Индивидуальный домофон на транзисторах 2n2222, 2n2907

Производители

По статистике, в мире насчитывается более миллиарда очень похожих по характеристикам транзисторов с цифрами «2222» в обозначении, особенно в корпусе ТО-92. Они встречаются в различных вариантах исполнения и модификаций. Постоянно появляются более новые образцы, которые совершенствуются и модернизируются производителями. При этом, спрос на такие устройства до сих пор остаётся стабильно высоким.

Многие современные транзисторы, у которых в маркировке присутствуют цифры «2222», являются более совершенствованными 2N2222. В настоящее время их выпуск налажен у следующих производителей полупроводниковых компонентов: NXP Semiconductors, Multicomp, Continental Device India Limited, Semtech Electronics, Inchange Semiconductor Company Limited, Micro Commercial Components (MCC), New Jersey Semi-Conductor Products, Siemens Semiconductor, ON Semiconductor, Foshan Blue Rocket Electronics, STMicroelectronics. Выгрузить datasheet в формате pdf возможно кликнув на это сообщение.

Биполярные транзисторы

Биполярные транзисторы (BJT, Bipolar Junction Transistors) имеют три контакта:

  • Коллектор (collector) — на него подаётся высокое напряжение, которым хочется управлять
  • База (base) — через неё подаётся небольшой ток, чтобы разблокировать большой; база заземляется, чтобы заблокировать его
  • Эмиттер (emitter) — через него проходит ток с коллектора и базы, когда транзистор «открыт»

Основной характеристикой биполярного транзистора является показатель hfe
также известный, как gain. Он отражает во сколько раз больший ток по участку коллектор–эмиттер
способен пропустить транзистор по отношению к току база–эмиттер.

Например, если hfe = 100, и через базу проходит 0.1 мА, то транзистор пропустит
через себя как максимум 10 мА. Если в этом случае на участке с большим током находится компонент,
который потребляет, например 8 мА, ему будет предоставлено 8 мА, а у транзистора останется «запас».
Если же имеется компонент, который потребляет 20 мА, ему будут предоставлены только максимальные
10 мА.

Также в документации к каждому транзистору указаны максимально допустимые напряжения и токи на
контактах. Превышение этих величин ведёт к избыточному нагреву
и сокращению службы, а сильное превышение может привести к разрушению.

NPN и PNP

Описанный выше транзистор — это так называемый NPN-транзистор. Называется он так из-за того, что состоит
из трёх слоёв кремния, соединённых в порядке: Negative-Positive-Negative. Где negative — это сплав
кремния, обладающий избытком отрицательных переносчиков заряда (n-doped), а positive —
с избытком положительных (p-doped).

NPN более эффективны и распространены в промышленности.

PNP-транзисторы при обозначении отличаются направлением стрелки. Стрелка всегда указывает от P к N.
PNP-транзисторы отличаются «перевёрнутым» поведением: ток не блокируется, когда база заземлена и блокируется,
когда через неё идёт ток.

Характеристики транзистора, включённого по схеме оэ:

Основные элементы схемы: транзистор, резистор RL и цепь выхода усилителя с внешним питанием.

Благодаря незначительной толщине слоя микроны и большой величине градиента концентрации отрицательно заряженных частиц, почти все из них попадают в область коллектора, хотя сопротивление базы достаточно велико. Где транзисторы купить? Транзисторы по праву считаются одним из великих открытий человечества.

При работе в активном режиме на эмиттерном переходе напряжение прямое, а на коллекторном — обратное. Его также обозначают как Исходы из выше сказанного транзистор может работать в четырех режимах: Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. Во — первых усиление каскада зависит от конкретного экземпляра транзистора: заменил транзистор при ремонте, — подбирай заново смещение, выводи на рабочую точку.

Ответ может быть да а может и нет. Поскольку ток коллектора в десятки раз больше тока базы, этим объясняется тот факт, что коэффициент усиления по току составляет десятки единиц. Схема с общим коллектором ОК Практические варианты схем включения транзисторов структуры п-р-п и р-п-р приведены на рис. В литературе такое название почему-то почти не встречается, а вот в кругу радиоинженеров и радиолюбителей используется повсеместно, всем сразу понятно, о чем идет речь.

Схемы включения биполярного транзистора

Такое состояние называют рабочей точкой транзистора, в этом случае коэффициент усиления каскада максимален. Граница на втором коллекторном переходе при этом закрыта, и через нее ток протекать не должен. Такой режим работы транзистора рассматривался уже давно. Повышение частоты приводит к снижению реактивной ёмкости коллекторного перехода, что приводит к его существенному шунтированию и ухудшению усилительных свойств каскада. Выводы транзистора звонятся как два диода, соединенные в общей точке в области базы транзистора.

Устройство и принцип действия

В биполярном транзисторе используются два типа носителей заряда — электроны и дырки, отчего такие транзисторы и называются биполярными. Нагрузкой каскада является эмиттерный резистор R2, входной сигнал подается через конденсатор C1, а выходной снимается через конденсатор C2. Сопротивление нагрузки можно изменять в широких пределах, правда, при этом особо усердствовать не надо. Коэффициент усиления транзистора зависит от толщины базы, поэтому изменить его нельзя.

Иногда она применяется для ослабления влияния нагрузки на характеристики высокочастотных генераторов и синтезаторов частоты. Все эти схемы показаны на рисунке 2. Поэтому при построении схем усилителей постоянного тока используют схемы с непосредственными связями между каскадами.
Ключевой режим работы транзистора Схема с общим эмиттером

Биполярный транзистор

Биполярный транзистор обладает двумя переходами: p-n-p или n-p-n. Принципиальное различие между ними – направление течения тока.

Коллектор и эмиттер, обладающие одинаковой проводимостью (в n-p-n транзисторе n-проводимостью), разделены базой, которая обладает p-проводимостью. Если даже эмиттер подключен к источнику питания, ему не пробиться напрямую в коллектор. Для этого необходимо подать ток на базу.

В таком случае электроны из эмиттера заполняют «дырки» последней. Но так как база слабо легирована, то и дырок в ней мало. Поэтому большая часть электронов переходит в коллектор и они начинают свое движение по цепи. Ток коллектора практически равен току эмиттера, ведь на базу приходится очень маленькое его значение.

Чтобы нагляднее себе это представить, можно воспользоваться аналогией с водопроводной трубой. Для управления количеством воды нужен вентиль (транзистор). Если приложить к нему небольшое усилие, он увеличит свое проходное сечение трубы и через него начнет проходить больше воды.

Основные особенности транзистора Дарлингтона

Основное достоинство составного транзистора это большой коэффициент усиления по току.

Следует вспомнить один из основных параметров биполярного транзистора. Это коэффициент усиления (h21). Он ещё обозначается буквой β («бета») греческого алфавита. Он всегда больше или равен 1. Если коэффициент усиления первого транзистора равен 120, а второго 60 то коэффициент усиления составного уже равен произведению этих величин, то есть 7200, а это очень даже неплохо. В результате достаточно очень небольшого тока базы, чтобы транзистор открылся.

Инженер Шиклаи (Sziklai) несколько видоизменил соединение Дарлингтона и получил транзистор, который назвали комплементарный транзистор Дарлингтона. Вспомним, что комплементарной парой называют два элемента с абсолютно одинаковыми электрическими параметрами, но разной проводимости. Такой парой в своё время были КТ315 и КТ361. В отличие от транзистора Дарлингтона, составной транзистор по схеме Шиклаи собран из биполярных разной проводимости: p-n-p и n-p-n. Вот пример составного транзистора по схеме Шиклаи, который работает как транзистор с n-p-n проводимостью, хотя и состоит из двух различной структуры.

схема Шиклаи

К недостаткам составных транзисторов следует отнести невысокое быстродействие, поэтому они нашли широкое применение только в низкочастотных схемах. Такие транзисторы прекрасно зарекомендовали себя в выходных каскадах мощных усилителей низкой частоты, в схемах управления электродвигателями, в коммутаторах электронных схем зажигания автомобилей.

Хорошо зарекомендовал себя для работы в электронных схемах зажигания мощный n-p-n транзистор Дарлингтона BU931.

Основные электрические параметры:

  • Напряжение коллектор – эмиттер 500 V;

  • Напряжение эмиттер – база 5 V;

  • Ток коллектора – 15 А;

  • Ток коллектора максимальный – 30 А;

  • Мощность рассеивания при 250С – 135 W;

  • Температура кристалла (перехода) – 1750С.

На принципиальных схемах нет какого-либо специального значка-символа для обозначения составных транзисторов. В подавляющем большинстве случаев он обозначается на схеме как обычный транзистор. Хотя бывают и исключения. Вот одно из его возможных обозначений на принципиальной схеме.

Напомню, что сборка Дарлингтона может иметь как p-n-p структуру, так n-p-n. В связи с этим, производители электронных компонентов выпускают комплементарные пары. К таким можно отнести серии TIP120-127 и MJ11028-33. Так, например, транзисторы TIP120, TIP121, TIP122 имеют структуру n-p-n, а TIP125, TIP126, TIP127 — p-n-p.

Также на принципиальных схемах можно встретить и вот такое обозначение.

Другие переключающие транзисторы

Распиновка вариантов 2Н2222 в пластиковом корпусе ТО-92 .

Кремниевые NPN-транзисторы с аналогичными свойствами также производятся в различных небольших корпусах для сквозного монтажа и поверхностного монтажа, включая TO-92 , SOT-23 и SOT-223.

Замены для 2N2222 обычно доступны в более дешевой упаковке TO-92 , где он известен как PN2222 или P2N2222, который имеет аналогичные характеристики, за исключением более низкого максимального тока коллектора. P2N2222 имеет другой порядок выводов, чем металлический корпус 2N2222, с коммутационными соединениями эмиттера и коллектора; другие транзисторы в пластиковом корпусе также имеют разное расположение выводов.

Одиночные транзисторы также доступны в нескольких различных корпусах для поверхностного монтажа, и ряд производителей продают корпуса для поверхностного монтажа, которые включают несколько транзисторов типа 2N2222 в одном корпусе в виде массива транзисторов. Общие характеристики различных вариантов схожи, самая большая разница заключается в максимально допустимом токе и рассеиваемой мощности.

Семейство BC548 , в том числе от BC547A до BC550C, представляет собой транзисторы общего назначения с низким напряжением и током в корпусах TO-92 европейского производства, которые часто используются в схемах усиления и переключения слабых сигналов того типа, в котором 2N2222 может иначе можно использовать. Это не настоящая замена, а сопоставимые устройства, которые могут быть заменены только в цепях, в которых не превышаются максимальные значения тока и напряжения.

2N2907 является одинаково популярны ПНП транзистор комплементарной к 2N2222.

2N3904 является транзистором NPN , который может переключаться только одну трети тока 2N2222 , но имеет иной сходные характеристики. 2N3904 демонстрирует свой пик прямого усиления (бета) при более низком токе, чем 2N2222, и может использоваться в усилителях с пониженным I c , например (пик усиления при 10 мА для 2N3904 и 150 мА для 2N2222).

Версия 2N2222A в более крупном металлическом корпусе TO-39 , 2N2219A имела более высокую мощность рассеивания (3 Вт при подключении к радиатору, поддерживающему температуру корпуса на уровне 25 ° C, или 0,8 Вт на открытом воздухе, по сравнению с 1,8 Вт). Ватт и 0,5 Вт (соответственно) для 2N2222A.

3.2. Физические процессы в биполярном транзисторе типа p-n-p

Рассмотрим движение носителей заряда через структуру транзистора, которые
протекают в выводах эмиттера, базы и коллектора, при условии, что на
ЭП подано прямое напряжение, а на КП — обратное (т.е. транзистор работает
в активном режиме).
Значение токов, протекающих через структуру транзистора, определяется
не только напряжениями, которые подаются на эмиттерный и коллекторный
переходы, но и взаимодействием этих переходов между собой. Взаимодействие
переходов, в свою очередь, зависит от расстояния между ними, т.е. от
ширины области базы — W.

На рисунке 3.3 показаны движение носителей заряда в структуре p-n-p
транзистора и токи, протекающие во внешних выводах.
Если ширина базы W меньше диффузионной длины пробега неосновных носителей
заряда в базе (рис.3.3
), то значение тока, протекающего через КП, определяется следующими
причинами:
1) т.к. в этом случае ширина базы гораздо меньше ширины области коллектора,
то и количество неосновных носителей заряда, возникающих при данной
температуре в области базы ( ),
будет гораздо меньше количества неосновных носителей заряда, возникающих
в области коллектора ( ),
и можно считать, что

, где Jko
ток неосновных носителей заряда koп

2) дырки, которые диффузионно переходят из эмиттера в базу над снизившимся
потенциальным барьером эмиттерного перехода, в базе продолжают двигаться
диффузионно в основном в сторону коллекторного перехода. А т.к. ширина
базы меньше их диффузионной длины пробега, то они достигнут коллекторного
перехода в количестве тем больше, чем меньше ширина базы. Однако, вследствие
дисперсии, т.е. беспорядочного теплового движения носителей, какая-то
часть дырок не доходит до КП из-за процесса рекомбинации на поверхности,
у базового вывода или в толще базы, в следствии этого в цепи базы появляется
базовый ток .
Величина, характеризующая долю тока эмиттера, достигающую коллекторного
перехода. называется коэффициентом передачи постоянного тока эмиттера
и обозначается .

Тогда ток коллектора:

Таким образом, ток через КП для случая
(для p-n-p транзистора) является суммой двух составляющих — тока дырок,
инжектированных из эмиттера в базу, и нулевого коллекторного тока .
В толщине базы протекает
и рекомбинационный ток, но в силу того, что процесс рекомбинации в базе
резко уменьшается, рекомбинационная составляющая тока базы тоже мала
.
Соответственно во внешних выводах эмиттера, базы и коллектора будут
протекать токи:
вывод эмиттера ,
вывод коллектора ,
вывод базы

где — является
рекомбинационной составляющей тока базы, величина которой зависит от
величины прямого напряжения, приложенного к ЭП. — ток неосновных
носителей заряда, величина которого от приложенного напряжения почти
не зависит.
Если p-n-p транзистор, работающий как усилитель электрических колебаний,
включен в схему так, как это показано на рис.3.4, то включение последовательно
с источником
переменного напряжения
приведет к появлению переменных составляющих тока эмиттера ,
тока коллектора и
тока базы ,
которые будут накладываться на постоянные составляющие. Так же как и
постоянные токи, протекающие через p-n-p транзистор, переменные токи
являются функциями напряжения. Если на вход подается синусоидальное
напряжение, то оно вызовет синусоидальные изменения плотности дырок
в эмиттерном и коллекторном переходах, т.е. синусоидальные изменения
переменных токов эмиттера, коллектора и базы.

Переменный ток, протекающий через ЭП, равен сумме электронного и дырочного
токов, причем для p-n-p транзистора только дырочная составляющая проходит
последовательно ЭП, обладающий малым сопротивлением и КП, обладающий
большим сопротивлением, т.е. создает условия для усиления электрических
колебаний.
Поэтому на практике для характеристики усилительных свойств транзистора
пользуются коэффициентом передачи тока эмиттера или, как его иначе называют,
коэффициентом усиления по току a, который
является отношением общего коллекторного переменного тока к общему эмиттерному
переменному току в режиме короткого замыкания коллектора на базу по
переменному току.

Описание транзистора 2N2907

Транзистор 2N2907 — биполярный, кремниевый, высокочастотный (30 МГц > FГР < 300 МГц) транзистор типа P-N-P, средней мощности (300 мВт > PК,МАКС < 1,5 Вт). Аналоги данного транзистора: GES2907, NTE159M, PN2907, SK3466, SMBT2907, TMPT2907, TR2907, BSS80C, BFW31*, BFX35*, BF249*, BSW73*, BSW75*, BSX36*, 2N3136*, 2N3906*, 2N4403*, 2N4452*, 2SA883*. Тип корпуса TO-18.

Транзистор
UКЭ0 /UКБ0 ПРОБВ
IК, МАКСмА
PК, МАКСмВт
h21Э
IКмА
UКЭВ
fгрМГц
Изготовитель

мин.
макс.
Название (полное)
Название (сокращённое)

2N2907
40/60
600
400
30

500
10
200

American Microsemiconductor Inc
AmerMicroSC

Advanced Semiconductor tnc
Advncd Semi

Bharat Electronics Ltd/Semiconductor Division
Bharat

Central Semiconductor Corp
CentralSemi

Comset Semiconductors, SPRL
Comset Semi

Continental Device India Ltd
Contin Dev

Crimson Semiconductor Inc
CrimsonSimi

Dionics Inc
Dionics Inc

General Transistor Corp
Gnrl Trans

Hi-Tron Semiconductor
Hi-Tron

Micro Electronics Ltd
Micro Еlecs

Microsemi Corp
Microsemi

Mistral SPA
Mistral SpA

Motorola Semiconductor Products Inc
Motorola

National Semiconductor Corp
Natl Semi

New England Semiconductor
New Eng SC

Phitips International BV/Philips Components
PhilipsComp

Semelab Plc
Semelab

Semiconductors Inc
Semi Inc

Advani Oerlikon Ltd/Semiconductors Ltd
Semi Ltd

Semicoa
Semicoa

Semiconductor Technology Inc
SemiconTech

Intex Со Inc/Semitronics Corp
Semitronics

Solid State Industries Inc
SldSt Indus

Solid State Inc
Solid Stinc

Swampscott Electronics Со Inc
Swampscott

Syntar Industries Inc
Syntar Ind

Transistor Со
Transistor

Space Power Electronics Inc
Space Power

Цоколёвка

Тип
Номера выводов

1
2
3

3 вывода
E
B
C

UКЭ0, ПРОБ — пробивное напряжение коллектор-эмиттер биполярного транзистора при токе базы, равном нулю.

UКБ0, ПРОБ — пробивное напряжение коллектор-база биполярного транзистора.

UКЭ — напряжение источника питания коллектора биполярного транзистора при измерении h21Э.

IК, МАКС — максимально допустимый постоянный ток коллектора биполярного транзистора.

IК — постоянный ток коллектора биполярного транзистора при измерении h21Э.

h21Э — статический коэффициент передачи тока биполярного транзистора в схеме с общим эмиттером.

fГР — граничная частота коэффициента передачи тока в схеме с общим эмиттером.

PК, МАКС — максимально допустимая постоянная рассеиваемая мощность коллектора биполярного транзистора.

* — Транзистор не является полным аналогом, но возможна замена.

5 технических нюансов работы биполярных транзисторов, которые важно учитывать при проектировании и эксплуатации электронных ключей или регуляторов

Особенность №1

Электрические характеристики БТ описываются сложными формулами. Ими очень неудобно пользоваться на практике. Поэтому электронщики работают с графиками, выражающими связи между входными и выходными параметрами.

Их разделяют на два вида:

  1. статические, определяющие возможности полупроводниковых переходов по токам и напряжениям на входе и выходе при отсутствии нагрузки (режим холостого хода);
  2. выходные — зависимость тока через коллектор от приложенного выходного напряжения при конкретном токе через базу.

Каждому БТ присущи свои индивидуальные характеристики. Однако сейчас подобных полупроводников выпущено так много, что практически любому из них не сложно подобрать аналогичную замену даже от другого производителя.

Для работы транзисторов может быть использован один из следующих режимов:

  • активный (нормальный или инверсный);
  • насыщения;
  • отсечки;
  • барьерный.

Особенность №2

Любой БТ, созданный с корпусом p-n-p или n-p-n работает практически по одним и тем же алгоритмам, которые отличаются только направлением протекания положительного тока через полупроводниковые переходы.

Поэтому для прямых и обратных транзисторов создаются индивидуальные схемы управления и подключения нагрузки к выходным цепям.

В качестве примера приведу еще одну схему простого зарядного устройства, собранную на транзисторном модуле с p-n-p переходами. Можете ее сравнить с предыдущим вариантом. Увидите практически одинаковую конструкцию, но с обратным направлением тока.

Здесь деталей еще меньше, а регулирование выходных величин осуществляется за счет изменения значения напряжения, подаваемого на вход электронного модуля. Используется обыкновенный потенциометр.

Особенность №3

При открытом состоянии входной полупроводниковый переход в режим отсечки БТ имеет небольшое падение напряжения. В частном случае он составляет порядка 0,7 вольта

Чтобы зафиксировать ваше внимание на этом вопросе специально нарисовал картинку — считается, что так лучше работает человеческая память

Другими словами: потенциал на базе на 0,7 вольта меньше, чем на эмиттере. Для кремниевых изделий он всегда составляет 0,6-0,7 В.

Особенность №4

Ток коллектора БТ определяется как ток базы, умноженный на определенно большое число постоянной величины.

Это свойство используется для классификации транзисторов по коэффициенту передачи тока при коротком замыкании на выходе.

С этой целью введен коэффициент h21. Его суть демонстрирует следующая картинка.

Если выдержать показанные номиналы у приведенной схемы проверки (10 вольт у источника ЭДС и 100 килоом у сопротивления), то показания амперметра в миллиамперах просто умножаем на число 10. Получим значение коэффициента h21.

Подобные алгоритмы заложены в цифровые мультиметры и аналоговые тестеры, которые позволяют измерять коэффициент h21 при проверках БТ.

Особенность №5

При открытом состоянии потенциал внутреннего полупроводникового перехода БТ коллектора выше, чем у эмиттера. В моем частном случае он составляет 0,3 вольта.

Здесь открытый транзистор работает как обычный ключ, но он не идеален. На его внутренней схеме присутствует падение напряжения в 0,3 вольта. Однако в большинстве случаев это не критично.

Допустим, что в коллекторной цепи появилось дополнительное сопротивление. Изменение тока через этот резистор повлечет падение напряжения на нем.

Однако более высокий потенциал коллектора совместно с увеличенным током через базу могут стабилизировать выходные характеристики. В этом случае силовые токи сохраняют свое значение.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: