор просто не
откроется

По материалу и конструкции корпуса

Металлический и пластмассовый корпус

Прочие типы

  • Одноэлектронные транзисторы содержат квантовую точку (т. н. «остров») между двумя туннельными переходами. Ток туннелирования управляется напряжением на затворе, связанном с ним ёмкостной связью.
  • Биотранзистор.

Выделение по некоторым характеристикам

Транзисторы BISS (Breakthrough in Small Signal, дословно — «прорыв в малом сигнале») — биполярные транзисторы с улучшенными малосигнальными параметрами. Существенное улучшение параметров транзисторов BISS достигнуто за счёт изменения конструкции зоны эмиттера. Первые разработки этого класса устройств также носили наименование «микротоковые приборы».

RET транзисторы

Транзисторы со встроенными резисторами RET (Resistor-equipped transistors) — биполярные транзисторы со встроенными в один корпус с кристаллом резисторами. RET — это транзистор общего назначения со встроенным одним или двумя резисторами. Такая конструкция транзистора позволяет сократить количество внешних навесных компонентов и минимизирует необходимую площадь монтажа. RET транзисторы применяются для непосредственного подключения к выходам микросхем без использования токоограничивающих резисторов.

Применение гетеропереходов позволяет создавать высокоскоростные и высокочастотные полевые транзисторы, такие как, например, HEMT.

Схемы включения транзистора

Для включения в схему транзистор должен иметь четыре вывода — два входных и два выходных. Но транзисторы почти всех разновидностей имеют только три вывода. Для включения трёхвыводного прибора необходимо один из выводов назначить общим, и, поскольку таких комбинаций может быть только три, то существуют три основные схемы включения транзистора.

Схемы включения биполярного транзистора

  • с общим эмиттером (ОЭ) — осуществляет усиление как по току, так и по напряжению — наиболее часто применяемая схема;
  • с общим коллектором (ОК) — осуществляет усиление только по току — применяется для согласования высокоимпедансных источников сигнала с низкоомными сопротивлениями нагрузок;
  • с общей базой (ОБ) — усиление только по напряжению, в силу своих недостатков в однотранзисторных каскадах усиления применяется редко (в основном в усилителях СВЧ), обычно в составных схемах (например, каскодных).

Схемы включения полевого транзистора

Полевые транзисторы как с p-n переходом (канальные), так и МОП (МДП) имеют следующие схемы включения:

  • с общим истоком (ОИ) — аналог ОЭ биполярного транзистора;
  • с общим стоком (ОС) — аналог ОК биполярного транзистора;
  • с общим затвором (ОЗ) — аналог ОБ биполярного транзистора.

Схемы с открытым коллектором (стоком)

«Открытым коллектором (стоком)» называют включение транзистора по схеме с общим эмиттером (истоком) в составе электронного модуля или микросхемы, когда коллекторный (стоковый) вывод не соединяется с другими элементами модуля (микросхемы), а непосредственно выводится наружу, на разъём модуля или вывод микросхемы.

Выбор нагрузки транзистора и тока коллектора (стока) при этом оставляется за разработчиком конечной схемы, в составе которой применяются модуль или микросхема. В частности, нагрузка такого транзистора может быть подключена к источнику питания с более высоким или низким напряжением, чем напряжение питания модуля/микросхемы.

Такой подход значительно расширяет рамки применимости модуля или микросхемы за счёт небольшого усложнения конечной схемы. Транзисторы с открытым коллектором (стоком) применяются в логических элементах ТТЛ, микросхемах с мощными ключевыми выходными каскадами, преобразователях уровней, шинных формирователях (драйверах) и т. п.

Реже применяется обратное включение — с открытым эмиттером (истоком). Оно также позволяет выбирать нагрузку транзистора изменением внешних компонентов, подавать на эмиттер/сток напряжение полярности, противоположной напряжению питания основной схемы (например, отрицательное напряжение для схем с биполярными транзисторами n-p-n или N-канальными полевыми) и т. п.

5.1. Общие сведения

В настоящее время в усилительной технике наиболее хорошо используются биполярные (БТ) и полевые (ПТ) транзисторы. Для построения усилителей используются ИМС. При этом ИМС при определённых условиях можно рассматривать в целом как некоторый самостоятельный своеобразный усилительный элемент (прибор).

В цепях питания усилительных элементов (УЭ) обычно протекают переменные токи и постоянные составляющее токов. Режим работы УЭ при отсутствии сигнала на его входе называют режимом по постоянному току.

Рис. 5.1. Цепи питания электродов биполярного транзистора для схемы с общим эмиттером.

На рис. 5.1. показаны цепи питания БТ для случая, когда напряжение (ток) смещения (iБ0) создаётся отдельным источником питания ЕСМ. Резистор RСМ в данной схеме является ограничивающим величину тока базы (смещения) iБ0. В выходной электрод включен второй, основной источник питания ЕП. С помощью резистора RК обеспечивается необходимый режим работы транзистора.

Для данной схемы напряжение коллектор-эмиттер UКЭ (UК0) будет равно:

UК0 = ЕП – iК0·RК ;

в цепи эмиттера протекает сумма токов iБ0 и iК0:

iЭ0 = iБ0 + iК0.

Ёмкость СР является разделительной. Для расчета используют семейство статических характеристик, рис. 5.2:

Рис. 5.2. Семейство входных а) и выходных б) статических характеристик для схемы с общим эмитером

Р.Т. – рабочая точка.

Использовать два источника питания для маломощных каскадов усиления нерационально. Поэтому практические схемы обычно имеют один источник питания ЕП, а смещение и стабилизацию обеспечивают с помощью специальных цепей, называемых цепями смещения и стабилизации. Для этой же цели разработаны специальные схемы, к рассмотрению которых мы перейдём.

Каскад с общим коллектором

Схема каскада с общим коллектором (рис.5.) обеспечивает усиление входного сигнала только по току.

Такие каскады называются эмиттерными повторителями, потому что по напряжению они не усиливают сигнал, а только повторяют его (было на входе 0,5V, и на выходе тоже будет 0,5V).

Но сила тока на выходе через нагрузку будет больше.

Они применяются тогда, когда нужно получить большое входное сопротивление. Отличие каскада с ОК (общим коллектором) от каскада ОЭ (общим эмиттером) в том, что в схеме с ОК выходной сигнал снимается с эмиттера. При этом сигнал не усиливается по напряжению и не инвертируется.

Рис. 5. Схема каскада с общим коллектором.

В схеме же с ОЭ сигнал инвертируется. Это демонстрируется на рисунках изображениями синусоид у входа и выхода каскадов. В схеме с ОЭ выходная синусоида противофазна входной. В схеме с ОК — они синфазны.

РК-02-18.

Усилительные параметры транзистора

Усилительные свойства транзисторов для малого переменного сигнала оцениваются с помощью различных систем параметров, связывающих входные токи и напряжения, но нормируются только два основных параметра: h21e и fТ (или fh21b). Зная параметр транзистора h21e для заданного режима покоя IE, можно с помощью следующих формул определить основные параметры усилительного каскада в области НЧ:

где S — проводимость транзистора, re — сопротивление эмиттера транзистора.

Таким образом, можно вычислить значения |K| — коэффициент усиления напряжения транзистора, |Ki| — коэффициент усиления тока транзистора, ZВХ — входное сопротивление транзистора:

Параметры усилительного каскада Схема включения
ОЭ ОБ ОК
|K| S*RH S*RH S*RH /( 1 + S*RH)
|Ki| h21e h21e/(1 +  h21e) h21e
ZВХ h21e*re re h21e*RH

Области применения усилительных каскадов ОЭ, ОБ и ОК определяются их свойствами.

Каскад с общим эмиттером обеспечивает усиление, как по напряжению, так и по току. Его входное сопротивление порядка сотен Ом, а выходное – десятков кОм. Отличительная особенность – изменяет фазу усиливаемого сигнала на 180°. Обладает лучшими усилительными свойствами по сравнению с ОБ и ОК и поэтому является основным типом каскада для усиления малых сигналов.

Каскад с общей базой обеспечивает усиление только по напряжению (практически такое же, как ОЭ). Входное сопротивление каскада в (1+h21e) раз меньше, чем ОЭ, а выходное – в (1+h21e) раз больше. В отличие от ОЭ каскад ОБ не изменяет фазы усиливаемого сигнала. Малое входное сопротивление каскада ОБ ограничивает его применение в УНЧ: практически он используется только как элемент дифференциального усилителя.

Каскад с общим коллектором обеспечивает усиление только по току (практически такое же, как ОЭ). В отличие от ОЭ каскад ОК не изменяет фазы усиливаемого сигнала. При К = 1 каскад ОК как бы повторяет усиливаемое напряжение по величине и фазе. Поэтому такой каскад называется эмиттерным повторителем. Входное сопротивление ОК зависит от сопротивления нагрузки RH и велико (почти в h21e раз больше RH), а выходное сопротивление зависит от сопротивления источника сигнала RГ и мало (почти в h21e раз меньше RГ). Каскад ОК благодаря большому входному и малому выходному сопротивлению находит применение как в предварительных, так и в мощных УНЧ.

5.2. Схема с эмиттерной стабилизацией

Схема эмиттерной стабилизацией (ЭС) имеет три сопротивления: R’Б, R»Б и RЭ. индексы отражают названия электродов, к которым подключены эти сопротивления, рис. 5.3:

Рис. 5.3. Схема эмиттерной стабилизации, транзистор включен по схеме с ОЭ.

Элементы одного каскада условно отделены от другого пунктирными линиями. Нагрузкой каскада может быть аналогичный каскад; тогда вместо RH будем указывать RВХ.СЛ – входное сопротивление следующего каскада.

Известно, что для БТ характерным является наличие заметного входного тока iВХ.0 = iБ0, как было отмечено выше через сопротивление RЭ приходит сумма токов: iЭ0 = iБ0 + iК0. отпирающее напряжение смещения (между базой и эмиттером) UСМ = UБ0 должно быть положительным для транзистора n-p-n, а для транзистора p-n-p – отрицательным:

UБ0 = [UR»Б – U] = iДЕЛ ·R»Б – iЭ0 ·RЭ = [iДЕЛ ·R»Б – (iK0 – iБ0)]; (5.1)

Должно выполняться условие:

|UR»Б| > |U|;

Здесь R’Б и R»Б – делитель напряжения в цепи базы. Для БТ при расчетах иногда удобнее использовать вместо напряжения UБ0, ток смещения iБ0. Эти величины однозначно связаны входной характеристикой, рис. 5.2а.

Данная схема обеспечивает не только необходимое смещение для транзистора, но и стабилизирует положение РТ при действии дестабилизирующих факторов (температуры, нестабильности источника питания, старения элементов схемы, разброса параметров транзистора и др.). Например, при увеличении тока iК0 величина UБ0 уменьшается, в управлении (5.1) и наоборот. Это стабилизирует положение РТ и можно сказать является результатом введения ООС. Напряжение обратной связи создаётся на сопротивлении RЭ:

UСВ = ∆iK0· RЭ. (5.2)

где ∆iK0 – изменение тока коллектора. С увеличением RЭ возрастает UСВ и её глубина:

; (5.3)

здесь – эквивалентное сопротивление делителя; h21Э – статический коэффициент усиления по току БТ в схеме с общим эмиттером; RВХ.Э – входное сопротивление транзистора в схеме с общим эмиттером. Из уравнения (5.2) видно, что с увеличение RЭ возрастает UСВ и её глубина, уравнение (5.3). Напряжение ООС подаётся на вход транзистора через сопротивление делителя R’Б и R»Б. Чем меньше эти сопротивления, тем эффективнее работает данная схема, тем лучше стабилизация режима. Однако выбирать очень малыми сопротивления в цепи базы нельзя, т.к. эти сопротивления шунтируют вход УЭ и уменьшают передаваемое на вход напряжение сигнала. Данная схема является одной из самых эффективных схем, используемых в радиоэлектронике.

Основные параметры

  • Коэффициент передачи по току.
  • Входное сопротивление.
  • Выходная проводимость.
  • Обратный ток коллектор-эмиттер.
  • Время включения.
  • Предельная частота коэффициента передачи тока базы.
  • Обратный ток коллектора.
  • Максимально допустимый ток.
  • Граничная частота коэффициента передачи тока в схеме с общим эмиттером.

Параметры транзистора делятся на собственные (первичные) и вторичные. Собственные параметры характеризуют свойства транзистора, независимо от схемы его включения. В качестве основных собственных параметров принимают:

  • коэффициент усиления по току α;
  • сопротивления эмиттера, коллектора и базы переменному току rэrкrб, которые представляют собой:
    • rэ — сумму сопротивлений эмиттерной области и эмиттерного перехода;
    • rк — сумму сопротивлений коллекторной области и коллекторного перехода;
    • rб — поперечное сопротивление базы.

Вторичные параметры различны для различных схем включения транзистора и, вследствие его нелинейности, справедливы только для низких частот и малых амплитуд сигналов. Для вторичных параметров предложено несколько систем параметров и соответствующих им эквивалентных схем. Основными считаются смешанные (гибридные) параметры, обозначаемые буквой «h».

Входное сопротивление — сопротивление транзистора входному переменному току при коротком замыкании на выходе. Изменение входного тока является результатом изменения входного напряжения, без влияния обратной связи от выходного напряжения.

h11 = Um1/Im1, при Um2 = 0

Коэффициент обратной связи по напряжению показывает, какая доля выходного переменного напряжения передаётся на вход транзистора вследствие обратной связи в нём. Во входной цепи транзистора нет переменного тока, и изменение напряжения на входе происходит только в результате изменения выходного напряжения.

h12 = Um1/Um2, при Im1 = 0.

Коэффициент передачи тока (коэффициент усиления по току) показывает усиление переменного тока при нулевом сопротивлении нагрузки. Выходной ток зависит только от входного тока без влияния выходного напряжения.

h21 = Im2/Im1, при Um2 = 0.

Выходная проводимость — внутренняя проводимость для переменного тока между выходными зажимами. Выходной ток изменяется под влиянием выходного напряжения.

h22 = Im2/Um2, при Im1 = 0.

Зависимость между переменными токами и напряжениями транзистора выражается уравнениями:

Um1 = h11Im1 + h12Um2;
Im2 = h21Im1 + h22Um2.

В зависимости от схемы включения транзистора к цифровым индексам h-параметров добавляются буквы: «э» — для схемы ОЭ, «б» — для схемы ОБ, «к» — для схемы ОК.

Для схемы ОЭ: Im1 = IIm2 = IUm1 = Umб-эUm2 = Umк-э. Например, для данной схемы:

h21э = I/I = β.

Для схемы ОБ: Im1 = IIm2 = IUm1 = Umэ-бUm2 = Umк-б.

Собственные параметры транзистора связаны с h-параметрами, например для схемы ОЭ:

;

;

;

.

С повышением частоты заметное влияние на работу транзистора начинает оказывать ёмкость коллекторного перехода Cк. Его реактивное сопротивление уменьшается, шунтируя нагрузку и, следовательно, уменьшая коэффициенты усиления α и β. Сопротивление эмиттерного перехода Cэ также снижается, однако он шунтируется малым сопротивлением перехода rэ и в большинстве случаев может не учитываться. Кроме того, при повышении частоты происходит дополнительное снижение коэффициента β в результате отставания фазы тока коллектора от фазы тока эмиттера, которое вызвано инерционностью процесса перемещения носителей через базу от эммитерного перехода к коллекторному и инерционностью процессов накопления и рассасывания заряда в базе. Частоты, на которых происходит снижение коэффициентов α и β на 3 дБ, называются граничными частотами коэффициента передачи тока для схем ОБ и ОЭ соответственно.

В импульсном режиме ток коллектора изменяется с запаздыванием на время задержки τз относительно импульса входного тока, что вызвано конечным временем пробега носителей через базу. По мере накопления носителей в базе ток коллектора нарастает в течение длительности фронта τфВременем включения транзистора называется τвкл = τз + τф.

Примеры симисторов

Примеры симисторов приведены в таблице ниже. Здесь \(I_H\) — ток удержания,
\(\max\ I_{T(RMS)}\) — максимальный ток, \(\max\ V_{DRM}\) — максимальное напряжение,
\(I_{GT}\) — отпирающий ток.

Модель \(I_H\) \(\max\ I_{T(RMS)}\) \(\max\ V_{DRM}\) \(I_{GT}\)
BT134-600D 10 мА 4 А 600 В 5 мА
MAC97A8 10 мА 0,6 А 600 В 5 мА
Z0607 5 мА 0,8 А 600 В 5 мА
BTA06-600C 25 мА 6 А 600 В 50 мА

Реле

С точки зрения микроконтроллера, реле само является мощной нагрузкой,
причём индуктивной. Поэтому для включения или выключения реле нужно
использовать, например, транзисторный ключ. Схема подключения и также
улучшение этой схемы было рассмотрено ранее.

Реле подкупают своей простотой и эффективностью. Например, реле
HLS8-22F-5VDC — управляется напряжением 5 В и способно коммутировать
нагрузку, потребляющую ток до 15 А.

Главное преимущество реле — простота использования — омрачается
несколькими недостатками:

  • это механический прибор и контакты могу загрязниться или даже привариться друг к другу,
  • меньшая скорость переключения,
  • сравнительно большие токи для переключения,
  • контакты щёлкают.

Часть этих недостатков устранена в так называемых твердотельных
реле. Это,
фактически, полупроводниковые приборы с гальванической развязкой,
содержащие внутри полноценную схему мощного ключа.

Заключение

Таким образом, в арсенале у нас достаточно способов управления
нагрузкой, чтобы решить практически любую задачу, которая может
возникнуть перед радиолюбителем.

Полезные источники

  1. Хоровиц П., Хилл У. Искусство схемотехники. Том 1. — М.: Мир, 1993.
  2. Управление мощной нагрузкой переменного тока
  3. Управление мощной нагрузкой постоянного тока. Часть 1
  4. Управление мощной нагрузкой постоянного тока. Часть 2
  5. Управление мощной нагрузкой постоянного тока. Часть 3
  6. Щелкаем реле правильно: коммутация мощных нагрузок
  7. Управление мощной нагрузкой переменного тока
  8. Управление MOSFET-ами #1
  9. Современные высоковольтные драйверы MOSFET- и IGBT-транзисторов
  10. Ключ на плечо! – особенности применения высоковольтных драйверов производства IR
Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: