Транзистор с945

Модификации транзистора

Тип Pc Ucb Uce Ueb Tj Cc Ic hfe ft Корпус
C945 0.2 W 60 V 50 V 5 V 150 °C 3 pf 0.15 A 130 150 MHz SOT23
2SC945 0.25 W 50 V 40 V 5 V 125 °C 0.1 A 75 125 MHz TO-92
STC945 0.5 W 50 V 40 V 5 V 150 °C 2 pf 0.15 A 70 80 MHz TO-92
2PC945 0.5 W 60 V 50 V 5 V 150 °C 4 pf 0.1 A 50 150 MHz SOT54, TO-92, SC43
2SC945-GR 0.4 W 60 V 50 V 5 V 150 °C 0.15 A 200 150 MHz TO-92
2SC945-Y 0.4 W 60 V 50 V 5 V 150 °C 0.15 A 120 150 MHz TO-92
2SC945L 0.25 W 50 V 40 V 5 V 125 °C 0.1 A 75 125 MHz TO-92
2SC945LT1 0.23 W 60 V 50 V 5 V 150 °C 2.2 pf 0.15 A 200 150 MHz SOT23
2SC945M 0.25 W 60 V 50 V 5 V 150 °C 250 pf 0.15 A 90 3 MHz SOT23
2SC945O 0.25 W 60 V 50 V 5 V 150 °C 2.5 pf 0.15 A 70 300 MHz TO-92
2SC945P 0.25 W 60 V 50 V 5 V 150 °C 2.5 pf 0.15 A 200 300 MHz TO-92
2SC945R 0.25 W 60 V 50 V 5 V 150 °C 2.5 pf 0.15 A 40 300 MHz TO-92
2SC945T 0.25 W 50 V 40 V 5 V 125 °C 0.1 A 75 125 MHz TO-92
2SC945Y 0.25 W 60 V 50 V 5 V 150 °C 2.5 pf 0.15 A 120 300 MHz TO-92
BTC945A3 0.625 W 60 V 50 V 5 V 150 °C 9 pf 0.2 A 135 150 MHz TO-92
C945LT1 0.2 W 60 V 50 V 5 V 150 °C 0.15 A 40 150 MHz SOT23
C945T 0.4 W 60 V 50 V 5 V 125 °C 3 pf 0.15 A 70 200 MHz TO-92
CSC945 0.25 W 60 V 45 V 5 V 125 °C 4 pf 0.1 A 50 150 MHz TO-92
CSC945K 0.25 W 60 V 45 V 5 V 125 °C 4 pf 0.1 A 50 150 MHz TO-92
CSC945P 0.25 W 60 V 45 V 5 V 125 °C 4 pf 0.1 A 50 150 MHz TO-92
CSC945Q 0.25 W 60 V 45 V 5 V 125 °C 4 pf 0.1 A 50 150 MHz TO-92
CSC945R 0.25 W 60 V 45 V 5 V 125 °C 4 pf 0.1 A 50 150 MHz TO-92
FPC945 0.25 W 50 V 40 V 175 °C 5 pf 0.1 A 200 250 MHz TO-92
FTC945B 0.4 W 60 V 50 V 5 V 125 °C 3 pf 0.15 A 70 200 MHz TO-92
HSC945 0.25 W 60 V 50 V 5 V 150 °C 4 pf 0.1 A 135 150 MHz TO-92
KSC945 0.25 W 60 V 50 V 5 V 150 °C 3.5 pf 0.15 A 40 300 MHz TO-92
KSC945G 0.25 W 60 V 50 V 5 V 150 °C 3.5 pf 0.15 A 200 300 MHz TO-92
KSC945L 0.25 W 60 V 50 V 5 V 150 °C 3.5 pf 0.15 A 350 300 MHz TO-92
KSC945O 0.25 W 60 V 50 V 5 V 150 °C 3.5 pf 0.15 A 70 300 MHz TO-92
KSC945R 0.25 W 60 V 50 V 5 V 150 °C 3.5 pf 0.15 A 40 300 MHz TO-92
KSC945Y 0.25 W 60 V 50 V 5 V 150 °C 3.5 pf 0.15 A 120 300 MHz TO-92
KTC945 0.625 W 60 V 50 V 5 V 150 °C 2 pf 0.15 A 90 300 MHz TO-92
KTC945B 0.625 W 60 V 50 V 5 V 150 °C 2 pf 0.15 A 70 300 MHz TO-92

Таблица предельных значений

Работа транзистора с превышением значений, указанных в таблице, может его повредить или нарушить функционирование: пропадут или изменятся усилительные и переключающие характеристики полупроводникового прибора. Не рекомендуется допускать режимы с такими нагрузками. Кроме того, длительная работа с превышением предельных значений может повлиять на надежность радиокомпонента в будущем.

Значения напряжения и тока в таблице соответствуют температуре окружающей среды +25°C.

Обозначение Параметр Величина Ед.изм.
Uкб max Напряжение коллектор-база 20…50 В
Uкэ max Напряжение коллектоp-эмиттеp (Rбэ=10кОм) 20…50 В
Uэб max Напряжение эмиттер-база 5 В
Iк max Постоянный ток коллектора 200 мА
Iк имп max Импульсный ток коллектора (tu 500) 250 мА
Pк max Рассеиваемая мощность коллектора 250 мВт
Tj Температура перехода 125 °C

Мощный низковольтный маяк

Для обозначения опасного участка, или неисправной машины, стоящей на дороге, в ночное время может быть весьма полезным световой маяк, питающийся от автомобильного аккумулятора. Схема маяка показана на рисунке 2. Выполнена она по схеме несимметричного мультивибратора, в котором одно из плеч сделано на мощном коммутаторном полевом транзисторе VT2 типа IRF530.

Схема включается последовательно лампе накаливания Н1, и питается через неё. Полевой транзистор VT2 в открытом состоянии имеет очень низкое сопротивление канала, поэтому напряжение питания схемы во время открытого состояния VT2 снижается почти до нулевого значения.

Чтобы поддерживать питание схемы во время горения лампы, когда полевой транзистор VT2 открыт, есть цепь из конденсатора С1 и диода VD1. Конденсатор С1, в то время, когда VT2 закрыт, через диод VD1 и лампу быстро заряжается, и во время открытого состояния VT2 схема питается напряжением, накопленном на С1, потому что диод VD1 препятствует разрядке этого конденсатора.

Рис. 2. Схема мощный низковольтного свето-маяка.

Частота мигания лампы зависит от емкости конденсатора С2. Лампа Н1 — стандартная автомобильная лампочка от фар. Можно использовать лампу мощностью до 65 W. При этом, нужно учесть что транзистору VT2 может потребоваться радиатор.

Отечественные и импортные аналоги

Первая позиция в таблице, – транзистор С945, для которого предлагаются аналоги.

Аналог VCEO IC PC hFE fT
C945 50 0,15 0,4 70 200
Отечественное производство
КТ3102 45 0,1 0,25 250 300
Импорт
KSC945 50 0,15 0,25 40 300
2N2222 30 0,8 0,5 100 250
2N3904 40 0,2 0,31 40 300
2SC3198 50 0,15 0,4 20 130
2SC1815 50 0,15 0,4 70 80
2SC2002 60 0,3 0,3 90 70
2SC3114 50 0,15 0,4 55 100
2SC3331 50 0,2 0,5 100 200
2SC2960 50 0,15 0,25 100 100

Среди перечня аналогов транзистор КТ3102 отличается широкой доступностью и незначительной стоимостью, поэтому радиолюбители часто используют его для замены С945

Обращаем ваше внимание, что его мощность рассеяния значительно ниже оригинала, – ориентировочно на 30%. Перед использованием КТ3102 проверьте мощностные режимы, в которых ему предстоит работать

Примечание: данные в таблице взяты из даташип компаний-производителей.

Цветомузыкальная приставка на П213.

Очень несложную цветомузыкальную приставку можно собрать на трех транзистрах П213. Три раздельных усилительных каскада предназначены для усиления трех полос звуковой частоты. Каскад на транзисторе VT1 усиливает сигнал на частоте свыше 1000Гц, на транзисторе VT2 – от 1000 до 200Гц, на транзисторе VT3 – ниже 200гЦ. Разделение частот осуществляется простыми RC- фильтрами.

Входной сигнал берется с выхода акустических колонок. Его уровень регулируется с помощью потенциометра R1. Для подстройки уровня яркости каждого канала используются подстроечные резисторы R3, R5, R7. Смещение на базах транзисторов определяется значениями резисторов R2, R4, R6. Нагрузкой каждого каскада являются две параллельно включенные лампочки (6,3 В х 0,28 А). Питается схема от блока питания с выходным напряжением 8-9 В и максимальным током свыше 2А.

Транзисторы П213 могут иметь значительный разброс по усилению тока. Поэтому, значения резисторов R2, R4, R6 необходимо подбирать для каждого каскада — индивидуально. Ток коллектора при этом настраивается на такую величину, чтобы нити накала ламп немного светились в отсутствии входного сигнала. При этом транзисторы обязательно будут греться. Стабильность работы германиевых полупроводниковых приборов очень зависит от температуры. Поэтому, необходимо установить П213 на радиаторы — площадью от 75 кв.см.

Если же у вас, имеется какая-то старая, ненужная техника — можно попытаться добыть транзисторы (и другие детали) из нее. Транзисторы П213 можно найти радиоле Бригантина, приемнике ВЭФ Транзистор 17, приемниках Океан, Рига 101, Рига 103, Урал Авто-2. Транзисторы КТ815 в приемниках Абава РП-8330, Вега 342, магнитофонах «Азамат»(!), Весна 205-1, Вильма 204- стерео и т. д.

Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт

Эта страница показывает существующую справочную информацию о параметрах биполярного высокочастотного npn транзистора 2SC815

. Дана подробная информация о параметрах, схеме и цоколевке, характеристиках, местах продажи и производителях. Аналоги этого транзистора можно посмотреть на отдельной странице.

Исходный полупроводниковый материал, на основе которого изготовлен транзистор: кремний (Si) Структура полупроводникового перехода: npn

Производитель: NEC Сфера применения: Medium Power, High Voltage Популярность: 13955 Условные обозначения описаны на странице «Теория».

Аналоги транзистора КТ3102

КТ3102А

: 2N4123, BC547A, BC548A, BCY59-VII, BCY65-VII, BC107AP, BC182A, BC183A, BC237A, BC317, BC238A, MPS3709КТ3102Б : 2N2483, 2SC538A, 2SC828A, BC452, BC547B, BCY56, BCY59-VIII, BCY59-IX, BCY65-VIII, BCY65-IX, BCY79, MPSA09, 2SC1000GTM, 2SC1815, BC182B, BC182C, BC183B, BC237B, BC318, BC382B, SF132E, BC183C, PN2484КТ3102В : 2SC828, BC548B, MPS3708, MPS3710, 2N3711, 2SC454B, 2SC454C, 2SC454D, 2SC458, 2SC458KB, 2SC458KC, 2SC458KD, BC108AP, BC238B, BC451, SF131EКТ3102Г : 2SC538, 2SC900, 2SC923, BC547C, BC548C, MPS3711, MPS6571, BC108CP, BC238C, BC382C, SF131F, SF132FКТ3102Д : 2N2484, 2N5209, 2SC945, BC453, BC521, BC521C, BC549A, BC549B, BCY59-х, MPS3707, MPS6512, MPS6513, MPS6514, MPS6515, 2N4124, 2SC458LGB, 2SC458LGC, 2SC458LGD, BC109BP, BC184A, BC239B, BC383B, BC384BКТ3102Е : 2N5210, BC549C, BCY57, BC109CP, BC184B, BC239C, BC319, BC383C, BC384C, BFх65

Таблица предельных значений

При превышении значений параметров, указанных в таблице, производитель не гарантирует не только работу транзистора С945 в номинальных режимах и функционирование, в соответствии с графиками, но и целостность самого элемента.

Значения напряжения и тока в таблице соответствуют температуре окружающей среды +25°C.

Обозначение Параметр Величина ед.изм.
VCBO Напряжение коллектор-база 60 В
VCEO Напряжение коллектор-эмиттер 50 В
VEBO Напряжение эмиттер-база 5 В
IC Постоянный ток коллектора 150 мА
PC Мощность рассеяния 400 мВт
TJ Максимальная рабочая температура 125 °C
Tstg Интервал рабочих температур -55…125 °C

Простейший усилитель на биполярном транзисторе

Рассмотрим детальнее принцип усиления сигнала в электрической плоскости на примере схемы.
Заранее оговорюсь, что такая схема не совсем правильная. Никто не подключает источник постоянного
напряжения напрямую к источнику переменного. Но в данном случае, так будет проще и нагляднее для
понимания самого механизма усиления с помощью биполярного транзистора. Так же, сама техника расчетов
в приведенном ниже примере носит несколько упрощенный характер.

1.Описание основных элементов цепи

Итак, допустим в нашем распоряжении транзистор с коэффициентом усиления 200 (β = 200).
Со стороны коллектора подключим относительно мощный источник питания в 20V,
за счет энергии которого будет происходить усиление. Со стороны базы транзистора
подсоединим слабый источник питания в 2V. К нему последовательно подсоединим источник переменного
напряжения в форме синуса, с амплитудой колебаний в 0.1V. Это будет сигнал, который нужно усилить.
Резистор Rb возле базы необходим для того, чтобы ограничить ток, идущий от источника сигнала,
обычно обладающего слабой мощностью.

2. Расчет входного тока базы Ib

Теперь посчитаем ток базы Ib. Поскольку мы имеем дело с переменным напряжением,
нужно посчитать два значения тока – при максимальном напряжении (Vmax) и минимальном (Vmin).
Назовем эти значения тока соответственно — Ibmax и Ibmin.

Также, для того чтобы посчитать ток базы, необходимо знать напряжение база-эмиттер VBE. Между базой и эмиттером располагается
один PN-переход. Получается, что ток базы «встречает» на своем пути полупроводниковый диод. Напряжение,
при котором полупроводниковый диод начинает проводить — около 0.6V. Не будем вдаваться в подробности
вольт-амперных характеристик диода, и для простоты расчетов возьмем приближенную модель,
согласно которой напряжение на проводящем ток диоде всегда 0.6V. Значит, напряжение между
базой и эмиттером VBE = 0.6V. А поскольку эмиттер подключен к земле (VE = 0),
то напряжение от базы до земли тоже 0.6V (VB = 0.6V).

Посчитаем Ibmax и Ibmin с помощью закона Ома:

2. Расчет выходного тока коллектора IС

Теперь, зная коэффициент усиления (β = 200),
можно с легкостью посчитать максимальное и
минимальное значения тока коллектора ( Icmax и Icmin).

3. Расчет выходного напряжения Vout

Осталось посчитать напряжение на выходе нашего усилителя Vout.
В данной цепи — это напряжение на коллекторе VC.

Через резистор Rc течет ток коллектора, который мы уже посчитали. Осталось подставить значения:

4. Анализ результатов

Как видно из результатов, VCmax получился меньше чем VCmin. Это произошло из-за того,
что напряжение на резисторе VRc отнимается от напряжения питания VCC. Однако в большинстве
случаев это не имеет значения, поскольку нас интересует переменная составляющая сигнала – амплитуда,
которая увеличилась c 0.1V до 1V. Частота и синусоидальная форма сигнала не изменились. Конечно же,
соотношение Vout/Vin в десять раз — далеко на самый лучший показатель для усилителя,
однако для иллюстрации процесса усиления вполне подойдет.

Итак, подытожим принцип работы усилителя на биполярном транзисторе.
Через базу течет ток Ib, несущий в себе постоянную и переменную составляющие.
Постоянная составляющая нужна для того чтобы PN-переход между базой и эмиттером начал проводить – «открылся».
Переменная составляющая – это, собственно, сам сигнал (полезная информация).
Сила тока коллектор-эмиттер внутри транзистора – это результат умножения тока базы на коэффициент усиления β.
В свою очередь, напряжение на резисторе Rc над коллектором – результат умножения усиленного тока коллектора на значение резистора.

Таким образом, на вывод Vout поступает сигнал с увеличенной амплитудой колебаний,
но с сохранившейся формой и частотой

Важно подчеркнуть, что энергию для усиления транзистор
берет у источника питания VCC. Если напряжения питания будет недостаточно,
транзистор не сможет полноценно работать, и выходной сигнал может получится с искажениями.

Характеристики транзистора КТ3102

Транзистор Uкбо(и),В Uкэо(и), В Iкmax(и), мА Pкmax(т), мВт h21э fгр., МГц
КТ3102А 50 50 100(200) 250 100-200 >150
КТ3102АМ 50 50 100(200) 250 100-200 >150
КТ3102Б 50 50 100(200) 250 200-500 >150
КТ3102БМ 50 50 100(200) 250 200-500 >150
КТ3102В 30 30 100(200) 250 200-500 >150
КТ3102ВМ 30 30 100(200) 250 200-500 >150
КТ3102Г 20 20 100(200) 250 400-1000 >150
КТ3102ГМ 20 20 100(200) 250 400-1000 >150
КТ3102Д 30 30 100(200) 250 200-500 >150
КТ3102ДМ 30 30 100(200) 250 200-500 >150
КТ3102Е 20 20 100(200) 250 400-1000 >150
КТ3102ЕМ 20 20 100(200) 250 400-1000 >150
КТ3102Ж 20 20 100(200) 250 100-250 >150
КТ3102ЖМ 20 20 100(200) 250 100-250 >150

Uкбо(и)

— Максимально допустимое напряжение (импульсное) коллектор-базаUкэо(и) — Максимально допустимое напряжение (импульсное) коллектор-эмиттерIкmax(и) — Максимально допустимый постоянный (импульсный) ток коллектораPкmax(т) — Максимально допустимая постоянная рассеиваемая мощность коллектора без теплоотвода (с теплоотводом)h21э — Статический коэффициент передачи тока биполярного транзистора в схеме с общим эмиттеромfгр — граничная частота коэффициента передачи тока в схеме с общим эмиттером

Основные параметры

  • Коэффициент передачи по току.
  • Входное сопротивление.
  • Выходная проводимость.
  • Обратный ток коллектор-эмиттер.
  • Время включения.
  • Предельная частота коэффициента передачи тока базы.
  • Обратный ток коллектора.
  • Максимально допустимый ток.
  • Граничная частота коэффициента передачи тока в схеме с общим эмиттером.

Параметры транзистора делятся на собственные (первичные) и вторичные. Собственные параметры характеризуют свойства транзистора, независимо от схемы его включения. В качестве основных собственных параметров принимают:

  • коэффициент усиления по току α;
  • сопротивления эмиттера, коллектора и базы переменному току rэrкrб, которые представляют собой:
    • rэ — сумму сопротивлений эмиттерной области и эмиттерного перехода;
    • rк — сумму сопротивлений коллекторной области и коллекторного перехода;
    • rб — поперечное сопротивление базы.

Вторичные параметры различны для различных схем включения транзистора и, вследствие его нелинейности, справедливы только для низких частот и малых амплитуд сигналов. Для вторичных параметров предложено несколько систем параметров и соответствующих им эквивалентных схем. Основными считаются смешанные (гибридные) параметры, обозначаемые буквой «h».

Входное сопротивление — сопротивление транзистора входному переменному току при коротком замыкании на выходе. Изменение входного тока является результатом изменения входного напряжения, без влияния обратной связи от выходного напряжения.

h11 = Um1/Im1, при Um2 = 0

Коэффициент обратной связи по напряжению показывает, какая доля выходного переменного напряжения передаётся на вход транзистора вследствие обратной связи в нём. Во входной цепи транзистора нет переменного тока, и изменение напряжения на входе происходит только в результате изменения выходного напряжения.

h12 = Um1/Um2, при Im1 = 0.

Коэффициент передачи тока (коэффициент усиления по току) показывает усиление переменного тока при нулевом сопротивлении нагрузки. Выходной ток зависит только от входного тока без влияния выходного напряжения.

h21 = Im2/Im1, при Um2 = 0.

Выходная проводимость — внутренняя проводимость для переменного тока между выходными зажимами. Выходной ток изменяется под влиянием выходного напряжения.

h22 = Im2/Um2, при Im1 = 0.

Зависимость между переменными токами и напряжениями транзистора выражается уравнениями:

Um1 = h11Im1 + h12Um2;
Im2 = h21Im1 + h22Um2.

В зависимости от схемы включения транзистора к цифровым индексам h-параметров добавляются буквы: «э» — для схемы ОЭ, «б» — для схемы ОБ, «к» — для схемы ОК.

Для схемы ОЭ: Im1 = IIm2 = IUm1 = Umб-эUm2 = Umк-э. Например, для данной схемы:

h21э = I/I = β.

Для схемы ОБ: Im1 = IIm2 = IUm1 = Umэ-бUm2 = Umк-б.

Собственные параметры транзистора связаны с h-параметрами, например для схемы ОЭ:

;

;

;

.

С повышением частоты заметное влияние на работу транзистора начинает оказывать ёмкость коллекторного перехода Cк. Его реактивное сопротивление уменьшается, шунтируя нагрузку и, следовательно, уменьшая коэффициенты усиления α и β. Сопротивление эмиттерного перехода Cэ также снижается, однако он шунтируется малым сопротивлением перехода rэ и в большинстве случаев может не учитываться. Кроме того, при повышении частоты происходит дополнительное снижение коэффициента β в результате отставания фазы тока коллектора от фазы тока эмиттера, которое вызвано инерционностью процесса перемещения носителей через базу от эммитерного перехода к коллекторному и инерционностью процессов накопления и рассасывания заряда в базе. Частоты, на которых происходит снижение коэффициентов α и β на 3 дБ, называются граничными частотами коэффициента передачи тока для схем ОБ и ОЭ соответственно.

В импульсном режиме ток коллектора изменяется с запаздыванием на время задержки τз относительно импульса входного тока, что вызвано конечным временем пробега носителей через базу. По мере накопления носителей в базе ток коллектора нарастает в течение длительности фронта τфВременем включения транзистора называется τвкл = τз + τф.

Маркировка

По маркировке кт315 можно точно понять, что перед нами именно он, рассмотрим его в корпусе КТ13. Он имеет цифробуквенное обозначение и может отличается от своих собратьев цветом. Чаще всего встречается в оранжевом исполнении. В правом верхнем углу корпуса размещен знак завода-изготовителя, а в левом группа коэффициента усиления. Под условными обозначениями группы и предприятия-изготовителя указана дата выпуска. Вот их фотографии во всем цветовом разнообразии.

Устройства в таком исполнении до 1986 года имели золоченные контакты. После 1986 года количество содержания драгметаллов в них значительно снизилось. А в современных устройствах его практически нет. Усовершенствованный KT315 выпускается в корпусах для дырочного КТ-26 (TO-92) и поверхностного монтажа КТ-46А (SOT-23). На фотографии пример такого устройства — КТ315Г1 (TO-92).

Цифра «1», в конце указывает на современный КТ315(TO-92), а предпоследняя буква «Г» на группу, к которой относится транзистор из этой серии. На основе значений параметров в группе, можно определить его основное назначение. Например, КТ315Н1 использовался ранее в цветных телевизорах, а KT315P и КТ315Р1 применялись в видеомагнитофонах «Электроника ВМ».

Маркировка и цоколёвка

Данный прибор имеет структуру n — p — n . Выводы элемента слева-направо, при обращении лицевой части транзистора к нам(плоская сторона с маркировкой), имеют такой порядок – “коллектор-база-эмиттер”. Цоколёвку КТ3102 нужно знать и учитывать её при пайке прибора. Ошибка при пайке может повредить весь транзистор.

Маркировка транзисторов применяется для различия одного типа прибора от другого. Например, различия между типом А и Б. В случае КТ3102, маркировка имеет следующую структуру:

  • Зелёный кружок на лицевой стороне означает тип транзистора. В нашем случае – КТ3102.
  • Кружок сверху означает букву прибора (А, Б, В и т.д). Применяются следующие обозначения :

А – красный или бордовый. Б – жёлтый. В – зелёный. Г – голубой. Д – синий. Е – белый. Ж – тёмно-коричневый.

На некоторых приборах вместо цветовых обозначений, маркировка пишется словами. Например, 3102 EM. Подобные обозначения удобнее цветных.

Знание маркировки транзистора позволит правильно подобрать нужный элемент, согласно требуемым параметрам.

Характеристики биполярного транзистора.

Выделяют несколько основных характеристик транзистора, которые позволяют понять, как он работает, и как его использовать для решения задач. И первая на очереди — входная характеристика, которая представляет из себя зависимость тока базы от напряжения база-эмиттер при определенном значении напряжения коллектор-эмиттер:

I_{б} = f(U_{бэ}), \medspace при \medspace U_{кэ} = const

В документации на конкретный транзистор обычно указывают семейство входных характеристик (для разных значений U_{кэ}):

Входная характеристика, в целом, очень похожа на прямую ветвь . При U_{кэ} = 0 характеристика соответствует зависимости тока от напряжения для двух p-n переходов включенных параллельно (и смещенных в прямом направлении). При увеличении U_{кэ} ветвь будет смещаться вправо.

Переходим ко второй крайне важной характеристике биполярного транзистора — выходной. Выходная характеристика — это зависимость тока коллектора от напряжения коллектор-эмиттер при постоянном токе базы

I_{к} = f(U_{кэ}), \medspace при \medspace I_{б} = const

Для нее также указывается семейство характеристик для разных значений тока базы:

Видим, что при небольших значениях U_{кэ} коллекторный ток увеличивается очень быстро, а при дальнейшем увеличении напряжения — изменение тока очень мало и фактически не зависит от U_{кэ} (зато пропорционально току базы). Эти участки соответствуют разным .

Для наглядности можно изобразить эти режимы на семействе выходных характеристик:

Участок 1 соответствует активному режиму работы транзистора, когда эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном. Как вы помните, в данном режиме незначительный ток базы управляет током коллектора, имеющим бОльшую величину.

Для управления током базы мы увеличиваем напряжение U_{бэ}, что в соответствии со входными характеристиками приводит к увеличению тока базы. А это уже в соответствии с выходной характеристикой в активном режиме приводит к росту тока коллектора. Все взаимосвязано.

Небольшое дополнение. На этом участке выходной характеристики ток коллектора все-таки незначительно зависит от напряжения U_{кэ} (возрастает с увеличением напряжения). Это связано с процессами, протекающими в биполярном транзисторе. А именно — при росте напряжения на коллекторном переходе его область расширяется, а соответственно, толщина слоя базы уменьшается. Чем меньше толщина базы, тем меньше вероятность рекомбинации носителей в ней. А это, в свою очередь, приводит к тому, что коэффициент передачи тока \beta несколько увеличивается. Это и приводит к увеличению тока коллектора, ведь:

I_к = \beta I_б

Двигаемся дальше

На участке 2 транзистор находится в режиме насыщения. При уменьшении U_{кэ} уменьшается и напряжение на коллекторном переходе U_{кб}. И при определенном значении U_{кэ} = U_{кэ \medspace нас} напряжение на коллекторном переходе меняет знак и переход оказывается смещенным в прямом направлении. То есть в активном режиме у нас была такая картина — эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном. В режиме же насыщения оба перехода смещены в прямом направлении.

В этом режиме основные носители заряда начинают двигаться из коллектора в базу — навстречу носителям заряда, которые двигаются из эмиттера в коллектор. Поэтому при дальнейшем уменьшении U_{кэ} ток коллектора уменьшается. Кроме того, в режиме насыщения транзистор теряет свои усилительные свойства, поскольку ток коллектора перестает зависеть от тока базы.

Режим насыщения часто используется в схемах ключей на транзисторе. В одной из следующих статей мы как раз займемся практическими расчетами реальных схем и там используем рассмотренные сегодня характеристики биполярного транзистора.

И, наконец, область 3, лежащая ниже кривой, соответствующей I_{б} = 0. Оба перехода смещены в обратном направлении, протекание тока через транзистор прекращается. Это так называемый режим отсечки.

Все параметры транзисторов довольно-таки сильно зависят как друг от друга, так и от температуры, поэтому в документации приводятся характеристики для разных значений. Вот, например, зависимость коэффициента усиления по току (в зарубежной документации обозначается как h_{FE}) от тока коллектора для биполярного транзистора BC847:

Как видите, коэффициент усиления не просто зависит от тока коллектора, но и от температуры окружающей среды. Разным значениям температуры соответствуют разные кривые.

Ток или поле, управление транзисторами

Большинству людей, так или иначе имеющими дело с электроникой, принципиальное устройство полевых и биполярных транзисторов должно быть известно. По крайней мере, из названия «полевой транзистор», очевидно, что управляется он полем, электрическим полем затвора, в то время как биполярный транзистор управляется током базы.

Ток и поле, различие здесь кардинальное. У биполярных транзисторов управление током коллектора осуществляется путем изменения управляющего тока базы, в то время как для управления током стока полевого транзистора, достаточно изменить приложенное между затвором и истоком напряжение, и не нужен уже никакой управляющий ток как таковой.

Техническое описание

Транзистор выпускается с гибкими выводами в пластмассовом корпусе КТ-26 (ТО-92), либо в металлостеклянном корпусе КТ-17. Цоколевка выводов кт3102 следующая: 1 – эмиттер, 2 – база, 3 –коллектор.

Характеристики

Все нижеуказанные характеристики для транзисторов в пластиковом корпусе КТ3102 (А-Л) идентичны соответствующим параметрам в металлостекленном (АМ- ЛМ).

  • принцип действия – биполярный;
  • корпус: пластик для КТ26 (ТО-92); металлостеклянный у КТ-17;
  • материал – кремний (Si);
  • npn-проводимость (обратная);

предельно допустимые электрические эксплуатационные данные (при температуре окружающей среды от +25 °C):

основные электрические параметры:

  • IКБО (ICBO) не более 50 нА (nA), при UКБ макс. (VCB max) = 50 В (V) и IЭ (IE)=0;
  • IЭБО (IEBO) не более 10 мкА (µA), при UEБ макс. (VEB max ) = 5 В (V);
  • fгр норм.(ftTYP) от 100 до 300 МГц (MHz), при UКб (VCB) = 5 В (V), IЭ (IE)= 10 мА (mA);
  • емкость коллекторного перехода СК (СС) 6 пФ (pF) при UКБ (VCB) = 5 В (V), f= 10 МГц (MHz);
  • коэффициент шума КШ (Noise Figure) NF от 4 до 10 Дб (dB), при UКЭ(VCE) =5 В (V), IK (Ic) = 0.2 мА (mA);
  • cтатический коэффициент усиления по току h21E находится в диапазоне от 100 до 1000, при UКЭ(VCE) =5 В (V), IK (Ic) = 2 мА (mA), f=50 Гц(Hz).
  • тепловое сопротивление переход- среда 0,4 °C/мВт (°C/mW);
  • Токр от -40 до +85 °C.

При выборе транзистора обратите внимание на дату выпуска и его предельно допустимые напряжения и токи, определите возможность его использования в схеме. Более новые модели имеют преимущества перед старыми, так как производители непрерывно работают над улучшением характеристик в своих продуктах

Не стоит забывать, что у некоторых из них (например КТ3102Г, КТ3102Е) предельные значения по напряжению не превышают 20 В. Ниже приведена классификация КТ3102.

По мнению радиолюбителей, несмотря на идентичность характеристик заявленных производителем, транзистор в пластиковом корпусе немного уступает металлостеклянному. Так, при работе на предельно допустимых параметрах, пластик расширяется и сжимается, что нередко приводит к отрыву выводов от кристалла. Это основная причина, из за которой стоит подумать о применении устройства в пластиковом корпусе. Кроме того пластик иногда становится не герметичен и вдоль выводов к кристаллу может проникать влага. Считают, что в металлопластиковом корпусе кристалл рассеивает большую мощность. Так же у него будет меньшее тепловое сопротивление, а следовательно устройство будет меньше греться и в свою очередь схема будет работать более стабильней.

Зарубежными аналогами, с похожими техническими характеристиками считаются: BC 174, 2S A2785, BC 182, BC 546, BC 547, BC 548, BC 549. Прототипами для разработки некоторых серий КТ3102 были: BC 307A, BC 308A BC 308B, BC 309B, BC 307B, BC 308C, BC 309C. Из российских аналогов КТ-3102, в качестве замены может подойти КТ 611 или популярный КТ315 с группой Б, Г, Е.

Маркировка

Транзисторы маркируются на боковой стороне корпуса. КТ3102 разных годов выпуска могут встречается с различной маркировкой. До 1995 года производители использовали цветовую и кодовую (буквенно-цифровая и символьно-цветовая) маркировку. Советские транзисторы КТ3102 до 1986 года, изготовленные в корпусе КТ-26, можно узнать по темно-зеленой точке на передней части корпуса. По цвету точки, нанесенной на корпусе сверху, определить принадлежность транзистора конкретной к группе. Дата выпуска при цветовой обозначении могла не указываться.

Маркировать транзистор кт3102 с использованием стандартного метода начали с 1986 года. Согласно кодовой метки он узнаваем по белой фигуре прямоугольного треугольника, размещенного на передней части корпуса (слева сверху), обозначающему его тип (модель). Правее указывается групповая принадлежность, а в нижней части год и месяц даты выпуска. В стандартной кодовой маркировке так же указывался год и месяц выпуска транзистора.

Иногда встречается нестандартные цветовые и кодовые маркировки. Как правило, в них не хватает информации о дате выпуска или групповой принадлежности. Современные производители, уже не используют фигуры в обозначении, а указывают на корпусе полное название типа и группы транзистора. Кроме этого на корпусе можно увидеть знак, указывающий на производителя устройства.

Как уже писалось ранее, транзистор встречается в пластиковом и металлическом корпусе. Устройства с пластиковым корпусом КТ-26 содержат в конце символ “М”. Например КТ3102ВМ это транзистор в пластиковом корпусе КТ-26, а КТ3102В в металлическом КТ-17.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: