Даташит b647 pdf ( datasheet )

Устройство и принцип действия

Транзистор — электронный полупроводник, состоящий из 3 электродов, одним из которых является управляющий. Транзистор биполярного типа отличается от полярного наличием 2 типов носителей заряда (отрицательного и положительного).

Отрицательные заряды представляют собой электроны, которые высвобождаются из внешней оболочки кристаллической решетки. Положительный тип заряда, или дырки, образуются на месте высвобожденного электрона.

Устройство биполярного транзистора (БТ) достаточно простое, несмотря на его универсальность. Он состоит из 3 слоев проводникового типа: эмиттера (Э), базы (Б) и коллектора (К).

Эмиттер (от латинского «выпускать») — тип полупроводникового перехода, основной функцией которого является инжекция зарядов в базу. Коллектор (от латинского «собиратель») служит для получения зарядов эмиттера. База является управляющим электродом.

Слои эмиттерный и коллекторный почти одинаковые, однако отличаются степенью добавления примесей для улучшения характеристик ПП. Добавление примесей называется легированием. Для коллекторного слоя (КС) легирование выражено слабо для повышения коллекторного напряжения (Uк). Эмиттерный полупроводниковый слой легируется сильно для того, чтобы повысить обратное допустимое U пробоя и улучшить инжекцию носителей в базовый слой (увеличивается коэффициент передачи по току — Kт). Слой базы легируется слабо для обеспечения большего сопротивления (R).

Переход между базой и эмиттером меньший по площади, чем К-Б. Благодаря разнице в площадях и происходит улучшение Кт. При работе ПП переход К-Б включается со смещением обратного типа для выделения основной доли количества теплоты Q, которое рассеивается и обеспечивает лучшее охлаждение кристалла.

Быстродействие БТ зависит от толщины базового слоя (БС). Эта зависимость является величиной, изменяющейся по обратно пропорциональному соотношению. При меньшей толщине — большее быстродействие. Эта зависимость связана с временем пролета носителей заряда. Однако при этом снижается Uк.

Между эмиттером и К протекает сильный ток, называемый током К (Iк). Между Э и Б протекает ток маленькой величины — ток Б (Iб), который используется для управления. При изменении Iб произойдет изменение Iк.

У транзистора два p-n перехода: Э-Б и К-Б. При активном режиме Э-Б подключается со смещением прямого типа, а подключение К-Б происходит с обратным смещением. Так как переход Э-Б находится в открытом состоянии, то отрицательные заряды (электроны) перетекают в Б. После этого происходит их частичная рекомбинация с дырками. Однако большая часть электронов достигает К-Б из-за малой легитивности и толщины Б.

В БС электроны являются неосновными носителями заряда, и электромагнитное поле помогает им преодолеть переход К-Б. При увеличении Iб произойдет расширение открытия Э-Б и между Э и К пробежит больше электронов. При этом произойдет существенное усиление сигнала низкой амплитуды, т. к. Iк больше, чем Iб.

Смотрите это видео на YouTube

Для того чтобы проще понять физический смысл работы транзистора биполярного типа, нужно ассоциировать его с наглядным примером. Нужно предположить, что насос для закачки воды является источником питания, водопроводный кран — транзистором, вода — Iк, степень поворота ручки крана — Iб. Для увеличения напора нужно немного повернуть кран — совершить управляющее действие. Исходя из примера можно сделать вывод о простом принципе работы ПП.

Однако при существенном увеличении U на переходе К-Б может произойти ударная ионизация, следствием которой является лавинное размножение заряда. При комбинации с тоннельным эффектом этот процесс дает электрический, а с увеличением времени и тепловой пробой, что выводит ПП из строя. Иногда тепловой пробой наступает без электрического в результате существенного увеличения тока через выход коллектора.

Кроме того, при изменении U на К-Б и Э-Б меняется толщина этих слоев, если Б тонкая, то происходит эффект смыкания (его еще называют проколом Б), при котором происходит соединение переходов К-Б и Э-Б. В результате этого явления ПП перестает выполнять свои функции.

Система обозначений транзисторов

Встречаются транзисторы (биполярные), которые имеют старую, введенную до 1964 г. систему обозначений. По старой системе в обозначение транзистора входит буква П и цифровой номер.

По номеру транзистора можно определить, для каких каскадов радиоэлектронной конструкции он разработан. Если перед буквой П стоит буква М, то это значит, что корпус транзистора холодносварочной конструкции. Расшифровка типов транзисторов по номеру следующая:

Низкочастотные (до 5 МГц):

  • 1…100 — германиевые малой мощности, до 0,25 Вт;
  • 101…201 — кремниевые до 0,25 Вт;
  • 201…300 — германиевые большой мощности, более 0,25 Вт;
  • 301…400 — кремниевые более 0,25 Вт.

Высокочастотные (свыше 5 МГц):

  • 401…500 — германиевые до 0,25 Вт;
  • 501…600 — кремниевые до 0,25 Вт;
  • 601…700 — германиевые более 0,25 Вт;
  • 701…800 — кремниевые более 0,25 Вт.

Например:

  • П416 Б — транзистор германиевый, высокочастотный, малой мощности, разновидности Б;
  • МП39Б — германиевый транзистор, имеющий холодносварочный корпус, низкочастотный, малой мощности, разновидности Б.

В новой системе обозначений используется буквенно-цифровой шифр, который состоит из 5 элементов:

1-й  элемент системы обозначает исходный материал, на основе которого изготовлен транзистор и его содержание не отличается от системы обозначения диодов, то есть Г или 1 — германий, К или 2 — кремний, А или 3 — арсенид галлия, И или 4 — индий.

2-1  элемент — буква Т (биполярный) или П (полевой).

3-1  элемент — цифра, указывающая на функциональные возможности транзистора по допустимой рассеиваемой мощности и частотным свойствам.

Транзисторы малой мощности, Рmах < 0,3 Вт:

  • 1    — маломощный низкочастотный, Гф< 3 МГц;
  • 2    — маломощный среднечастотный, 3 < frp< 30 МГц;
  • 3    — маломощный высокочастотный, 30 < fгр< 300 МГц.

Транзисторы средней мощности, 0,3 < Рmах <1,5 Вт:

  • 4    — средней мощности низкочастотный;
  • 5    — средней мощности среднечастотный;
  • 6    — средней мощности высокочастотный.

Транзисторы большой мощности, Рmах >1,5 Вт:

  • 7    — большой мощности низкочастотный;
  • 8    — большой мощности среднечастотный;
  • 9    — большой мощности высокочастотный и сверхвысокочастотный (frp > 300 Гц).

4-й элемент — цифры от 01 до 99, указывающие порядковый номер разработки.

5-й элемент — одна из букв от А до Я, обозначающая деление технологического типа приборов на группы.

Например: КТ540Б — кремниевый транзистор средней мощности среднечастотный, номер разработки 40, группа Б.

При изготовлении транзисторов используют различные технологические приемы, в результате чего получаются приборы со специфическими особенностями, эксплуатационными свойствами и параметрами. Цоколевка транзисторов, широко используемых радиолюбителями, дана на рис. 1.

Рис. 1. Цоколевка отечественных транзисторов.

Электрические характеристики

Идеализированные характеристики биполярного транзистора.

Ic / Vbe характеристика биполярного транзистора.

На рисунке напротив показана форма характеристики I c / V ce . Есть два основных направления:

  • зона насыщения: для напряжений V ce <1  В  ; в этой зоне I c зависит как от V ce, так и от I b (напряжение V ce sat обычно составляет от 0,2  В до Uj (Uj = 0,7  В ));
  • линейная зона: ток коллектора практически не зависит от V ce , он зависит только от I b .

Когда транзистор работает в линейной зоне, его можно рассматривать как усилитель тока: выходной ток Ic пропорционален входному току I b . Отношение I c / I b , называемое коэффициентом усиления транзистора по току , является одной из основных характеристик последнего; обычно обозначается греческой буквой β. Β изображенного транзистора равно 100

Важно учитывать тот факт, что для данного транзистора β изменяется в зависимости от температуры. Кроме того, β транзисторов одного типа демонстрируют большую дисперсию

Это заставляет конструкторы указывать классы усиления. Если мы возьмем, например, широко используемый транзистор, такой как BC107, коэффициент усиления по току варьируется от 110 до 460. Затем производитель тестирует транзисторы после изготовления и добавляет букву после числа, чтобы указать класс усиления A, B, VS .. .

Рисунок I c / V be показывает, что для транзистора, работающего в зоне насыщения, напряжение V be меняется очень мало. Ниже V be = 0,65  В транзистор не проводит ток. Когда это значение превышено, называемое пороговым напряжением, ток коллектора увеличивается экспоненциально. Таким образом, показано, что ток коллектора Ic равен , где I s соответствует току насыщения перехода база-эмиттер и раннему напряжению.
япротивзнак равноβяs1+VпротивеVEВexp⁡(VбеVтчас){\ displaystyle I_ {c} = \ beta \, I_ {s} \, \ left \, \ exp \ left ({ \ frac {V_ {be}} {V_ {th}}} \ right)}VEВ{\ displaystyle V_ {EA}}

На практике V be обычно составляет от 0,65  В (для I c в несколько мА) до 1  В (для силовых транзисторов с большим I c , например 1  А ).

Помимо коэффициента усиления по току, для определения работы транзистора используются некоторые другие электрические характеристики:

  • его переходная частота , характерная для его рабочей скорости (доступное произведение диапазона усиления); чем больше транзистор может достичь высокой крутизны при низкой емкости, тем выше частота перехода; Благодаря техническому прогрессу сегодня мы достигаем десятков гигагерц. Биполярные транзисторы в этом отношении превосходят полевые транзисторы.FТ{\ displaystyle F_ {T}}FТ{\ displaystyle F_ {T}}
  • его раннее напряжение , тем более что транзистор ведет себя как идеальный источник тока; Сопротивление эмиттер-коллектор соответствует соотношению между начальным напряжением и током коллектора.VEВ{\ displaystyle V_ {EA}}
  • его крутизна (напряжение-коэффициент усиления по току или наклон активного компонента), непосредственно связан с током коллектора (в первом приближении, она равна где есть тепловое напряжение ). Конечно, поскольку каждый транзистор предназначен для правильной работы в определенном диапазоне тока, нет необходимости увеличивать ток сверх определенного предела для увеличения усиления.грамммзнак равнояпротивVтчас{\ displaystyle g_ {m} = I_ {c} / V_ {th}} Vтчасзнак равноkТq{\ Displaystyle V_ {th} = kT / q}

Виды транзисторов

В первых транзисторах применялся германий, который работал не совсем стабильно. Со временем от него отказалось в пользу других материалов: кремния (самый распространённый) и арсенида галлия. Но все это традиционные полупроводники.

В настоящее время начинают набирать популярность триоды на основе органических материалов и даже веществ биологического происхождения: протеинов, пептидов, молекул хлорофилла и целых вирусов. Биотранзисторы используются в медицине и биотехнике.

Другие классификации транзисторов:

  1. По мощности подразделяются на маломощные (до 0,1 Вт), средней мощности (от 0,1 до 1 Вт) и просто мощные (свыше 1 Вт).
  2. Также разделяются по материалу корпуса (металл или пластмасса), типу исполнения (в корпусе, бескорпусные, в составе интегральных схем).
  3. Нередко их объединяют друг с другом для улучшения характеристик. Такие транзисторы называются составными или комбинированными и могут состоять из двух и более полупроводниковых приборов. Строение и у них простое: эмиттер первого является базой для второго и так далее до необходимого количества триодов. Бывает нескольких типов: Дарлинга (все составляющие с одинаковым типом проводимости), Шиклаи (тип проводимости разный), каскодный усилитель (два прибора, работающие как один с подключением по схеме с общим эмиттером).
  4. К составным относится также и IGBT-транзистор, представляющий собой биполярный, который управляется при помощи полярного триода с изолированным затвором. Такой тип полупроводниковых приборов применяется в основном там, где нужно управлять большим током (сварочные аппараты, городские электросети) или электромеханическими приводами (электротранспорт).
  5. В качестве управления может применяться не ток, а другое электромагнитное воздействие. К примеру, в фототранзисторах в качестве базы используется чувствительный фотоэлемент, а в магнитотранзисторах – материал, индуцирующий ток при воздействии на него магнитного поля.

Технологический предел для транзисторов еще не достигнут. Их размеры уменьшаются с каждым голом, а различные научно-исследовательские институты ведут поиск новых материалов для использования в качестве полупроводника. Можно сказать, что эти полупроводниковые приборы еще не сказали миру своего последнего слова.

2SB647 Datasheet (PDF)

..1. 2sb647.pdf Size:167K _utc

UNISONIC TECHNOLOGIES CO., LTD 2SB647 PNP EPITAXIAL SILICON TRANSISTOR SILICON PNP EPITAXIAL APPLICATION * Low frequency power amplifier ORDERING INFORMATION Ordering Number Pin Assignment Package Packing Lead Free Halogen Free 1 2 3 2SB647L-x-T9N-B 2SB647G-x-T9N-B TO-92NL E C B Tape Box 2SB647L-x-T9N-K 2SB647G-x-T9N-K TO-92NL E C B Bulk www.unisonic.com.tw 1 of 4

..2. 2sb647.pdf Size:33K _hitachi

2SB647, 2SB647ASilicon PNP EpitaxialApplication Low frequency power amplifier Complementary pair with 2SD667/AOutlineTO-92MOD1. Emitter2. Collector3. Base3212SB647, 2SB647AAbsolute Maximum Ratings (Ta = 25C)Item Symbol 2SB647 2SB647A UnitCollector to base voltage VCBO 120 120 VCollector to emitter voltage VCEO 80 100 VEmitter to base volt

..3. 2sb647 a.pdf Size:186K _wietron

2SB647 / 2SB647APNP General Purpose Transistors2P b Lead(Pb)-Free13231.EMITTER3.BASE2.COLLECTOR1TO-92MODMAXIMUM RATINGS(Ta=25C)Rating Symbol Value UnitCollector-Emitter Voltage80VCEOVVCBOCollector-Base Voltage 120 VVEBOEmitter-Base Voltage 5.0 VICCollector Current — Continuous 1000 mATotal Device DissipationPD900 mWTA=25CTj CJunc

0.1. 2sb647l-c.pdf Size:284K _mcc

MCCTM Micro Commercial Components20736 Marilla Street Chatsworth2SB647LMicro Commercial ComponentsCA 91311Phone: (818) 701-4933Fax: (818) 701-4939Features Low Frequency Power Amplifier PNP Complementary Pair with 2SD667Plastic-Encapsulate Epoxy meets UL 94 V-0 flammability rating Moisture Sensitivity Level 1Transistor Lead Free Finish/Rohs Complian

0.2. 2sb647-b.pdf Size:719K _mcc

2SB647(A)-BMCCMicro Commercial ComponentsTM2SB647(A)-C20736 Marilla Street ChatsworthMicro Commercial ComponentsCA 913112SB647-DPhone: (818) 701-4933Fax: (818) 701-4939Features Epoxy meets UL 94 V-0 flammability ratingPNP Silicon Moisture Sensitivity Level 1 Capable of 0.9Watts of Power Dissipation.Plastic-Encapsulate Collector-current -1.0A

 0.3. 2sb647l-d.pdf Size:284K _mcc

MCCTM Micro Commercial Components20736 Marilla Street Chatsworth2SB647LMicro Commercial ComponentsCA 91311Phone: (818) 701-4933Fax: (818) 701-4939Features Low Frequency Power Amplifier PNP Complementary Pair with 2SD667Plastic-Encapsulate Epoxy meets UL 94 V-0 flammability rating Moisture Sensitivity Level 1Transistor Lead Free Finish/Rohs Complian

0.4. 2sb647-c.pdf Size:719K _mcc

2SB647(A)-BMCCMicro Commercial ComponentsTM2SB647(A)-C20736 Marilla Street ChatsworthMicro Commercial ComponentsCA 913112SB647-DPhone: (818) 701-4933Fax: (818) 701-4939Features Epoxy meets UL 94 V-0 flammability ratingPNP Silicon Moisture Sensitivity Level 1 Capable of 0.9Watts of Power Dissipation.Plastic-Encapsulate Collector-current -1.0A

 0.5. 2sb647l-b.pdf Size:284K _mcc

MCCTM Micro Commercial Components20736 Marilla Street Chatsworth2SB647LMicro Commercial ComponentsCA 91311Phone: (818) 701-4933Fax: (818) 701-4939Features Low Frequency Power Amplifier PNP Complementary Pair with 2SD667Plastic-Encapsulate Epoxy meets UL 94 V-0 flammability rating Moisture Sensitivity Level 1Transistor Lead Free Finish/Rohs Complian

0.6. 2sb647-d.pdf Size:719K _mcc

2SB647(A)-BMCCMicro Commercial ComponentsTM2SB647(A)-C20736 Marilla Street ChatsworthMicro Commercial ComponentsCA 913112SB647-DPhone: (818) 701-4933Fax: (818) 701-4939Features Epoxy meets UL 94 V-0 flammability ratingPNP Silicon Moisture Sensitivity Level 1 Capable of 0.9Watts of Power Dissipation.Plastic-Encapsulate Collector-current -1.0A

0.7. 2sb647a-b.pdf Size:244K _lzg

2SB647(3CG647) 2SB647A(3CG647A) PNP /SILICON PNP TRANSISTOR :, 2SD667(3DG667)/2SD667A(3DG667A) Purpose: Low frequency power amplifier, complementary pair with 2SD667(3DG667) /2SD667A(3DG667A) /Absolute Maximum Ratings(Ta=25) Symbol Rating Unit V CBO-120 V 2SB647 -80

0.8. 2sb647a-c.pdf Size:244K _lzg

2SB647(3CG647) 2SB647A(3CG647A) PNP /SILICON PNP TRANSISTOR :, 2SD667(3DG667)/2SD667A(3DG667A) Purpose: Low frequency power amplifier, complementary pair with 2SD667(3DG667) /2SD667A(3DG667A) /Absolute Maximum Ratings(Ta=25) Symbol Rating Unit V CBO-120 V 2SB647 -80

Полевые транзисторы

Так же очень распространенные на сегодняшний день компоненты. Их применяют даже чаще, чем биполярные. К примеру, инверторы теперь в основном только с полевыми, то есть биполярные приборы они уже стеснили. И если у вас возникает вопрос, можно ли заменить полевой транзистор биполярным, то ответ будет положительным. Однако в полевом плюсов намного больше, чем в биполярном.

Полевые усилители поглощают энергии намного меньше, чем биполярные, так как полевые управление фокусируют на напряжении и электрическим полем заряда, в то время когда биполярные же держатся на токе базы. Поэтому их предпочитают больше. Полевые транзисторы даже переключаются в разы быстрее, чем биполярные. К тому же они имеют хорошую термоустойчивость. И для того, чтобы переключить направления электрического тока, полевые транзисторы вправе соединяться параллельно и без резисторов, просто нужен драйвер, подходящий для этого.

Если же говорить о замене полевых триодов, то и здесь есть способ поиска их аналогов. В принципе в поиске с биполярными не сильно отличается, можно сказать даже, что будет практически таким же. Но разница небольшая есть: нет той проблемы с передачей тока, как у биполярного транзистора. Нельзя забывать о сток-исток, нужно помнить о запасе.

К тому же у полевого есть такой параметр, как сопротивление открытого канала. Вот от него легко определить, что будет с мощностью, и как она будет рассеиваться

Ну и, конечно же, очень важно рассчитывать это сопротивление открытого канала, так как можно потерять много энергии и напряжении при переходе не будет слишком высоким

Чем можно заменить полевые транзисторы?

Крутизна S также очень важна при поиске аналога. Данный параметр будет показывать состояние тока стока при напряжении затвора. Это позволит определить, сколько понадобится напряжения для коммутации.

Помните, что выбирать важно и исходя от порогового напряжения затвора, если напряжение будет в разы меньше порогового, то нормального функционирования от вашего аналога ждать не придется. Цепь при получении напряжения не получит нужного и вся мощность, точнее ее рассеивание останется на приборе, а для него этого нежелательно, ведь может случиться перегрев

В даташите еще говорится, что мощность рассеяния обоих приборов одинакова: и зависит это от корпуса. Если корпус большой, то получение тепловой мощности будет безопаснее рассеиваться.

Емкость затвора так же очень важна в случае данного предмета

Очень важно, чтобы затвор не был крайне тяжелым, и необходимо помнить об этом при выборе. Будет очень хорошо, если он будет меньше в разы, так как это принесет удобство и легкость в использовании данного механизма

Однако если вам нет необходимости перепаивать, то спокойно можно выбрать размер, который идеально подойдет, схожий с оригиналом.

К примеру, сейчас довольно часто меняют IRFP460 на более новую и современную 20N50, так как у него затвор крайне легкий. Опять-таки даташит скажет то же самое, указав на массу схожести, несмотря на преимущество второго.

Производители

Далее по ссылкам и названием компаний можете найти datasheet 2N5401 от следующих производителей: NXP Semiconductors, Semtech Corporation, Boca Semiconductor Corporation, Micro Electronics, ON Semiconductor, Weitron Technology, UNISONIC TECHNOLOGIES CO., LTD, SeCoS Halbleitertechnologie GmbH, Samsung semiconductor, Motorola, Inc, Multicomp, SHENZHEN KOO CHIN ELECTRONICS CO., LTD., SEMTECH ELECTRONICS LTD, Inchange Semiconductor Company Limited, KODENSHI KOREA CORP, New Jersey Semi-Conductor Products, Inc, Daya Electric Group Co., Ltd, Dc Components, Central Semiconductor Corp, AUK corp, Fairchild Semiconductor, Guangdong Kexin Industrial Co.,Ltd, Micro Commercial Components, Foshan Blue Rocket Electronics Co.,Ltd, GUANGDONG HOTTECH INDUSTRIAL CO.,LTD, SHENZHEN YONGERJIA INDUSTRY CO.,LTD.

Характеристики

Таблица максимальных значений основных параметров транзистора 2N5401 при температуре 25°С

Параметр Значение
Напряжение коллектор-эмиттер 150 В
Напряжение коллектор-база 160 В
Напряжение эмиттер-база 5 В
Рассеиваемая мощность 625 мВт
Ток коллектора 600 мА
Тепловое сопротивление, с теплоотводом 83 °С/Вт
Тепловое сопротивление, без теплоотвода 200 °С/Вт
Рабочая температура от -55 до 150 °С
Частота коэффициента передачи тока 300 МГц
Коэффициент передачи тока от 60 до 240
Ток коллектора 0,3А – постоянный 0,6А –пульсирующий
Напряжение насыщения коллектор-эмиттер (ток коллектора – 50мА, ток базы – 5мА) менее 0,5 В
Напряжение насыщения база-эмиттер (ток коллектора – 50мА, ток базы – 5мА) менее 1 В
Обратный ток коллектор — база при напряжении коллектор-база 160В менее 50 нА
Обратный ток эмиттера — база при напряжении эмиттер-база 4В менее 50 нА

Устройство и принцип действия

Рис.2: Планарный биполярный n-p-n транзистор в поперечном разрезе

Самые первые модели биполярных транзисторов выполнялись с применением металлического германия (полупроводниковый материал). На данный момент для этих целей используется монокристаллический кремний и монокристаллический арсенид галлия.

Рис.3: Монокристаллы кремния и арсенида галлия

Наиболее быстродействующими устройствами являются те, в которых задействован арсенид галлия. По этой причине их наиболее часто применяют как элементы сверхбыстродействующих логических схем и схем сверхвысокочастотных усилителей.

Как уже говорилось выше, структура биполярного транзистора складывается из эмиттерного, базового и коллекторного слоёв с различным уровнем легированности, и каждый слой соединён со своим электродом, представленный омическим (невыпрямляющим) контактом.

Слаболегированный базовый слой транзистора отличается большим уровнем омического сопротивления.

При соотнесении контактов эмиттер-база и коллектор-база можно отметить, что первый уступает по размерам второму.

Подобная конструкция обусловлена следующими моментами:

  • Большой коллекторно-базовый переход позволяет увеличить количество передаваемых от базы к коллектору неосновных носителей заряда (ННЗ);
  • На момент активной работы К-Б-переход функционирует в условиях обратного смещения, что вызывает сильное тепловыделение в зоне коллекторного перехода, поэтому, чтобы улучшить его теплоотводность приходится увеличивать площадь.

Таким образом «идеальный» симметричный биполярный транзистор фигурирует только в теоретических выкладках, а перенос теорию на практическую базу демонстрирует, что наибольшим КПД обладают именно те модели, которые не обладают симметрией.

В режиме активного усиления в транзисторе происходит прямое смещение Э-перехода (он становится открытым), и обратное смещение К-перехода (он становится закрытым). В противоположной ситуации, при закрытии Э-перехода и открытии К-перехода происходит инверсное включение биполярного транзистора.

Если подробнее рассматривать процесс функционирования транзисторов n-p-n типа, то в первую очередь наблюдается переход основных НЗ (носителей заряда) из эмиттерного слоя по Э-Б-переходу в базовый слой. Часть НЗ, представленных электронами взаимодействует с дырками базы, что приводит к нейтрализации обоих зарядов и сопутствующему выделению энергии. Тем не менее, базовый слой достаточно тонок и легирован достаточно слабо, это увеличивает общее время процесса взаимодействия, поэтому гораздо большее количество эмиттерных НЗ успевает проникнуть в коллекторный слой. Кроме того, сказывается действие силы электрического поля, образуемого смещённым коллекторным переходом. Благодаря этой силе значительно увеличивается количество перетягиваемых из базового слоя электронов.

В  результате, значение коллекторного тока практически равняется эмиттерному за вычетом потерь в базовом слое, которыми и исчисляется ток самой базы. Для вычисления значения коллекторного тока используется формула:

Iк = αIэ,

где Iк – коллекторный ток, Iэ – эмиттеный ток, α– коэффициент передачи тока эмиттера.

Спектр значений коэффициента α варьируется от 0,9 до 0,99. Большие значения позволяют производить более эффективную трансляцию тока транзистором. Величина α при этом не определяется тем, какое напряжение демонстрируют К-Б и Б-Э переходы. Как результат, в условиях множества вариантов рабочего напряжения сохраняется пропорциональное соотношение между Iк и Iб. Для нахождения коэффициента данной пропорциональности применяется формула:

β = α/(1 − α).

Значения β  могут находиться в диапазоне 10-100. Отсюда можно сделать вывод о том, что для регуляции работы большого коллекторного тока, вполне можно обходиться током малой силы на базе.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: