3.2. Физические процессы в биполярном транзисторе типа p-n-p
Рассмотрим движение носителей заряда через структуру транзистора, которые
протекают в выводах эмиттера, базы и коллектора, при условии, что на
ЭП подано прямое напряжение, а на КП — обратное (т.е. транзистор работает
в активном режиме).
Значение токов, протекающих через структуру транзистора, определяется
не только напряжениями, которые подаются на эмиттерный и коллекторный
переходы, но и взаимодействием этих переходов между собой. Взаимодействие
переходов, в свою очередь, зависит от расстояния между ними, т.е. от
ширины области базы — W.
На рисунке 3.3 показаны движение носителей заряда в структуре p-n-p
транзистора и токи, протекающие во внешних выводах.
Если ширина базы W меньше диффузионной длины пробега неосновных носителей
заряда в базе (рис.3.3
), то значение тока, протекающего через КП, определяется следующими
причинами:
1) т.к. в этом случае ширина базы гораздо меньше ширины области коллектора,
то и количество неосновных носителей заряда, возникающих при данной
температуре в области базы ( ),
будет гораздо меньше количества неосновных носителей заряда, возникающих
в области коллектора ( ),
и можно считать, что
, где Jko
ток неосновных носителей заряда koп
2) дырки, которые диффузионно переходят из эмиттера в базу над снизившимся
потенциальным барьером эмиттерного перехода, в базе продолжают двигаться
диффузионно в основном в сторону коллекторного перехода. А т.к. ширина
базы меньше их диффузионной длины пробега, то они достигнут коллекторного
перехода в количестве тем больше, чем меньше ширина базы. Однако, вследствие
дисперсии, т.е. беспорядочного теплового движения носителей, какая-то
часть дырок не доходит до КП из-за процесса рекомбинации на поверхности,
у базового вывода или в толще базы, в следствии этого в цепи базы появляется
базовый ток .
Величина, характеризующая долю тока эмиттера, достигающую коллекторного
перехода. называется коэффициентом передачи постоянного тока эмиттера
и обозначается .
Тогда ток коллектора:
Таким образом, ток через КП для случая
(для p-n-p транзистора) является суммой двух составляющих — тока дырок,
инжектированных из эмиттера в базу, и нулевого коллекторного тока .
В толщине базы протекает
и рекомбинационный ток, но в силу того, что процесс рекомбинации в базе
резко уменьшается, рекомбинационная составляющая тока базы тоже мала
.
Соответственно во внешних выводах эмиттера, базы и коллектора будут
протекать токи:
вывод эмиттера ,
вывод коллектора ,
вывод базы
где — является
рекомбинационной составляющей тока базы, величина которой зависит от
величины прямого напряжения, приложенного к ЭП. — ток неосновных
носителей заряда, величина которого от приложенного напряжения почти
не зависит.
Если p-n-p транзистор, работающий как усилитель электрических колебаний,
включен в схему так, как это показано на рис.3.4, то включение последовательно
с источником
переменного напряжения
приведет к появлению переменных составляющих тока эмиттера ,
тока коллектора и
тока базы ,
которые будут накладываться на постоянные составляющие. Так же как и
постоянные токи, протекающие через p-n-p транзистор, переменные токи
являются функциями напряжения. Если на вход подается синусоидальное
напряжение, то оно вызовет синусоидальные изменения плотности дырок
в эмиттерном и коллекторном переходах, т.е. синусоидальные изменения
переменных токов эмиттера, коллектора и базы.
Переменный ток, протекающий через ЭП, равен сумме электронного и дырочного
токов, причем для p-n-p транзистора только дырочная составляющая проходит
последовательно ЭП, обладающий малым сопротивлением и КП, обладающий
большим сопротивлением, т.е. создает условия для усиления электрических
колебаний.
Поэтому на практике для характеристики усилительных свойств транзистора
пользуются коэффициентом передачи тока эмиттера или, как его иначе называют,
коэффициентом усиления по току a, который
является отношением общего коллекторного переменного тока к общему эмиттерному
переменному току в режиме короткого замыкания коллектора на базу по
переменному току.
Тиристоры и симисторы
Тиристор
— это полупроводниковый прибор, который может находится в двух
состояниях:
- открытом — пропускает ток, но только в одном направлении,
- закрытом — не пропускает ток.
Так как тиристор пропускает ток только в одном направлении, для
включения и выключения нагрузки он подходит не очень хорошо. Половину
времени на каждый период переменного тока прибор простаивает. Тем не
менее, тиристор можно использовать в диммере. Там он может применяться
для управления мощностью, отсекая от волны питания кусочек требуемой
мощности.
Симистор — это, фактически двунаправленный тиристор. А значит он
позволяет пропускать не полуволны, а полную волну напряжения питания
нагрузки.
Открыть симистор (или тиристор) можно двумя способами:
- подать (хотя бы кратковременно) отпирающий ток на управляющий электрод;
- подать достаточно высокое напряжение на его «рабочие» электроды.
Второй способ нам не подходит, так как напряжение питания у нас будет
постоянной амплитуды.
После того, как симистор открылся, его можно закрыть поменяв
полярность или снизив ток через него то величины, меньшей чем так
называемый ток удержания. Но так как питание организовано переменным
током, это автоматически произойдёт по окончании полупериода.
При выборе симистора важно учесть величину тока удержания
(\(I_H\)). Если взять мощный симистор с большим током удержания, ток
через нагрузку может оказаться слишком маленьким, и симистор просто не
откроется
Основные технические характеристики
У транзисторов серии C945 представлены такие технические характеристики (при температуре окружающей среды +25 °C,):
физические:
- принцип действия – биполярный;
- корпус ТО-92, SOT-23;
- материал корпуса – пластмасса;
- материал транзистора — аморфный кремний (amorphous silicon) Si;
электрические:
- проводимость – обратная (n-p-n);
- максимально допустимый коллекторный ток (Maximum Collector Current) IK макс (Ic max) 0,15 А или 150 мА (mA);
- максимальное допустимое напряжение между коллектором и эмиттером (Collector-Emitter Voltage) U КЭ макс. (VCEmax) не более 50 В (V);
- максимально допустимое обратном напряжении на коллекторном переходе, между коллектором и базой (Collector-Base Voltage) UКБ макс. (VCBmax) не более 60 В (V);
- максимальное допустимое напряжение между эмиттером и базой (Emitter-Base Voltage) UЭБ макс (VЕВ max) не более 5 В (V);
- напряжение насыщения коллектор-эмиттер (Collector-emitter saturation voltage) UКЭ.нас. (VCEsat) не более 0.3 В (V);
- граничная частота передачи тока (Current Gain Bandwidth Product) fгр (ft) от 100 до 450 МГц (MHz), при U КЭ = 6 В (V), IK = 10 мА (mA);
- максимальный обратный ток коллектора (Collector Cutoff Current) IКБО (ICBO) не более 0.01 мкА (µA), при U КБ макс. (VCBО ) = 60 В (V) и отключенном эммитере (ток эммитора IЭ (IE)=0);
- максимальный обратный ток эммитера (Emmiter Cutoff Current) IЭБО (IEBO) не более 0.01 мкА (µA), при U EБ макс. (VEBО ) = 5 В (V) и отключенном коллекторе (ток коллектора IК (IС)=0);
- максимальная мощность, рассеиваемая на коллекторе (Maximum Collector Dissipation) PK макс. (PC) 0,400 Вт (Watt) или 400 мВт (mW);
- максимальная температура хранения и эксплуатации (Max Storage & Operating temperature Should be) Tхран. (Tstr) от — 55 до + 150 °C.
- Коэффициент усиления по току (Minimum & maximum DC Current Gain) при UКЭ макс = 6 В (V) и IK макс = 1 мА (mA) находится в пределах от 70 до 700 Hfe.
Классификация по Hfe
Наименование | Коэффициент Hfe |
---|---|
С945-Y | 120-240 |
С945-O | 70-140 |
С945-R | 90-180 |
С945-Q | 135-270 |
С945-P | 200-400 |
C945-K | 300-600 |
C945-G | 200-400 |
C945-GR | 200-400 |
C945-BL | 350-700 |
C945-L (SOT-23) | 120-200 |
C945-H (SOT-23) | 200-400 |
Точное значение Hfeсмотрите в даташите производителя, предварительно посмотрев буквы находящиеся в конце маркировки транзистора. Например у c945O Electronic Manufacturer Hfe характеристика находится в пределах от 70-140, а у С945R Stanson Technology от 90-180.
Переход на нитрид-галлиевую технологию
Рис. 3. IGN1011L1200 — мощный GaN-on-SiC транзистор с импульсной выходной мощностью 1250 Вт. Транзистор предназначен для работы на частотах 1030 и 1090 МГц в режиме Mode-S ELM в составе систем вторичной радиолокации
Технология нитрид-галлиевых ПВПЭ (GaN HEMT) транзисторов — новейшая технология изготовления мощных усилительных полупроводниковых ВЧ/СВЧ-приборов, быстро набирающая популярность во многих приложениях благодаря высокому коэффициенту усиления и большой выходной мощности в S-диапазоне и выше. Как правило, приборы этого типа выполнены на подложке из карбида кремния (SiC), которая, обеспечивая высокую теплопроводность, способствует повышению долговременной надежности работы устройств.
GaN HEMT-транзисторы в силу конструктивного исполнения на SiC-подложке, обеспечивающей оптимальное охлаждение, идеально подходят для импульсных приложений высокой мощности с их строгими требованиями к плотности мощности (по сравнению с CW-приложениями). Кроме того, поскольку эти транзисторы отличаются высокой плотностью мощности, их выходная емкость из расчета на 1 Вт намного ниже, чем у конкурирующих с ними технологий. Это позволяет проводить настройку гармонических составляющих сигнала на выходе, что обеспечивает КПД выше 85% даже при киловаттных уровнях выходной мощности. Меньшая емкость из расчета на 1 Вт — то, что позволяет этим полупроводниковым устройствам работать на гораздо более высоких частотах, чем при использовании технологии LDMOS.
Однако одним из недостатков, присущих GaN HEMT-транзисторам, является то, что они являются полупроводниковыми устройствами, работающими в режиме обеднения носителями. Это значит, что для их функционирования требуется и положительное, и отрицательное напряжения. Кроме того, напряжение на затвор такого транзистора подается до появления напряжения на его стоке. Чтобы нивелировать этот недостаток, компания Integra в усилительных субмодулях (паллетах) использует специальные схемы, распределяющие по времени управляющие импульсы затвора (gate pulsing and sequencing, GPS). Такое решение позволяет избежать затруднений, связанных с указанной особенностью GaN HEMT-транзисторов, и не приводит к увеличению числа элементов в конечном решении усилителя.
Примером современного GaN HEMT-устройства является транзистор IGN1011L1200 компании Integra, представленный на рис. 3. Импульсная выходная мощность транзистора (предназначенного для систем опознавания и обзорных радиолокационных станций) превышает 1250 Вт. Он работает на частотах 1030 и 1090 МГц в том же схемотехническом решении, что является следствием исключительно низкого отношения емкости из расчета на 1 Вт. При коэффициенте усиления около 17 дБ у IGN1011L1200 — очень высокий КПД: 85% в режиме Mode-S ELM при усилении импульсного сигнала соответствующего формата (пачка из 48 импульсов — 32 мкс вкл./18 мкс выкл., период повтора посылок — 24 мс, усредненный коэффициент заполнения — 6,4%.
Производители
Выберите производителя, чтобы ознакомится с его DataSheet на 13009:
Главная | О сайте | Теория | Практика | Контакты |
Высказывания: Во время пьянки мы чувствуем себя личностью. Наутро – организмом. Справка об аналогах биполярного низкочастотного npn транзистора MJE13009.Эта страница содержит информацию об аналогах биполярного низкочастотного npn транзистора MJE13009 . Перед заменой транзистора на аналогичный, !ОБЯЗАТЕЛЬНО! сравните параметры оригинального транзистора и предлагаемого на странице аналога. Решение о замене принимайте после сравнения характеристик, с учетом конкретной схемы применения и режима работы прибора. Можно попробовать заменить транзистор MJE13009 транзистором 2SC2335; транзистором 2SC3346; транзистором 2SC3306; транзистором 2SC2898; транзистором 2SC3257; транзистором BUL74A; транзистором BUW72; транзистором 2SC3346; транзистором 2SC3306; транзистором 2SC2898; транзистором 2SC3257; Коллективный разум.дата записи: 2015-02-14 22:21:29 дата записи: 2016-02-23 16:11:18 дата записи: 2016-02-23 16:13:10 дата записи: 2016-10-12 13:39:27 MJE13005 – функциональный аналог; дата записи: 2017-11-01 08:40:54 2SC3040 – функциональный аналог; дата записи: 2018-07-06 22:01:53 Добавить аналог транзистора MJE13009.Вы знаете аналог или комплементарную пару транзистора MJE13009? Добавьте. Поля, помеченные звездочкой, являются обязательными для заполнения. Другие разделы справочника:Есть надежда, что справочник транзисторов окажется полезен опытным и начинающим радиолюбителям, конструкторам и учащимся. Всем тем, кто так или иначе сталкивается с необходимостью узнать больше о параметрах транзисторов. Более подробную информацию обо всех возможностях этого интернет-справочника можно прочитать на странице «О сайте». Если Вы заметили ошибку, огромная просьба написать письмо. Спасибо за терпение и сотрудничество. Мощные транзисторы, применяемые в БП. Подбор и замена. 10 Ноя 2007 – 20:13 NMD 1572 >> 68.32 Ремонт Блоков Питания Транзисторы Детали Вот небольшая подборка транзисторов, использующихся в БП. Михаил.KSC5027- Vceo-800V, Ic- 3A, Icp – 10A, Pd – 50W 2SC4242 – Vceo – 450v, Ic – 7A. Pd – 40W BU508A – Vceo – 700V, Ic – 8A, Icp – 15A, Pd – 50W ST13003 – Vceo-400v, Ic- 1.5A, Icp – 3A, Pd – 40W MJE13003 – Vceo -400v. Ic -1.5A, Icp – 3A, Pd – 40W 2SC3457 – Vceo – 800v, Ic – 3A. P – 50w MJE13005 – Vceo – 400v, Ic – 4A, Icp – 8A, Pd – 75w MJE13006 – Vceo – 300v, Ic – 8A, Icp – 16A, Pd – 80w MJE13007 – Vceo – 400v, Ic – 8A, Icp – 16A, Pd – 80w 2SC2625 – Vceo – 450v, Ic – 10A, Pd – 80w 2SC3306 – Vceo – 500v, Ic -10A, Pd – 100w KSE13006 – Vceo – 300V, Ic – 8A, Icp – 16A, Pd – 80W KSE13007 – Vceo – 400V, Ic – 8A, Icp – 16A, Pd – 80W KSE13009 – Vceo – 400v, Ic – 12A, Icp – 24A, Pd – 130w KSP2222A – Vceo- 40v, Ic – 0.6A, Pd – 0.63w 2SC945 – Vcev – 60v, Ic – 0,1A, Pd – 0.25w 2SA733 – p-n-p Vce – 60v, Ic – 0.1A, Pd – 0.25w 2SA1015 p-n-p Vce – 50v, Ic – 0.15A, Pd – 0.4w 2SA1273 p-n-p Vce – 30v, Ic – 2A, Pd – 1.0w 2SB1116A p-n-p Vce – 80v, Ic – 1.0A, Pd – 0.75w KSC2335F – Vceo-500v, Ic – 7A, Pd – 40w. 2SC2553 – Vceo-500v, Ic – 5A, Pd – 40w. 2SC2979 – Vceo-900v, Ic – 3A, Pd – 40w. 2SC3039 – Vceo-500v, Ic – 7A, Pd – 50w. 2SC3447 – Vceo-800v, Ic – 5A, Pd – 50w. 2SC3451 – Vceo-800v, Ic -15A, Pd – 100w. 2SC3460 – Vceo-1100v, Ic – 6A, Pd – 100w. 2SC3461 – Vceo-1100v, Ic – 8A, Pd – 120w. 2SC3866 – Vceo-900v, Ic – 3A, Pd – 40w. 2SC4106 – Vceo-500v, Ic – 7A, Pd – 50w. 2SC4706 – Vceo-600v, Ic -14A, Pd – 130w. 2SC4744 – Vceo-1500v, Ic – 6A, Pd – 50w. KSC1008 – Vceo-80v, Ic -0.7A, Pd – 0.8w. 2SA928A p-n-p Vceo-20v, Ic – 1A, Pd – 0.25w. ZTX457 – Vceo-300V Ic – 0.5A, Pd – 1,0W |
Биполярный транзистор: внешний вид, составные элементы, конструкция корпуса — кратко
Сразу стоит определиться, что биполярный транзистор (bipolar transistor) создан для работы в цепях постоянного тока, где и используется. Сократим его название до БТ.
На фотографии ниже показал насколько разнообразные формы он имеет. А ведь этот небольшой ассортимент мной высыпан из одной маленькой коробочки.
Транзисторный корпус может быть изготовлен из пластмассы или металла в виде параллелепипеда, цилиндра, таблетки различной величины. Общими элементами являются три контактных штыря, созданные для подключения к электрической схеме.
Эти выводы необходимо различать в технической документации, правильно подключать при монтаже. Поэтому их назвали:
- Э (E) — эмиттер;
- К (C) — коллектор;
- Б (B) — база.
Буквы в скобках используются в международной документации.
Основной метод соединения БТ в электрических схемах — пайка, хотя допускаются и другие.
Габариты корпуса и контактных выводов зависят от мощности, которую способен коммутировать этот модуль. Чем выше проектная нагрузка, тем большие размеры вынуждены создавать производители для обеспечения надежной работы и отвода опасного тепла.
Общеизвестно, что полупроводниковые переходы не способны выдерживать высокий нагрев — они банально перегорают. Поэтому все мощные корпуса выполняются из металла и снабжаются теплоотводящими радиаторами.
В особо ответственных узлах для них дополнительно создается принудительный обдув струями воздуха. Этим приемом значительно повышается надежность работы системных блоков компьютеров, ноутбуков, сложной электронной техники.
Любой БТ состоит из трех полупроводниковых переходов p и n типа, как обычный диод. Только у диода их меньше: всего два. Он способен пропускать ток всего в одну сторону, а в противоположную — блокирует.
Bipolar transistor создается по одной из двух схем соединения полупроводниковых элементов:
- p-n-p, называемую прямым включением;
- n-p-n — обратным.
При обозначении на схемах их рисуют одинаково, но с небольшими отличиями вывода эмиттера:
- прямое направление: стрелка нацелена на базу;
- обратное — стрелка показывается выходом из базы наружу элемента.
Указатель стрелки эмиттера показывает положительное направление тока через полупроводниковый переход.
Основные параметры биполярного высокочастотного npn транзистора C945 (С945)
Эта страница создана пользователем сайта через систему Коллективного разума и показывает существующую справочную информацию о параметрах биполярного высокочастотного npn транзистора C945 (С945) . Информация о параметрах, цоколевке, характеристиках, местах продажи и производителях.
Исходный полупроводниковый материал, на основе которого изготовлен транзистор: кремний
Структура полупроводникового перехода: npn
Pc max, мВт | Ucb max, В | Uce max, В | Ueb max, В | Ic max, мА | Tj max, °C | Ft max, Гц | Cc tip, пФ | Hfe |
400 | 60 | 50 | 5 | 150 | 150 | 200000000 | 3 | 70/700 |
Производитель: WEITRONСфера применения: Популярность: 60314Дополнительные параметры транзистора C945 (С945): Внимание! У разных производителей транзистора с945 – разная цоколевка. Например у Daya Electric Group Co., Ltd.: 123-ebc
Проверяйте перед установкой.Условные обозначения описаны на странице «Теория».
↑ Настройка
Считаю, что это не кофеварка и человек, которому нужен подбор пар транзисторов, должен представлять себе режимы их работы и возможности изменения.
При сопротивлении резистора в цепи эмиттера 15 Ом и изменении тока измерения в 10 раз, параллельный резистор должен иметь номинал в 9 раз больше, т. е. 135 Ом (подобрать из имеющихся 130 Ом, большая точность не нужна). Общее сопротивление резисторов будет 13,5 Ом. (Можно взять резисторы 15 и 150 Ом и подключать их тумблером поочередно, но я люблю безобрывность). Установить в панельку транзистор и переменным резистором выставить напряжение на эмиттере 2,7 В (клеммы для измерения тока базы временно закоротить). Настройка закончена.
Измерить ток базы.
Отношение тока эмиттера к току базы даст коэффициент передачи транзистора по току (правильнее будет из тока эмиттера вычесть ток базы и получить ток коллектора, но погрешность мала). При замене транзисторов отключать питание не надо, при испытаниях я неоднократно ошибался и включал транзисторы «наоборот», тестер показывал, что ток базы равен нулю, больше никаких проблем.
Прибор делался для тока 200 мА и напряжения К-Э равному 2 В, этим вызван выбор номинала 15 Ом. Естественно, если вы захотите установить ток 300 мА, напряжение на эмиттере составит 4 В и для сохранения напряжения К-Э = 2 В напряжение питания должно быть не 5, а 6 В.
Можно делать измерения при токе 1 А, тогда резистор должен быть 3 Ома. При увеличении напряжения питания до 8…10 В, лучше увеличить номинал резистора, ограничивающего ток через TL431 до 200 Ом. Короче, если вы захотите существенно изменить параметры измерения, придется изменить номиналы одного-двух резисторов.
По сравнению с «фирменным» прибором, делающем измерения на коротком импульсе, данный прибор позволяет прогреть испытуемый транзистор — этот режим ближе к рабочему. Вместо М-832 можно включить обычный стрелочный миллиамперметр (или стрелочный авометр), шкалу отградуировать в единицах усиления по току, годится прибор на 1/10 мА, он покажет усиление от 20 до 200…400. Но тогда нельзя будет плавно менять ток измерений.
Электрические характеристики
Обозначение | Параметр | Условия измерения | Мин. | Тип. | Макс. | Ед.изм. |
---|---|---|---|---|---|---|
BVCBO | Напряжение пробоя коллектор-база | IC= -100 µA, IE=0 | -50 | V | ||
BVCEO | Напряжение пробоя коллектор-эмиттер | IC= -10mA, IB=0 | -50 | V | ||
BVEBO | Напряжение пробоя эмиттер-база | IE= -10 µA, IC=0 | -5 | V | ||
ICBO | Ток отсечки коллектора | VCB= -50V, IE=0 | -0.1 | µA | ||
IEBO | Ток отсечки эмиттера | VEB= -5V, IC=0 | -0.1 | µA | ||
hFE1 hFE2 | Коэффициент усиления по постоянному току | VCE= -6V, IC= -2mA VCE= -6V, IC= -150mA | 70 25 | 400 | ||
VCE (sat) | Напряжение насыщения коллектор-эмиттер | IC= -100mA, IB= -10mA | -0.1 | -0.3 | V | |
VBE (sat) | Напряжение насыщения база-эмиттер | IC= -100mA, IB= -10mA | -1.1 | V | ||
fT | Частотная эффективность | VCE= -10V, IC=-1mA | 80 | MHz | ||
Cob | Выходное сопротивление | VCB= -10V, IE=0, f=1MHz | 4 | 7 | pF | |
NF | Уровень шумов | VCE= -6V, IC= -0.1mA f=100Hz, RG=10kΩ | 0.5 | 6 | dB |
Примечание: данные в таблицах действительны при температуре воздуха 25°C.
Защита от помех DC
Раздельное питание
Один из лучших способов защититься от помех по питанию – питать силовую и логическую части от отдельных источников питания: хороший малошумящий источник питания на микроконтроллер и модули/сенсоры, и отдельный на силовую часть. В автономных устройствах иногда ставят отдельный аккумулятор на питание логики, и отдельный мощный – на силовую часть, потому что стабильность и надёжность работы очень важна.
Искрогасящие цепи DC
При размыкании контактов в цепи питания индуктивной нагрузки происходит так называемый индуктивный выброс, который резко подбрасывает напряжение в цепи вплоть до того, что между контактами реле или выключателя может проскочить электрическая дуга (искра). В дуге нет ничего хорошего – она выжигает частички металла контактов, из за чего они изнашиваются и со временем приходят в негодность. Также такой скачок в цепи провоцирует электромагнитный выброс, который может навести в электронном устройстве сильные помехи и привести к сбоям или даже поломке! Самое опасное, что индуктивной нагрузкой может являться сам провод: вы наверняка видели, как искрит обычный выключатель света в комнате. Лампочка – не индуктивная нагрузка, но идущий к ней провод имеет индуктивность. Для защиты от выбросов ЭДС самоиндукции в цепи постоянного тока используют обыкновенный диод, установленный встречно-параллельно нагрузке и максимально близко к ней. Диод просто закоротит на себя выброс, и все дела:
Где VD – защитный диод, U1 – выключатель (транзистор, реле), а R и L схематично олицетворяют индуктивную нагрузку. Диод нужно ОБЯЗАТЕЛЬНО ставить при управлении индуктивной нагрузкой (электромотор, соленоид, клапан, электромагнит, катушка реле) при помощи транзистора, то есть вот так:
При управлении ШИМ сигналом рекомендуется ставить быстродействующие диоды (например серии 1N49xx) или диоды Шоттки (например серии 1N58xx), максимальный ток диода должен быть больше или равен максимальному току нагрузки.
Фильтры
Если силовая часть питается от одного источника с микроконтроллером, то помехи по питанию неизбежны. Простейший способ защитить МК от таких помех – конденсаторы по питанию как можно ближе к МК: электролит 6.3V 470 uF (мкФ) и керамический на 0.1-1 мкФ, они сгладят короткие просадки напряжения. Кстати, электролит с низким ESR справится с такой задачей максимально качественно.
Ещё лучше с фильтрацией помех справится LC фильтр, состоящий из индуктивности и конденсатора. Индуктивность нужно брать с номиналом в районе 100-300 мкГн и с током насыщения больше, чем ток нагрузки после фильтра. Конденсатор – электролит с ёмкостью 100-1000 uF в зависимости опять же от тока потребления нагрузки после фильтра. Подключается вот так, чем ближе к нагрузке – тем лучше:
Подробнее о расчёте фильтров можно почитать здесь.
Драйвер полевого транзистора
Если всё же требуется подключать нагрузку к n-канальному транзистору
между стоком и землёй, то решение есть. Можно использовать готовую
микросхему — драйвер верхнего плеча. Верхнего — потому что транзистор
сверху.
Выпускаются и драйверы сразу верхнего и нижнего плеч (например,
IR2151) для построения двухтактной схемы, но для простого включения
нагрузки это не требуется. Это нужно, если нагрузку нельзя оставлять
«висеть в воздухе», а требуется обязательно подтягивать к земле.
Рассмотрим схему драйвера верхнего плеча на примере IR2117.
Схема не сильно сложная, а использование драйвера позволяет наиболее
эффективно использовать транзистор.
Принцип работы биполярного транзистора.
Итак, транзистор содержит два p-n перехода (эмиттер-база и база-коллектор). Если не прикладывать к выводам транзистора никаких внешних напряжений, то на каждом из p-n переходов формируются области, обедненные свободными носителями заряда. Все в точности так же как здесь
В активном же режиме переход эмиттер-база (эмиттерный переход) имеет прямое смещение, а коллекторный переход – обратное.
Так как переход эмиттер-база смещен в прямом направлении, то внешнее электрическое поле будет перемещать электроны из области эмиттера в область базы. Там они частично будут вступать во взаимодействие с дырками и рекомбинировать.
Но большая часть электронов доберется до перехода база-коллектор (это связано с тем, что область базы конструктивно выполняется очень тонкой и содержит небольшой количество примесей), который смещен уже в обратном направлении. И в этом случае внешнее электрическое поле снова будет содействовать электронам, а именно помогать им проскочить в область коллектора.
В результате получается, что ток коллектора приблизительно равен току эмиттера:
Коэффициент alpha численно равен 0.9…0.99. В то же время:
А что произойдет, если мы увеличим ток базы? Это приведет к тому, что переход эмиттер-база откроется еще сильнее, и большее количество электронов смогут попасть в область коллектора (все по тому же маршруту, который мы обсудили ). Давайте выразим ток эмиттера из первой формулы, подставим во вторую и получим:
Выражаем ток коллектора через ток базы:
Коэффициент beta обычно составляет 100-500. Таким образом, незначительный ток базы управляет гораздо большим током коллектора. В этом и заключается принцип работы биполярного транзистора!
Коэффициент, связывающий величину тока коллектора с величиной тока базы называют коэффициентом увеличения по току и обозначают h_ . Этот коэффициент является одной из основных характеристик биполярного транзистора. В следующих статьях мы будем рассматривать схемы включения транзисторов и подробнее разберем этот параметр и его зависимость от условий эксплуатации.
- коллектор
- эмиттер
- база