Характеристики транзистора c1815

Как питаемся схема

От качества питания зависит и качество усиления. С какими бы выдающимися характеристиками не был транзистор, если питание плохо отфильтровано или недостаточное, то усиление будет советующего качества.

На клеммы Х3 и Х4 подключается питание 6 В.

Эта схема может питаться и от аккумулятора. Однако, несмотря на то, что аккумулятор – это источник с минимальным шумом, у аккумулятора тоже есть свое сопротивление.

И чтобы оно не мешало и не влияло на работу усилителя, нужен сглаживающий и накопительный конденсатор.

Электролитический конденсатор С3 накапливает энергию источника питания, что позволяет улучшить качество усиления. Чем выше емкость – тем лучше. Естественно, у такого правила есть ограничения. Если поставить слишком большую емкость, то будет большая нагрузка на источник питания.

К тому же, электролитические конденсаторы должны разряжаться после выключения. Тем более, есть предел для увеличения емкости для схемы. Если в эту схему подключить конденсатор емкостью 1 фарад (1 000 000 мкФ), то уровень шума на выходе усилителя будет такой же, как и при 1000 мкФ. Это связано с тем, что у транзистора так же есть и свои «шумы», отсутствие экранировки на входе, динамические искажения и другие параметры.

Во время проектирования схемы все эти параметры рассчитываются. Здесь в схеме у конденсатора С3 емкость 47 микрофарад – этого достаточно для нашего транзистора, поскольку у него не большая мощность, которую он может выдать. Можно поставить и большую емкость, например, 1000 микрофарад. Главное не нежно ставить конденсатор с меньшим пределом по напряжению. Если поставить конденсатор менее 6 В (питание схемы), то конденсатор начнет нагреваться и даже может взорваться.

Преимущества пары Дарлингтон

Пара Дарлингтона имеет несколько преимуществ по сравнению со стандартным одиночным транзистором. Вот некоторые из них:

  • Он обеспечивает очень высокий коэффициент усиления по току, чем стандартный одиночный транзистор
  • Он обеспечивает очень высокий входной импеданс или хорошее преобразование импеданса.
  • Они могут быть двумя отдельными транзисторами или поставляются в одном корпусе.
  • Простая и удобная конфигурация схемы, так как используется всего несколько компонентов.
  • В случае пары фотодарлингтон внешний шум намного меньше по сравнению с фототранзистором с внешним усилителем.

Модификации (версии) транзистора

Тип PC UCB UCE UEB IC TJ hFE fT Cob NF UCE(sat) Корпус Примечание
C1815 0,625 60 50 5 0,15 125 25…700 ≥ 80 ≤ 3 ≤ 0,25 TO-92 Группы по hFE: O/Y/GR/BL
2SC1815 0,2 60 50 5 0,15 150 130…400 ≥ 80 ≤ 0,25 SOT-23 Группы по hFE: L/HМаркировка: HF
2SC1815 0,2 60 50 5 0,15 125 130…400 ≥ 80 ≤ 0,25 SOT-23 Группа L по hFE: маркировка: HFL.Группа H маркировка: HF
2SC1815 0,4 60 50 5 0,15 125 25…700 ≥ 80 ≤ 3,5 1…10 ≤ 0,25 TO-92 Группы по hFE: O/Y/GR/BL
2SC1815(L) 0,4 60 50 5 0,15 125 25…700 ≥ 80 ≤ 3,5 ≤ 6 ≤ 0,25 TO-92 Группы по hFE: O/Y/GR/BL
2SC1815LT1 0,225 60 50 5 0,15 150 70…700 ≤ 0,3 SOT-23 Маркировка: L6
2SC1815M (BR3DG1815M) 0,3 60 50 5 0,15 150 25…700 ≥ 80 ≤ 3,5 1…10 ≤ 0,25 SOT-23 Группы по hFE: O/Y/GR/BL Маркировка: HHFO, HHFY, HHFG, HHFB
2SC1815 M 0,3 45 40 5 0,1 125 70…700 ≥ 80 ≤ 3,5 ≤ 0,4 TO-92B Группы по hFE: O/Y/GR/BL
C1815 0,2 60 50 5 0,15 150 130…400 ≥ 80 ≤ 0,25 SOT-23 Группы по hFE: L/HМаркировка: HF
C1815T 0,4 60 50 5 0,15 125 70…700 ≥ 80 ≤ 3,5 ≤ 10 ≤ 0,25 TO-92 Группы по hFE: O/Y/GR
CSC1815 0,625 60 50 5 0,15 125 25…700 ≥ 80 ≤ 3 ≤ 10 ≤ 0,25 TO-92 Группы по hFE: O/Y/GR/BL
FTC1815 0,4 60 50 5 0,15 125 70…700 ≥ 80 ≤ 3,5 ≤ 10 ≤ 0,25 TO-92 Группы по hFE: O/Y/GR/BL
KSC1815 0,4 60 50 5 0,15 125 25…700 ≥ 80 ≤ 3 1 ≤ 0,25 TO-92 Группы по hFE: O/Y/GR/L
KTC1815 0,625 60 50 5 0,15 150 25…700 ≥ 80 ≤ 3,5 ≤ 10 ≤ 0,25 TO-92 Группы по hFE: Y/GR

Основные технические характеристики

У транзисторов серии C945 представлены такие технические характеристики (при температуре окружающей среды +25 °C,):

физические:

  • принцип действия – биполярный;
  • корпус ТО-92, SOT-23;
  • материал корпуса – пластмасса;
  • материал транзистора — аморфный кремний (amorphous silicon) Si;

электрические:

  • проводимость – обратная (n-p-n);
  • максимально допустимый коллекторный ток (Maximum Collector Current) IK макс (Ic max) 0,15 А или 150 мА (mA);
  • максимальное допустимое напряжение между коллектором и эмиттером (Collector-Emitter Voltage) U КЭ макс. (VCEmax) не более 50 В (V);
  • максимально допустимое обратном напряжении на коллекторном переходе, между коллектором и базой (Collector-Base Voltage) UКБ макс. (VCBmax) не более 60 В (V);
  • максимальное допустимое напряжение между эмиттером и базой (Emitter-Base Voltage) UЭБ макс (VЕВ max) не более 5 В (V);
  • напряжение насыщения коллектор-эмиттер (Collector-emitter saturation voltage) UКЭ.нас. (VCEsat) не более 0.3 В (V);
  • граничная частота передачи тока (Current Gain Bandwidth Product) fгр (ft) от 100 до 450 МГц (MHz), при U КЭ = 6 В (V), IK = 10 мА (mA);
  • максимальный обратный ток коллектора (Collector Cutoff Current) IКБО (ICBO) не более 0.01 мкА (µA), при U КБ макс. (VCBО ) = 60 В (V) и отключенном эммитере (ток эммитора IЭ (IE)=0);
  • максимальный обратный ток эммитера (Emmiter Cutoff Current) IЭБО (IEBO) не более 0.01 мкА (µA), при U EБ макс. (VEBО ) = 5 В (V) и отключенном коллекторе (ток коллектора IК (IС)=0);
  • максимальная мощность, рассеиваемая на коллекторе (Maximum Collector Dissipation) PK макс. (PC) 0,400 Вт (Watt) или 400 мВт (mW);
  • максимальная температура хранения и эксплуатации (Max Storage & Operating temperature Should be) Tхран. (Tstr) от — 55 до + 150 °C.
  • Коэффициент усиления по току (Minimum & maximum DC Current Gain) при UКЭ макс = 6 В (V) и IK макс  = 1 мА (mA) находится в пределах от 70 до 700 Hfe.

Классификация по Hfe

Наименование Коэффициент Hfe
С945-Y 120-240
С945-O 70-140
С945-R 90-180
С945-Q 135-270
С945-P 200-400
C945-K 300-600
C945-G 200-400
C945-GR 200-400
C945-BL 350-700
C945-L (SOT-23) 120-200
C945-H (SOT-23) 200-400

</table>

Характеристики

У всех устройств серии s9014 одинаковые предельно допустимые режимы эксплуатации и электрические характеристики. Различия есть только в значениях коэффициента усиления по току (HFE)

Так же следует обратить внимание на то, что у SMD-транзисторов в корпусе SOT-23 максимальная допустимая рассеиваемая мощность на коллекторе не более 200 мВ (mW), а в остальном предельные характеристики схожи с параметрами устройств в корпусе ТО-92

Предельно допустимые режимы эксплуатации

Рассмотрим подробнее значения предельно допустимых электрических режимов эксплуатации (при температуре окружающей среды 25°С).

Электрические параметры

Одной из важнейших характеристик для всех высокочастотников является коэффициент шума (FШ), во многом он предопределяет возможность применения транзистора в схемах усиления слабых сигналов. Значение FШ определяется при заданном сопротивлении источника сигнала (Rs) на частоте генерации 1 кГц. У s9014 коэффициент шума, в параметрах большинства производителей, не превышает 10 дБ. Поэтому этот высокочастотный транзистор относят к малошумящим. Чтобы добиться наименьшего уровня шума, его применяют при пониженных значениях напряжения коллектор-база и тока эмиттера. Температура при этом должна быть низкой, так как при её возрастании собственные шумы транзистора увеличиваются.

Классификация HFE

Как указывалось ранее, серия s9014 имеет разный коэффициент усиления по току, который может достигать величины в 1000 HFE. Выбрать транзистор с необходимым коэффициентом усиления можно по следующей классификации.

Аналоги

Аналогов зарубежных и российских у транзистора s9014 достаточно много

Из иностранных можно обратить внимание на такие: BC547, BC141, BC550, 2SC2675, 2SC2240. Отечественный аналог можно подобрать из КТ3102, КТ6111

Принцип работы биполярного транзистора.

Итак, транзистор содержит два p-n перехода (эмиттер-база и база-коллектор). Если не прикладывать к выводам транзистора никаких внешних напряжений, то на каждом из p-n переходов формируются области, обедненные свободными носителями заряда. Все в точности так же как здесь

В активном же режиме переход эмиттер-база (эмиттерный переход) имеет прямое смещение, а коллекторный переход – обратное.

Так как переход эмиттер-база смещен в прямом направлении, то внешнее электрическое поле будет перемещать электроны из области эмиттера в область базы. Там они частично будут вступать во взаимодействие с дырками и рекомбинировать.

Но большая часть электронов доберется до перехода база-коллектор (это связано с тем, что область базы конструктивно выполняется очень тонкой и содержит небольшой количество примесей), который смещен уже в обратном направлении. И в этом случае внешнее электрическое поле снова будет содействовать электронам, а именно помогать им проскочить в область коллектора.

В результате получается, что ток коллектора приблизительно равен току эмиттера:

Коэффициент alpha численно равен 0.9…0.99. В то же время:

А что произойдет, если мы увеличим ток базы? Это приведет к тому, что переход эмиттер-база откроется еще сильнее, и большее количество электронов смогут попасть в область коллектора (все по тому же маршруту, который мы обсудили ). Давайте выразим ток эмиттера из первой формулы, подставим во вторую и получим:

Выражаем ток коллектора через ток базы:

Коэффициент beta обычно составляет 100-500. Таким образом, незначительный ток базы управляет гораздо большим током коллектора. В этом и заключается принцип работы биполярного транзистора!

Коэффициент, связывающий величину тока коллектора с величиной тока базы называют коэффициентом увеличения по току и обозначают h_ . Этот коэффициент является одной из основных характеристик биполярного транзистора. В следующих статьях мы будем рассматривать схемы включения транзисторов и подробнее разберем этот параметр и его зависимость от условий эксплуатации.

  • коллектор
  • эмиттер
  • база

Полевые

Суть этого прибора заключается в управлении параметрами электрического сигнала с помощью электрического поля. Оно появляется при подаче напряжения к какому-либо из выводов:

  • Затвор нужен для регулирования параметров сигнала, благодаря подаче напряжения на него.
  • Сток — вывод, через который из канала уходят носители заряда (дырки и электроны).
  • Исток — вывод, через который в канал приходят электроны и дырки.

Такой транзистор состоит из полупроводника с определённой проводимостью и двух областей, помещённых в него с противоположной проводимостью. При подаче напряжения на затвор между этими двумя областями появляется пространство, через которое протекает ток. Это пространство называется каналом. Ширина этого канала регулируется напряжением, которое мы подаём на затвор. Соответственно, можно увеличивать и уменьшать ширину канала и управлять протекающим током.

Транзистор.

Теперь поговорим о приборе с изолированным затвором. Разница в том, что в первом случае этот переход есть всегда, даже когда на затвор не подавалось напряжение. А при его подаче, переход и токопроводящий канал менялись в зависимости от полярности и амплитуды напряжения. Металлический затвор в таких транзисторах изолирован диэлектриком от полупроводниковой области. Их входное сопротивление гораздо больше.

Существует два вида приборов с изолированным затвором:

  • со встроенным каналом.
  • с индуцированным каналом.

Встроенный канал позволяет протекать электрическому току с определённой амплитудой. При подаче напряжения с определённой амплитудой и полярностью мы можем менять ширину канала и его проводимость. Этот канал встраивается в транзисторы на производственных предприятиях.

Индуцированный канал появляется между двумя областями, о которых мы говорили выше, только при подаче напряжения определённой полярности на затвор. То есть, когда на затвор напряжение не подаётся, ток в нем не протекает.

Все виды полевых транзисторов отличаются друг от друга по следующим параметрам:

  • Входное сопротивление.
  • Амплитуда напряжения.
  • Полярность.

Каждый из этих видов полевых транзисторов необходим для сборки определённых электрических и логических схем. Так как для реализации двух разных устройств необходимо разные электрические параметры.

Вход усилителя

Вход усилителя – это клеммы Х1 и Х2.

Х2 это минус входа, а Х1 – плюс. Так как схема на один канал, то УНЧ называется моно.

Фильтрация входного сигнала

Электролитический конденсатор С1 позволяет отделить постоянную составляющую входящего сигнала от переменной.
По-простому, он пропускает только переменный сигналю. Если сигнала нет, или вход усилителя замкнут, то без этого конденсатора транзистор может перейти в режим насыщения (максимальное усиление), и на выходе появится неприятный хрип.

Не путайте этот эффект со свистом. Свист – это влияние положительной обратной связи, а в данном случае будет режим насыщения из-за короткого замыкания на входе. И на выходе усилителя будет слышен именно хрип, а не свит или звук.

Емкость конденсатора подобрана под частоту звукового сигнала. Звук начинается от 20 Гц и до 16 кГц.

Стабилизация работы схемы

Когда полупроводник нагревается, его сопротивление уменьшается. Транзистор сделан из полупроводника, и соответственно его p-n переходы тоже.

При работе схемы УНЧ ток течет через транзистор, и он нагревается. Обычно вся мощность рассеивается на коллекторе. И тем не менее, характеристики транзистора резко меняются, поскольку сопротивление его p-n переходом резко снижается по мере повышения температуры.

Чтобы стабилизировать работу транзистора, нужно сбалансировать его сопротивление другим источником. Это можно сделать при помощи дополнительного сопротивления.
Когда сопротивление транзистора VT1 уменьшается, резистор R3 забирает часть напряжения на себя и не позволяет увеличить ток в цепи.

Благодаря этому транзистор:

  • не закрывается;
  • не переходит в режим насыщения;
  • не искажает сигнал;
  • и не перегревается.

Это называется термостабилизация работы усилителя.

А чтобы в нормальном режиме работы, когда VT1 не нагревается, резистор R3 не уменьшал мощность схемы, в цепь включен шунтирующий электролитический конденсатор C2. Через него переменная составляющая входного сигнала проходит без потерь.

Применение транзистора Дарлингтона

Транзисторы Дарлингтона в основном используются в схемах коммутации и усиления для обеспечения очень высокого усиления постоянного тока. Некоторые из ключевых схем — это переключатели на стороне высокого и низкого уровня, сенсорные усилители и усилители звука. Для светочувствительных устройств используются фотодарлингтон. Давайте посмотрим работу транзистора Дарлингтона на конкретном примере.

Транзистор Дарлингтон (NPN) в качестве переключателя

На рисунке ниже показано управление светодиодом с использованием транзистора Дарлингтона. Переключатель на базе также может быть заменен сенсорным датчиком, так что при касании сенсора будет загораться светодиод. Резистор на 100 кОм действует как защитный резистор для пары транзисторов.

Дарлингтонский Транзистор как Переключатель

Когда переключатель замкнут, на транзистор Дарлингтона подается напряжение более 1,4 В. Это приводит к тому, что пара Дарлингтона становится активной и пропускает ток через нагрузку. Это приводит к тому, что светодиоды начинают светиться очень ярко, даже при изменении сопротивления у базы.

Когда переключатель разомкнут, оба биполярных транзистора находятся в режиме отсечки, и ток через нагрузку равен нулю. Таким образом, светодиод гаснет.

Также возможно использовать пару Дарлингтона для управления индуктивными нагрузками, такими как реле, двигатели. По сравнению с одним транзистором, управление индуктивными нагрузками с помощью пары Дарлингтона является более эффективным, поскольку обеспечивается высокий ток нагрузки при небольшом входном токе базы.

На рисунке ниже показана пара Дарлингтона, которая управляет катушкой реле. При коммутации индуктивной нагрузки необходимо параллельно подключить диод, чтобы защитить цепь от индуцированных токов. Как и в приведенной выше схеме работы светодиодов, катушка реле получает питание при подаче тока базы. Мы также можем использовать двигатель постоянного тока в качестве индуктивной нагрузки вместо катушки реле.

Электрические параметры

Характеристика Обозначение Параметры при измерениях Значения
Характеристики выключенного состояния
Напряжение пробоя коллектор-база, В U(BR)CBO IC = 100 мкА, IE = 0 ≥ 60
Напряжение пробоя коллектор-эмиттер, В U(BR)CEO IC = 100 мкА, IB = 0 ≥ 50
Ток коллектора выключения, мкА ICBO UCB = 60 В, IE = 0 ≤ 0,1
Ток коллектора выключения, мкА ICEO UCE = 50 В, IB = 0 ≤ 0,1
Ток эмиттера выключения, мкА IEBO UEB = 5 В, IC = 0 ≤ 0,1
Характеристики включенного состояния
Напряжение насыщения коллектор-эмиттер, В UCE(sat) IC = 100 мА, IB = 10 мА ≤ 0,25
Напряжение насыщения база-эмиттер, В UBE(sat) IC = 100 мА, IB = 10 мА ≤ 1,0
Статический коэффициент усиления по току hFE (1) UCE = 6,0 В, IC = 2,0 мА 70…700
hFE (2) UCE = 6,0 В, IC = 150,0 мА ≥ 25
Характеристики работы в режиме малого сигнала
Граничная частота усиления (частота среза), МГц fT IC = 1,0 мА, UCE = 10 В ≥ 80
Выходная емкость (коллекторного перехода), пФ Cob UCB = 10 В, IE = 0, f = 1 МГц ≤ 3,5
Коэффициент шума NF IC = 0,1 мА, UCE = 6 В, RG = 10 кОм, f = 1,0 кГц 1…10

Производители

Выберите производителя, чтобы ознакомится с его DataSheet на 13009:

Главная О сайте Теория Практика Контакты

Высказывания: Во время пьянки мы чувствуем себя личностью. Наутро – организмом.

Справка об аналогах биполярного низкочастотного npn транзистора MJE13009.

Эта страница содержит информацию об аналогах биполярного низкочастотного npn транзистора MJE13009 .

Перед заменой транзистора на аналогичный, !ОБЯЗАТЕЛЬНО! сравните параметры оригинального транзистора и предлагаемого на странице аналога. Решение о замене принимайте после сравнения характеристик, с учетом конкретной схемы применения и режима работы прибора.

Можно попробовать заменить транзистор MJE13009 транзистором 2SC2335;

транзистором 2SC3346; транзистором 2SC3306; транзистором 2SC2898; транзистором 2SC3257; транзистором BUL74A; транзистором BUW72; транзистором 2SC3346; транзистором 2SC3306; транзистором 2SC2898; транзистором 2SC3257;

Коллективный разум.

дата записи: 2015-02-14 22:21:29

дата записи: 2016-02-23 16:11:18

дата записи: 2016-02-23 16:13:10

дата записи: 2016-10-12 13:39:27

MJE13005 – функциональный аналог; дата записи: 2017-11-01 08:40:54

2SC3040 – функциональный аналог; дата записи: 2018-07-06 22:01:53

Добавить аналог транзистора MJE13009.

Вы знаете аналог или комплементарную пару транзистора MJE13009? Добавьте. Поля, помеченные звездочкой, являются обязательными для заполнения.

Другие разделы справочника:

Есть надежда, что справочник транзисторов окажется полезен опытным и начинающим радиолюбителям, конструкторам и учащимся. Всем тем, кто так или иначе сталкивается с необходимостью узнать больше о параметрах транзисторов. Более подробную информацию обо всех возможностях этого интернет-справочника можно прочитать на странице «О сайте». Если Вы заметили ошибку, огромная просьба написать письмо. Спасибо за терпение и сотрудничество.

Мощные транзисторы, применяемые в БП. Подбор и замена.

10 Ноя 2007 – 20:13 NMD 1572 >> 68.32

Ремонт Блоков Питания Транзисторы Детали

Вот небольшая подборка транзисторов, использующихся в БП. Михаил.KSC5027- Vceo-800V, Ic- 3A, Icp – 10A, Pd – 50W 2SC4242 – Vceo – 450v, Ic – 7A. Pd – 40W BU508A – Vceo – 700V, Ic – 8A, Icp – 15A, Pd – 50W ST13003 – Vceo-400v, Ic- 1.5A, Icp – 3A, Pd – 40W MJE13003 – Vceo -400v. Ic -1.5A, Icp – 3A, Pd – 40W 2SC3457 – Vceo – 800v, Ic – 3A. P – 50w MJE13005 – Vceo – 400v, Ic – 4A, Icp – 8A, Pd – 75w MJE13006 – Vceo – 300v, Ic – 8A, Icp – 16A, Pd – 80w MJE13007 – Vceo – 400v, Ic – 8A, Icp – 16A, Pd – 80w 2SC2625 – Vceo – 450v, Ic – 10A, Pd – 80w 2SC3306 – Vceo – 500v, Ic -10A, Pd – 100w KSE13006 – Vceo – 300V, Ic – 8A, Icp – 16A, Pd – 80W KSE13007 – Vceo – 400V, Ic – 8A, Icp – 16A, Pd – 80W KSE13009 – Vceo – 400v, Ic – 12A, Icp – 24A, Pd – 130w KSP2222A – Vceo- 40v, Ic – 0.6A, Pd – 0.63w 2SC945 – Vcev – 60v, Ic – 0,1A, Pd – 0.25w 2SA733 – p-n-p Vce – 60v, Ic – 0.1A, Pd – 0.25w 2SA1015 p-n-p Vce – 50v, Ic – 0.15A, Pd – 0.4w 2SA1273 p-n-p Vce – 30v, Ic – 2A, Pd – 1.0w 2SB1116A p-n-p Vce – 80v, Ic – 1.0A, Pd – 0.75w KSC2335F – Vceo-500v, Ic – 7A, Pd – 40w. 2SC2553 – Vceo-500v, Ic – 5A, Pd – 40w. 2SC2979 – Vceo-900v, Ic – 3A, Pd – 40w. 2SC3039 – Vceo-500v, Ic – 7A, Pd – 50w. 2SC3447 – Vceo-800v, Ic – 5A, Pd – 50w. 2SC3451 – Vceo-800v, Ic -15A, Pd – 100w. 2SC3460 – Vceo-1100v, Ic – 6A, Pd – 100w. 2SC3461 – Vceo-1100v, Ic – 8A, Pd – 120w. 2SC3866 – Vceo-900v, Ic – 3A, Pd – 40w. 2SC4106 – Vceo-500v, Ic – 7A, Pd – 50w. 2SC4706 – Vceo-600v, Ic -14A, Pd – 130w. 2SC4744 – Vceo-1500v, Ic – 6A, Pd – 50w. KSC1008 – Vceo-80v, Ic -0.7A, Pd – 0.8w. 2SA928A p-n-p Vceo-20v, Ic – 1A, Pd – 0.25w. ZTX457 – Vceo-300V Ic – 0.5A, Pd – 1,0W

Разбор схемы

Это моно-усилитель мощности звуковой частоты.

Транзистор VT1 является главным элементом в схеме усилителя. Поэтому схема называется транзисторный УНЧ (усилитель низкой частоты).

В данном случае используется n-p-n транзистор. Он включен по схеме с общим эмиттером (ОЭ). Эта схема позволяет выжить максимум из транзистора. Она усиливает и напряжение, и ток одновременно. Итого максимальная мощность.

Как именно определяется схема включения? Входящий сигнал подается на базу и эмиттер, а выходящий снимается с коллектора и эмиттера. То есть, по сути, общий контакт эмиттер. Поэтому схема называется с общим эмиттером. Эмиттер – это силовая часть транзистора, которая позволяет усилить сигнал по максимуму.

Что такое каскад

Каскад – это по сути этап усиления, который не зависит от другого. Бывают и двухкаскадные усилители. То есть, например, в схеме есть два транзистора. Один работает как предусилитель, и передает усиленный сигнал на вход второго. Поэтому схема называется двухкаскадной. Они не зависят друг от друга, но первый каскад передает сигнал на второй, что позволяет увеличить мощность сигнала.

Почему мы используем транзистор Дарлингтона?

Как известно, для перевода транзистора в режим проводимости требуется небольшой базовый ток в схеме с общим эмиттером. Иногда этого малого тока базы (коэффициент усиления по току) может быть недостаточно, чтобы перевести транзистор в состояние проводимости.

Коэффициент усиления по току или бета транзистора — это отношение тока коллектора к току базы.

Блок питания 0…30 В / 3A
Набор для сборки регулируемого блока питания…

Подробнее

Коэффициент усиления транзистора или коэффициент усиления по току (β) = ток нагрузки или коллектора / входной или базовый ток.

Ток нагрузки = коэффициент усиления по току (β) × базовый ток

Для обычного транзистора значение β составляет примерно 100. Приведенное выше соотношение говорит о том, что ток нагрузки превышает в 100 раз базовый ток транзистора.

Рассмотрим схематичный рисунок, приведенный ниже. Здесь транзистор с переменным резистором, подключенным между источником питания и базой транзистора, используется для изменения яркости лампы.

В этой схеме базовый ток является единственным фактором, который определяет ток, протекающий через коллектор — эмиттер. Таким образом, изменяя сопротивление переменного резистора, можно добиться изменения яркости свечения лампы.

Если значение сопротивления переменного резистора больше, то базовый ток уменьшается — транзистор выключается. Когда сопротивление слишком мало, достаточное количество тока будет протекать через базу, что приведет к увеличению тока коллектор-эмиттер, соответственно лампа будет светить ярче. Это усиление тока в транзисторе.

В приведенном выше примере мы видели управление нагрузкой (лампой) с использованием одного транзистора. Но в некоторых схемах входной базовый ток от источника может быть недостаточным для управления нагрузкой. Мы знаем, что величина тока, протекающего через коллектор-эмиттер, является произведением тока базы и коэффициента усиления транзистора.

Поскольку увеличение тока от источника невозможно, единственный способ увеличить ток нагрузки — это увеличить коэффициент усиления транзистора. Но для каждого транзистора это постоянный коэффициент. Однако мы можем увеличить усиление, используя комбинацию из двух транзисторов. Эта конфигурация называется конфигурацией Дарлингтона.

Транзистор Дарлингтона представляет собой соединение двух транзисторов определенным образом. Пара биполярных транзисторов обеспечивает очень высокое усиление тока по сравнению с одним стандартным транзистором, как упомянуто выше.

Пара этих транзисторов может быть PNP или NP. На рисунке ниже показана конфигурация пары Дарлингтона с NPN, а также с транзисторами PNP.

Транзисторы КТ315А, КТ315Б, КТ315В, КТ315Г, КТ315Д, КТ315И, КТ315Ж.

Т ранзисторы КТ315 — кремниевые, маломощные высокочастотные, структуры — n-p-n. Корпус пластиковый — желтого, красного, темно — зеленого, оранжевого цветов. Масса — около 0,18г. Маркировка буквенно — цифровая, либо буквенная. Цоколевка легко определяется с помощью буквы, обозначающей подкласс транзистора. Она распологается напротив вывода эмиттера. Вывод коллектора — посередине, базы — оставшийся, крайний.

Наиболее широко распространенный отечественный транзистор. При изготовлении КТ315 впервые массово была применена планарно — эпитаксиальная технология. На пластине из материала n — проводимости формировался участок базы, проводимостью — p, затем, уже в нем — n участок эмиттера. Эта технология способствовала значительному удешевлению производства, при меньшем разбросе параметрических характеристик, по тому времени — довольно высоких.

Благодаря плоской форме корпуса и выводов КТ315 хорошо подходит для поверхностного монтажа. Таким образом, применение КТ315 позволило в свое время значительно уменьшить размеры элементов ТТЛ советских ЭВМ второго поколения. Область применения КТ315 черезвычайно широка, кроме элементов логики это — низкочастотные, среднечастотные, высокочастотные усилители, генераторы, все что сотавляло основу огромного количества бытовых и промышленных электронных устройств советской эпохи.

Разработка КТ315 была отмечена в 1973 г. Государственной премией СССР. Примечательно, что КТ315 до сих пор производятся в Белоруссии, в корпусе ТО-92.

Наиболее важные параметры.

Граничная частота передачи тока — 250 МГц. Коэффициент передачи тока у транзисторов КТ315А, КТ315В, КТ315Д — от 20 до 90. У транзисторов КТ315Б,КТ315Г,КТ315Е — от 50 до 350. У транзистора КТ315Ж, — от 30 до 250. У транзистора КТ315Ж, не менее 30.

Максимальное напряжение коллектор — эмиттер. транзистора КТ315А — 25в. Транзистора КТ315Б — 20в, транзистора КТ315Ж — 15в. У транзисторов КТ315В, КТ315Д — 40 в. у транзисторов КТ315Г, КТ315Е — 35 в. У транзистора КТ315И — 60 в.

Напряжение насыщения база — эмиттер при токе коллектора 20 мА, а токе базы — 2 мА: У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г — 1,1 в. У транзисторов КТ315Д, КТ315Е — 1,5 в. У транзисторов КТ315Ж — 0,9 в.

Напряжение насыщения коллектор — эмиттер при токе коллектора 20 мА, а токе базы 2 мА: У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г — 0,4 в. У транзисторов КТ315Д, КТ315Е — 1 в. У транзисторов КТ315Ж — 0,5 в.

Максимальное напряжение эмиттер-база — 6 в.

Обратный ток коллектор-эмиттер при предельном напряжении : У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г, КТ315Д, КТ315Е — 1 мкА. У транзисторов КТ315Ж — 10 мкА. У транзисторов КТ315И — 100 мкА.

Обратный ток коллектора при напряжении колектор-база 10в — 1 мкА.

Максимальный ток коллектора. У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г, КТ315Д, КТ315Е — 100 мА. У транзисторов КТ315Ж, КТ315И — 50 мА.

Емкость коллекторного перехода при напряжении коллектор-база 10 в, не более: У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г,КТ315Д, КТ315Е, КТ315И — 7 пФ. У транзисторов КТ315Ж — 10 пФ.

Рассеиваемая мощность коллектора.

У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г, КТ315Д, КТ315Е — 150 мВт. У транзисторов КТ315Ж, КТ315И — 100 мВт.

Зарубежные аналоги транзисторов КТ315.

Прямых зарубежных аналогов у КТ315 нет. Наиболее близкий аналог(полное совпадение параметров) транзистора КТ315А — BFP719.

Аналог КТ315Б — 2SC633. Параметры этих транзисторов в основном совпадают, но у 2SC633 несколько ниже граничная частота передачи тока — 200МГц.

Аналог КТ315Г — BFP722, КТ315Д — BC546B

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: