Температурный дрейф
Температура влияет на характеристики транзисторов по постоянному и переменному току. Двумя аспектами этой проблемы являются изменение температуры окружающей среды и самонагревание. Некоторые приложения, например, военные и автомобильные, требуют работы в расширенном температурном диапазоне. В благоприятной же среде схемы подвергаются самонагреванию, в частности высоковольтные схемы.
Ток утечки IК0 и коэффициент β увеличиваются с ростом температуры. Коэффициент β по постоянному току hFE возрастает экспоненциально. Коэффициент β по переменному току hfe увеличивается, но не так быстро. При повышении температуры от -55°C до 85°C он удваивается. По мере увеличения температуры увеличение hfe даст больший выходной сигнал в схеме с общим эмиттером, который в крайних случаях будет ограничен (отсечен). Увеличение hFE сдвигает точку смещения, приводя к возможному отсечению пиков на одной из полуволн. В многокаскадных усилителях с прямой связью сдвиг точки смещения усиливается. Решением этой проблемы является использование отрицательной обратной связи для стабилизации точки смещения. Это также стабилизирует и коэффициент усиления по переменному току.
Повышение температуры на рисунке ниже (a) приведет к уменьшению VБЭ от номинальных 0,7 В для кремниевых транзисторов. Уменьшение VБЭ увеличивает ток коллектора в усилителе с общим эмиттером, что дополнительно приводит к сдвигу точки смещения. Лекарством от смещения VБЭ является использование пары транзисторов, собранных в схему дифференциального усилителя. Если оба транзистора на рисунке ниже (b) имеют одинаковую температуру, VБЭ будет отслеживать изменение температуры и компенсировать его.
(a) односторонний усилитель с общим эмиттером и (b) дифференциальный усилитель с компенсацией изменений VБЭ
Рекомендуемая максимальная температура перехода для кремниевых устройств часто составляет 125°C. Хотя для повышения надежности, работать необходимо при более низких температурах. Транзистор прекращает работать при температуре выше 150°C. Транзисторы из карбида кремния и алмазные транзисторы будут работать при значительно более высоких температурах.
Аналоги импортного и отечественного производства
Тип транзистора | PC | VCEO | VEBO | IC | TJ | fT | CC | hFE | Тип корпуса |
---|---|---|---|---|---|---|---|---|---|
2N 3906A | 0,625 | 40 | 5 | 0,2 | 150 | 250 | 4,5 | 100 | ТО-92 |
Импортные аналоги | |||||||||
MMBT 390 | 0,35 | 40 | 5 | 0,2 | 150 | 250 | 4,5 | 100 | SOT-23 |
PZT 3906 | 1 | 40 | 5 | 0,2 | 150 | 250 | 4,5 | 100 | SOT-223 |
H2N 3906 | 0,625 | 40 | 5 | 0,2 | 150 | 250 | 4,5 | 100 | ТО-92 |
KN 3906 | 0,625 | 40 | 5 | 0,2 | 150 | 250 | 4,5 | 100 | ТО-92 |
2N 3905 | 0,625 | 40 | 5 | 0,2 | 150 | 200 | 4,5 | 100 | ТО-92 |
2SB 1014 | 0,7 | 60 | 8 | 1 | 185 | 160 | ТО-92 | ||
2SB 977A | 0,75 | 50 | 8 | 1 | 195 | 3000 | ТО-92 | ||
BC 327-025 | 0,625 | 45 | 5 | 0,5 | 150 | 260 | 10 | 160 | ТО-92 |
KN 4403 | 0,625 | 40 | 5 | 0,6 | 150 | 200 | 8,5 | 100 | ТО-92 |
KSP 75/76/77 | 0,625 | 40/50/60 | 10 | 0,5 | 150 | 10000 | ТО-92 | ||
TIPP 115/116/117 | 0,8 | 60/80/100 | 5 | 2 | 150 | 1000 | ТО-92 | ||
TIS 91 (M) | 0,625 | 40 | 5 | 0,4 | 150 | 100 | ТО-92 | ||
ECG 2342 | 0,8 | 80 | 5 | 1 | 150 | 200 | 2000 | ТО-92 | |
BSR 62 | 0,8 | 80 | 5 | 1 | 150 | 200 | 1000 | ТО-92 | |
Аналоги производства РФ и Республики Беларусь | |||||||||
КТ 6109D/G | 0,625 | 40 | 5 | 0,5 | 150 | 144/112 | ТО-92 | ||
КТ361Г/В2/Д2/К2 | 0,15 | 35 – 60 | 4 | 0,05 | 150 | 250 | 7 | 350 | ТО-92 |
КТ502В/Г/Д /Е | 0,35 | 40 | 0,15 | 150 | 5 | 120 | ТО-92 | ||
КТ6136А | 0,625 | 40 | 5 | 0,2 | 150 | 250 | 4,5 | 300 | ТО-92 |
КТ313Б/В | 0,3 | 60 | 5 | 0,35 | 150 | 200 | 12 | 300 | ТО-92 |
Примечание: характеристики радиоэлементов в таблице взяты из даташит производителя.
Производители
Выпускают транзистор 2N3906 такие фирмы: ON Semiconductor, KEC(Korea Electronics), Fairchild Semiconductor, Unisonic Technologies, Micro Commercial Components, SeCoS Halbleitertechnologie, First Silicon, Central Semiconductor, AUK, STMicroelectronics, Inchange Semiconductor, Transys Electronics, SHENZHEN KOO CHIN ELECTRONICS, Tiger Electronic, GUANGDONG HOTTECH INDUSTRIAL, Pan Jit International, SHENZHEN YONGERJIA INDUSTRY, Jiangsu Changjiang Electronics Technology, Rohm, Daya Electric Group, Guangdong Kexin Industrial, General Semiconductor, Weitron Technology, New Jersey Semi-Conductor Products, SEMTECH ELECTRONICS, Micro Electronics, Dc Components, KODENSHI KOREA, Semtech Corporation, Silicon Standard, Nanjing International, Diodes Incorporated.
Цоколевка
Распиновку транзистор 2N3906 имеет следующую. Чаще всего выпускаются в пластмассовом ТО-92 и весит не более 0,18 г. Этот корпус имеет три гибких вывода для дырочного монтажа. Если смотреть прямо на скошенную часть с той стороны, где нанесена маркировка, то самый левый вывод -это эмиттер, средний – база, правый – коллектор.
Компании Fairchild Semiconductor, Jiangsu Changjiang Electronics Technology, Daya Electric Group, General Semiconductor, Silicon Standard, Daya Electric Group, GUANGDONG HOTTECH INDUSTRIAL, SHENZHEN KOO CHIN ELECTRONICS также выпускают данное изделие в SOT-23. У Fairchild Semiconductor встречаются в SOT-223. Эти пластиковые корпуса, с тремя короткими выводами, предназначены для поверхностного монтажа (SMD).
Устройство и принцип действия
Транзистор — электронный полупроводник, состоящий из 3 электродов, одним из которых является управляющий. Транзистор биполярного типа отличается от полярного наличием 2 типов носителей заряда (отрицательного и положительного).
Отрицательные заряды представляют собой электроны, которые высвобождаются из внешней оболочки кристаллической решетки. Положительный тип заряда, или дырки, образуются на месте высвобожденного электрона.
Устройство биполярного транзистора (БТ) достаточно простое, несмотря на его универсальность. Он состоит из 3 слоев проводникового типа: эмиттера (Э), базы (Б) и коллектора (К).
Эмиттер (от латинского «выпускать») — тип полупроводникового перехода, основной функцией которого является инжекция зарядов в базу. Коллектор (от латинского «собиратель») служит для получения зарядов эмиттера. База является управляющим электродом.
Слои эмиттерный и коллекторный почти одинаковые, однако отличаются степенью добавления примесей для улучшения характеристик ПП. Добавление примесей называется легированием. Для коллекторного слоя (КС) легирование выражено слабо для повышения коллекторного напряжения (Uк). Эмиттерный полупроводниковый слой легируется сильно для того, чтобы повысить обратное допустимое U пробоя и улучшить инжекцию носителей в базовый слой (увеличивается коэффициент передачи по току — Kт). Слой базы легируется слабо для обеспечения большего сопротивления (R).
Переход между базой и эмиттером меньший по площади, чем К-Б. Благодаря разнице в площадях и происходит улучшение Кт. При работе ПП переход К-Б включается со смещением обратного типа для выделения основной доли количества теплоты Q, которое рассеивается и обеспечивает лучшее охлаждение кристалла.
Быстродействие БТ зависит от толщины базового слоя (БС). Эта зависимость является величиной, изменяющейся по обратно пропорциональному соотношению. При меньшей толщине — большее быстродействие. Эта зависимость связана с временем пролета носителей заряда. Однако при этом снижается Uк.
Между эмиттером и К протекает сильный ток, называемый током К (Iк). Между Э и Б протекает ток маленькой величины — ток Б (Iб), который используется для управления. При изменении Iб произойдет изменение Iк.
У транзистора два p-n перехода: Э-Б и К-Б. При активном режиме Э-Б подключается со смещением прямого типа, а подключение К-Б происходит с обратным смещением. Так как переход Э-Б находится в открытом состоянии, то отрицательные заряды (электроны) перетекают в Б. После этого происходит их частичная рекомбинация с дырками. Однако большая часть электронов достигает К-Б из-за малой легитивности и толщины Б.
В БС электроны являются неосновными носителями заряда, и электромагнитное поле помогает им преодолеть переход К-Б. При увеличении Iб произойдет расширение открытия Э-Б и между Э и К пробежит больше электронов. При этом произойдет существенное усиление сигнала низкой амплитуды, т. к. Iк больше, чем Iб.
Смотрите это видео на YouTube
Для того чтобы проще понять физический смысл работы транзистора биполярного типа, нужно ассоциировать его с наглядным примером. Нужно предположить, что насос для закачки воды является источником питания, водопроводный кран — транзистором, вода — Iк, степень поворота ручки крана — Iб. Для увеличения напора нужно немного повернуть кран — совершить управляющее действие. Исходя из примера можно сделать вывод о простом принципе работы ПП.
Однако при существенном увеличении U на переходе К-Б может произойти ударная ионизация, следствием которой является лавинное размножение заряда. При комбинации с тоннельным эффектом этот процесс дает электрический, а с увеличением времени и тепловой пробой, что выводит ПП из строя. Иногда тепловой пробой наступает без электрического в результате существенного увеличения тока через выход коллектора.
Кроме того, при изменении U на К-Б и Э-Б меняется толщина этих слоев, если Б тонкая, то происходит эффект смыкания (его еще называют проколом Б), при котором происходит соединение переходов К-Б и Э-Б. В результате этого явления ПП перестает выполнять свои функции.
Виды транзисторов
В первых транзисторах применялся германий, который работал не совсем стабильно. Со временем от него отказалось в пользу других материалов: кремния (самый распространённый) и арсенида галлия. Но все это традиционные полупроводники.
В настоящее время начинают набирать популярность триоды на основе органических материалов и даже веществ биологического происхождения: протеинов, пептидов, молекул хлорофилла и целых вирусов. Биотранзисторы используются в медицине и биотехнике.
Другие классификации транзисторов:
- По мощности подразделяются на маломощные (до 0,1 Вт), средней мощности (от 0,1 до 1 Вт) и просто мощные (свыше 1 Вт).
- Также разделяются по материалу корпуса (металл или пластмасса), типу исполнения (в корпусе, бескорпусные, в составе интегральных схем).
- Нередко их объединяют друг с другом для улучшения характеристик. Такие транзисторы называются составными или комбинированными и могут состоять из двух и более полупроводниковых приборов. Строение и у них простое: эмиттер первого является базой для второго и так далее до необходимого количества триодов. Бывает нескольких типов: Дарлинга (все составляющие с одинаковым типом проводимости), Шиклаи (тип проводимости разный), каскодный усилитель (два прибора, работающие как один с подключением по схеме с общим эмиттером).
- К составным относится также и IGBT-транзистор, представляющий собой биполярный, который управляется при помощи полярного триода с изолированным затвором. Такой тип полупроводниковых приборов применяется в основном там, где нужно управлять большим током (сварочные аппараты, городские электросети) или электромеханическими приводами (электротранспорт).
- В качестве управления может применяться не ток, а другое электромагнитное воздействие. К примеру, в фототранзисторах в качестве базы используется чувствительный фотоэлемент, а в магнитотранзисторах – материал, индуцирующий ток при воздействии на него магнитного поля.
Технологический предел для транзисторов еще не достигнут. Их размеры уменьшаются с каждым голом, а различные научно-исследовательские институты ведут поиск новых материалов для использования в качестве полупроводника. Можно сказать, что эти полупроводниковые приборы еще не сказали миру своего последнего слова.
Графические данные
Рис.1 Зависимость коэффициента усиления по току hFE от величины тока коллектора IC при различных температурах (VCE – напряжение коллектор-эмиттер).
Рис.2 Зависимость напряжения насыщения коллектор-эмиттер VCE(sat) от тока коллектора (IB – ток перехода база-эмиттер).
Рис.3 Зависимость напряжения насыщения база-эмиттер VBE(sat) от тока коллектора (IB – ток перехода база-эмиттер).
Рис.4 Зависимость напряжения включения база-эмиттер VBE(ON) тока коллектора (VCE – напряжение коллектор-эмиттер).
Рис.5 Зависимость тока выключения ICBO транзистора от температуры окружающей среды Ta (VCB – напряжение коллектор-база).
Рис.6 Зависимость рассеиваемой транзистором мощности (PC) от температуры окружающей среды Ta.
Рис.7 Зависимость коэффициента усиления тока hfe от величины тока коллектора IC (VCE – напряжение коллектор-эмиттер, f – частота режима работы транзистора).
Рис.8 Зависимость полной выходной проводимости hoe от величины тока коллектора IC (VCE – напряжение коллектор-эмиттер, f – частота режима работы транзистора).
Рис.9 Зависимость величины входного импеданса от величины тока коллектора IC (VCE – напряжение коллектор-эмиттер, f – частота режима работы транзистора).
Рис.10 Зависимость коэффициента обратной связи по напряжению hre от тока коллектора IC.
Рис.11 Зависимости емкостей переходов эмиттер-база (Cob) и коллектор-база (Cib) от величин напряжений обратного смещения переходов эмиттер-база (VEB) и коллектор-база (VCB).
Рис.12 Зависимость коэффициента шума транзистора (NF) от частоты передаваемого сигнала f (VCE – напряжение коллектор-эмиттер, IC – ток коллектора, RS – выходное сопротивление источника сигнала).
Рис.13 Зависимость коэффициента шума транзистора (NF) от величины внутреннего сопротивления источника сигнала (VCE – напряжение коллектор-эмиттер, IC – ток коллектора, f – частота входного сигнала, поступающего от внешнего источника).
Рис.14 Зависимости отрезков времени переключения (t) от величины тока коллектора (IC) (IB1, IB2 – значения тока базы при переключениях; td – время задержки переключения; tr – время нарастания выходного сигнала; tf – время спадания выходного сигнала; ts – время рассасывания объемного заряда (или — время сохранения tstg)).
Рис.15 Зависимости времени включения (ton) и выключения (toff) от величины коллекторного тока IC (VBE(OFF) – напряжение база-эмиттер при выключении; IB1, IB2 – значения тока базы при включении и выключении).
Рис.16 Диаграмма входного напряжения и схема измерений времени задержки (td) и времени нарастания (tr). Коэффициент заполнения импульсной последовательности 2%.
Рис.17 Диаграмма входного напряжения и схема измерений времени рассасывания (tstg) заряда коллекторного перехода и времени спадания (tf). Коэффициент заполнения импульсной последовательности 2%. CS – суммарная емкость монтажа и коннекторов.
Разновидности порядка действия биполярных транзисторов
Нормальный активный режим
Характеристика:
- Открытая эмиттерно-базовая область (смещение по прямому направлению);
- Закрытая коллекторно-базовая область (смещение по обратному направлению);
- Положительный уровень напряжения в эмиттерно-базовой области;
- Отрицательный уровень напряжения в коллекторно-базовой области.
Пункты 3 и 4 приведены для p-n-p транзисторов. Для моделей с n-p-n структурой характеристика будет обратной данной.
Инверсный активный режим
Характеристика:
- Обратное смещение на эмиттерном переходе;
- Прямое смещение на коллекторным переходе.
Остальные пункты как для нормального активного режима.
Режим насыщения
Характеристика:
- Соединение Э-перехода и К-перехода с внешними источниками;
- Прямое смещение эмиттерного и коллекторного перехода;
- Ослабление диффузного электрического поля из-за электрического поля внешних источников;
- Снижение уровня потенциального барьера, что приведёт к ослаблению контроля диффузии основных НЗ, а также смещению большого количества дырок из эмиттерных и коллекторных областей в область базы.
Вследствие последнего пункта происходит формирование эмиттерных и коллекторных токов насыщения (Iэ.нас. и Iк.нас.)
В этом же режиме фигурирует понятие «напряжение насыщения» на переходе К-Э. Благодаря ему можно определить степень падения напряжения для открытого транзистора. Подобным образом напряжение насыщения для перехода Б-Э определяет степень падения напряжения для приведённого участка.
Режим отсечки
Характеристика:
- Смещение по обратному направлению в К-области;
- Смещение Э-перехода по любому направлению, при условии, что оно не превысит пороговый показатель, который отграничивает начало процесса испускания электронов эмиттером в базовый слой.
Уровень приведённого показателя в случае с кремниевым биполярным транзистором достигает 0,6-0,7 Вольт, значит режим отсечки возможен при нулевой силе тока на базе, либо при уровне напряжения менее 0,7 Вольт на Э-Б переходе.
Барьерный режим
Характеристика:
- Соединение базового сегмента и коллектора на коротко, либо с применением малогабаритного резистора;
- Производится подключение резистора к коллекторной или эмиттерной цепи, чтобы он мог задавать ток посредством транзисторного элемента.
Действие в представленном режиме преобразует полупроводниковый триод в аналог диода с последовательным подключением к токозадающему резистору. Каскад, построенный в соответствии с данной схемой,имеет небольшое количество составляющих и почти не зависит от характеристик используемого устройства.
Транзистор кт502, характеристики, маркировка, аналоги, цоколевка
Транзисторы КТ502 универсальные кремниевые эпитаксиально-планарные структуры p-n-p.
Применяются в усилителях низкой частоты, операционных и дифференциальных усилителях, импульсных устройствах, преобразователях.
№1 — Эмиттер
№2 — База
№3 — Коллектор
Маркировка КТ502
КТ503А — сбоку светложелтая точка, сверху темнокрасная точка
КТ503Б — сбоку светложелтая точка, сверху желтая точка
КТ503В — сбоку светложелтая точка, сверху темнозеленая точка
КТ503Г — сбоку светложелтая точка, сверху голубая точка
КТ503Д — сбоку светложелтая точка, сверху синяя точка
КТ503Е — сбоку светложелтая точка, сверху белая точка
Предельные параметры КТ502
Максимально допустимый постоянный ток коллектоpа (IК max):
КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 150 мА
Максимально допустимый импульсный ток коллектоpа (IК, и max):
КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 350 мА
Граничное напряжение биполярного транзистора (UКЭ0 гр) при ТП = 25° C:
- КТ502А — 25 В
- КТ502Б — 25 В
- КТ502В — 40 В
- КТ502Г — 40 В
- КТ502Д — 60 В
- КТ502Е — 80 В
Максимально допустимое постоянное напряжение коллектор-база при токе эмиттера, равном нулю (UКБ0 max) при ТП = 25° C:
- КТ502А — 40 В
- КТ502Б — 40 В
- КТ502В — 60 В
- КТ502Г — 60 В
- КТ502Д — 80 В
- КТ502Е — 90 В
Максимально допустимое постоянное напряжение эмиттеp-база при токе коллектоpа, равном нулю (UЭБ0 max) при ТП = 25° C:
КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 5 В
Максимально допустимая постоянная рассеиваемая мощность коллектоpа (PК max) при Т = 25° C:
КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 350 мВт
Максимально допустимая температура перехода (Tп max):
КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 125 ° C
Максимально допустимая температура окружающей среды (Tmax):
КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е —
(adsbygoogle = window.adsbygoogle || []).push({});
85 ° C
Электрические характеристики транзисторов КТ502 при ТП = 25oС
Статический коэффициент передачи тока биполярного транзистора (h21Э) при (UКЭ) 5 В, (IЭ) 10 мА:
- КТ502А — 40 — 120
- КТ502Б — 80 — 240
- КТ502В — 40 — 120
- КТ502Г — 80 — 240
- КТ502Д — 40 — 120
- КТ502Е — 40 — 120
Напряжение насыщения коллектор-эмиттер (UКЭ нас):
КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 0,6 В
Обратный ток коллектоpа (IКБ0)
КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 1 мкА
Граничная частота коэффициента передачи тока (fгр)
КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 5 МГц
if ( rtbW >= 960 ){ var rtbBlockID = «R-A-744188-3»; }
else { var rtbBlockID = «R-A-744188-5»; }
window.yaContextCb.push(()=>{Ya.Context.AdvManager.render({renderTo: «yandex_rtb_4»,blockId: rtbBlockID,pageNumber: 4,onError: (data) => { var g = document.createElement(«ins»);
g.className = «adsbygoogle»;
g.style.display = «inline»;
if (rtbW >= 960){
g.style.width = «580px»;
g.style.height = «400px»;
g.setAttribute(«data-ad-slot», «9935184599»);
}else{
g.style.width = «300px»;
g.style.height = «600px»;
g.setAttribute(«data-ad-slot», «9935184599»);
}
g.setAttribute(«data-ad-client», «ca-pub-1812626643144578»);
g.setAttribute(«data-alternate-ad-url», stroke2);
document.getElementById(«yandex_rtb_4»).appendChild(g);
(adsbygoogle = window.adsbygoogle || []).push({}); }})});
window.addEventListener(«load», () => {
var ins = document.getElementById(«yandex_rtb_4»);
if (ins.clientHeight == «0») {
ins.innerHTML = stroke3;
}
}, true);
Емкость коллекторного перехода (CК)
КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 20 пФ
Емкость эмиттерного перехода (CЭ)
КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 15 пФ
Тепловое сопротивление переход-среда (RТ п-с)
КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е — 214 ° C/Вт
Опубликовано 16.03.2020