Транзисторы работающие как реле в ключевом режиме

Основные технические характеристики

13003 – это высоковольтный силовой транзистор, прежде всего спроектированный для работы с большими токами и пропускаемым напряжением между коллектором и базой. Высокая скорость переключений и низким временем задержки включения/выключения позволяет использовать его преимущественно в импульсных схемах с индуктивной нагрузкой.

Предельные режимы эксплуатации

13003 рассчитан на работу с большими напряжениями и токами. Так, заявленные производителями максимально допустимые характеристики постоянного рабочего напряжения достигают (VCEO) 400 вольт, а порогового (VCEV) 700 вольт. Номинальное значение постоянного коллекторного тока коллектора (IC) 1.5 A, а импульсного пиковое (ICM), как у большинства силовых транзисторов, в два раза больше 3 A. Максимальная мощность рассеивания, при этом, не должна превышать 40 Ватт.

Предельные значения для пикового тока измерены при длительности импульса в 5 мс и величине обратной скважности не более 10%

Электрические характеристики

Следует учесть, что для расчета возможности применения 13003 в своих схемах, величины предельных режимов эксплуатации обычно уменьшают на 25-30%. Это связано с тем, что они рассчитаны на работу прибора при температуре Тс=25°С. Рабочая же температура устройства будет значительно выше. Зная это, производители в электрических характеристиках на 13003, указывают параметры его использования не только при температуре Тс=25°С.

Как мы видим, в таблице электрических параметров 13003, величины напряжений насыщения и времени переключения приведены и для температуры 100 градусов. Если внимательно присмотреться, то можно увидеть, что эти значения указаны при максимальном токе коллектора IC не превышающем 1 A. А это в 1.5 раза (на 33%) меньше, приведенного значения в предельно допустимых параметрах.

Транзисторы MJE13001 и 13001

Т ранзисторы кремниевые структуры n-p-n, высоковольтные усилительные. Производство транзисторов 13001 локализовано в странах Юго-восточной Азии и в Индии. Применяются в маломощных импульсных блоках питания, зарядных устройствах для различных мобильных телефонов, планшетов и т

п.Внимание!

При близких(почти идеинтичных) общих параметрах уразных производителей транзисторы 13001 могутотличаться по расположению выводов .

Выпускаются в пластмассовых корпусах TO-92, с гибкими выводами и TO-126 с жесткими. Тип прибора указывается на корпусе. На рисунке ниже — цоколевка MJE13001 и 13001 разных производителей, с разными корпусами.

Как выбрать

Прежде чем отправиться за покупкой мягкой мебели, определитесь со своими потребностями. Если вы планируете покупку дивана для гостей, остановитесь на бюджетной, но современной модели

Важно, чтобы обивка служила долго и не истиралась

Если же планируется покупка мебели для ежедневного сна, основное внимание нужно уделить прочности каркаса и качеству наполнителя. Они обеспечивают правильное положение человека во время сна, сохраняют здоровье позвоночника и обеспечивают качественный сон. В anderssen доступны разные модели диванов, которые обеспечивают наиболее удобную эксплуатацию

В первую очередь необходимо замерить помещение, в которое планируется покупать мебель

В anderssen доступны разные модели диванов, которые обеспечивают наиболее удобную эксплуатацию. В первую очередь необходимо замерить помещение, в которое планируется покупать мебель

Важно, чтобы диван поместился на место установки. Затем посмотрите на подходящие модели. Если в одних случаях подойдет большой угловой диван, в других можно установить только небольшой диван или кресло

Среди самых популярных вариантов трансформации выделяют следующие:

Если в одних случаях подойдет большой угловой диван, в других можно установить только небольшой диван или кресло. Среди самых популярных вариантов трансформации выделяют следующие:

  • Аккордеон;
  • Клик-кляк;
  • Еврокнижку.

На видео: диван аккордеон от андерссен.

Многофункциональный прибор

Ещё недавно высокой популярностью пользовался универсальный модуль XL4015. По своим характеристикам он подходит для подключения светодиодов с высокой мощностью (до 100 Ватт). Стандартный вариант его корпуса припаян к плате, выполняющей функции радиатора. Чтобы улучшить охлаждение XL4015, схема должна быть доработана с установкой радиатора на коробку устройства.

Многие пользователи просто ставят его сверху, однако, эффективность такой установки довольно низкая. Систему охлаждения желательно располагать внизу платы, напротив пайки микросхемы. Для оптимального качества её можно отпаять и установить на полноценный радиатор, используя термопасту. Провода потребуется удлинить. Дополнительное охлаждение можно монтировать и для диодов, что значительно повысит эффективность работы всей схемы.

Среди драйверов наиболее универсальным считается регулируемый. Обязательно устанавливается переменный резистор, который задаёт количество ампер. Эти характеристики обычно указываются в следующих документах:

  • В сопроводительной документации к микросхеме.
  • В datasheet.
  • В стандартной схеме включения.

Без добавочного охлаждения микросхемы такие устройства выдерживают 1—3 А (в соответствии с моделью контроллера широтно-импульсной модуляции). Главный недостаток этих драйверов — чрезмерный нагрев диода и дросселя. Выше 3 А потребуется охлаждение мощного диода и контроллера. Дроссель заменяют более подходящим либо перематывают толстым проводом.

Маркировка

Цифры “13001” на корпусе дают общее представление об этом полупроводниковом устройстве. Многие производители маркируют так свои изделия из-за отсутствия места на корпусе ТО-92, не указывая при этом префикс в начале. В статье приведены технические характеристики устройств малоизвестных в России производителей DGNJDZ, Semtech Electronics, YFWDIODE. Указанные производители в своих даташитах не указывают дополнительных символов маркировки. Без дополнительных обозначений маркирует свой транзистор TS13001 тайваньская компания TSMC. Первые две литеры “TS” являются аббревиатурой первых двух слов в полном названии компании Taiwan Semiconductor Manufacturing Company. В тоже время, на рыке достаточно широко представлены транзисторы mje13001, которые тоже промаркированы цифрами 13001. SHENZHEN JTD ELECTRONICS и многие другие производители применяют s13001 s8d при маркировке своих девайсов. Встречаются и другие префиксы, не рассмотренные в статье. Многие продавцы не заморачиваясь с маркировкой в наименовании товара, указывают все возможные его типы вместе с датой производства.

Наиболее важные параметры.

Коэффициент передачи тока — от 8 до 40, в зависимости от буквы У MJE13003A — от 8 до 12. У MJE13003B — от 12 до 18. У MJE13003C — от 18 до 27. У MJE13003D — от 27 до 40.

Максимально допустимое напряжение коллектор-эмиттер — 400 В.

Максимальный ток коллектора — постоянный 1,5 А, пульсирующий — 3 А.

Напряжение насыщения коллектор-эмиттер при токе коллектора 1 А, базы 0,25 А — 1в.

Напряжение насыщения база-эмиттерпри токе коллектора 1 А, базы 0,25 А — — не выше 1,2в.

Рассеиваемая мощность коллектора: В корпусе TO-126 — 1.4 ватт, TO-220 — 50 ватт(с радиатором), TO-252 и TO-251 — 25 ватт(с радиатором), TO-92 и TO-92L — 1,1 ватт.

Граничная частота передачи тока — 4 МГц.

Что такое транзистор?

Одно из их главных предназначений — работа в ключевом режиме, то есть транзистор либо закрыт, либо полностью открыт, когда сопротивление перехода Сток — Исток практически равно нулю. Вот результаты моделирования такой ситуации.

Встроенный диод, оказывается включенным в обратном направлении и ток через него не протекает. Это возможно благодаря тому, что не используется инжекция неосновных носителей заряда. Как работает полевой транзистор?

Каскад ОЗ обладает низким входным сопротивлением, в связи с чем имеет ограниченное применение.


В силу конструктивных особенностей МОП-транзисторы чрезвычайно чувствительны к внешним электрическим полям. 5 СХЕМ на ОДНОМ ПОЛЕВОМ (МОП, МДП, MOSFET) ТРАНЗИСТОРЕ 2N65F

Читайте дополнительно: Как правильно сделать смету на электромонтажные работы

Основные технические характеристики

13003 – это высоковольтный силовой транзистор, прежде всего спроектированный для работы с большими токами и пропускаемым напряжением между коллектором и базой. Высокая скорость переключений и низким временем задержки включения/выключения позволяет использовать его преимущественно в импульсных схемах с индуктивной нагрузкой.

Предельные режимы эксплуатации

13003 рассчитан на работу с большими напряжениями и токами. Так, заявленные производителями максимально допустимые характеристики постоянного рабочего напряжения достигают (VCEO) 400 вольт, а порогового (VCEV) 700 вольт. Номинальное значение постоянного коллекторного тока коллектора (IC) 1.5 A, а импульсного пиковое (ICM), как у большинства силовых транзисторов, в два раза больше 3 A. Максимальная мощность рассеивания, при этом, не должна превышать 40 Ватт.

Предельные значения для пикового тока измерены при длительности импульса в 5 мс и величине обратной скважности не более 10%

Электрические характеристики

Следует учесть, что для расчета возможности применения 13003 в своих схемах, величины предельных режимов эксплуатации обычно уменьшают на 25-30%. Это связано с тем, что они рассчитаны на работу прибора при температуре Тс=25°С. Рабочая же температура устройства будет значительно выше. Зная это, производители в электрических характеристиках на 13003, указывают параметры его использования не только при температуре Тс=25°С.

Как мы видим, в таблице электрических параметров 13003, величины напряжений насыщения и времени переключения приведены и для температуры 100 градусов. Если внимательно присмотреться, то можно увидеть, что эти значения указаны при максимальном токе коллектора IC не превышающем 1 A. А это в 1.5 раза (на 33%) меньше, приведенного значения в предельно допустимых параметрах.

Теория импульсных блоков питания

В обычных источниках питания изменение напряжения и гальваническая развязка выполнялись на трансформаторе со стальным сердечником, работающим на частоте 50 Гц, полупроводниковым выпрямителем и линейным стабилизатором напряжения.

Однако КПД этой схемы очень низкий (не превышает 50%), большая часть мощности преобразуется в тепло в трансформаторе, диоде и аналоговом стабилизаторе. Большая номинальная выходная мощность требует наличия сетевого трансформатора повышенного размера и большой потери тепла. Этого неудобства можно избежать, увеличив рабочую частоту до нескольких сотен кГц и заменив регулятор напряжения электронным ключом с интеллектуальным управлением. Их задача – преобразовать сетевое напряжение в постоянное, а затем в выпрямленное напряжение, выполняемое быстрым переключением транзисторов. В результате получается высокочастотное прямоугольное напряжение, которое преобразуется импульсным трансформатором и выпрямителем.

Стабилизация выходной мощности достигается изменением ширины импульса при постоянной частоте или включением переключения в определенные периоды времени в зависимости от нагрузки схемы. Наиболее важные преимущества SMPS, сравнимые с обычными блоками питания:

  • малый вес, уменьшенный объем, повышенная эффективность
  • малая емкость фильтрующих конденсаторов для высоких частот переключения
  • отсутствие слышимых помех из-за того, что частота переключения находится за пределами слышимого диапазона
  • простое управление различными выходными напряжениями
  • легко снижать высокое сетевое напряжение

С развитием мощных транзисторов с быстрой коммутацией для высоких частот, стало возможным использовать ИИП, работающие на частотах до 1 МГц. С помощью этого типа резонансных трансформаторов рабочие частоты могут быть увеличены даже до 3 МГц. Тем не менее, эти преимущества уменьшаются из-за нежелательного высокочастотного излучения, а также из-за более низкой скорости реакции на возможные изменения нагрузки.

Эта тенденция привела к разработке новых ферритов Mn-Zn с очень мелкой структурой зерен и материалов с уменьшенными гистерезисными потерями, что позволяет передавать мощность в диапазоне от 1 до 3 МГц. Высокие рабочие частоты приводят к дальнейшему уменьшению размеров ядер и, следовательно, всего блока питания. Новый принцип конструкции в планарной технологии позволяет изготавливать высокочастотные трансформаторы с кардинально уменьшенными размерами (плоские трансформаторы, низкопрофильные трансформаторы). Эта технология оказывает сильное влияние на разработку преобразователей постоянного и переменного тока, а также на производство гибридных импульсных источников питания.

Но вернёмся к теории. Импульсный источник питания работает контролируя среднее напряжение, подаваемое на нагрузку. Это делается путем размыкания и замыкания переключателя (обычно мощного полевого транзистора) на высокой частоте. Система более известна как широтно-импульсная модуляция – ШИМ. Схема ШИМ – самая важная, которая отличает этот тип блока питания, поэтому стоит вспомнить хотя бы само название.

На приведенной диаграмме показаны идеи, лежащие в основе работы ШИМ, и ее довольно просто понять: V = напряжение, T = период, t (вкл.) = длительность импульса. Среднее напряжение приложенное к нагрузке, можно объяснить следующей формулой:

Vo (av) = (t (on) / T) x Vi

Импульсы следуют друг за другом быстро (это порядка многих кГц, то есть тысячи раз в секунду), и для того, чтобы нагрузка не видела внезапных импульсов, необходимы конденсаторы, обеспечивающие относительно постоянный уровень напряжения. Уменьшение времени t (on) вызывает уменьшение среднего значения выходного напряжения Vo (av) и наоборот – увеличение длительности высокого вольтажного состояния t (on) увеличивает выходное напряжение Vo (av).

Частота, с которой работает ШИМ, обычно находится в диапазоне от 30 кГц до 150 кГц, но может быть намного выше.

ИБП на микросхеме

Выпускается множество микросхем с функцией ШИМ-контроллера. Далее рассматривается несколько схем с использованием самых популярных из них.

TL494

Поскольку встроенные ключи данной микросхемы не обладают мощностью, достаточной для непосредственного управления силовыми транзисторами инвертора (T3 и T4), вводится промежуточное звено из трансформатора TR1 (управляющего) и транзисторов T1, T2.

Схема на микросхеме TL494

Если в наличии есть старый БП от компьютера, управляющий трансформатор можно взять оттуда. Состав обмоток оставляют без изменений. В качестве силовых рекомендуется использовать биполярные транзисторы MJT13009 — схема окажется более надежной. При использовании транзисторов MJE13007, рассчитанных на меньший ток, схема будет рабочей, но слишком чувствительной к перегрузкам.

Дроссели L5, L6 также извлекаются из поломанного компьютерного БП. Первый перематывают, поскольку в оригинальном исполнении он рассчитан на несколько уровней напряжения. На желтый магнитопровод (другие не подойдут) в виде кольца наматывают около 50 витков медного провода диаметром 1,5 мм. Силовые транзисторы T3, T4 и диод D15 в процессе работы сильно греются, потому устанавливаются на радиаторы.

IR2153

Из всех микросхем эта стоит дешевле всего, потому многие предпочитают собирать БП на ней. Здесь драйвер подключен не к шине +310 В, а через резистор к сети. При таком подключении снижена выделяемая на резисторе мощность.

Схема на микросхеме IR2153

В схеме предусмотрены:

  1. ограничение пускового тока (мягкий старт или софт-старт). Компонент запитан от сети через гасящий конденсатор С2;
  2. защита от короткого замыкания и перегрузки. Сопротивление R11 используется как датчик тока. Ток срабатывания защиты регулируется подстроечным сопротивлением R10.

О срабатывании защиты сообщает светодиод HL1. Напряжение на выходе — до 70 В, с двоякой полярностью. Число витков на первичной обмотке импульсного трансформатора — 50, на каждой из 4-х вторичных — 23. Выбор сечения проводов в обмотках и типа сердечника зависит от желаемой мощности.

UC3842

Еще одна недорогая микросхема, при этом весьма надежная и потому очень популярная. При включении ток, заряжающий конденсатор С2, ограничивается терморезистором R1.

Схема на микросхеме UC3842

Сопротивление последнего в этот момент составляет 4,7 Ом, затем по мере разогрева оно снижается на порядок, после чего данный элемент из схемы как бы «выключается». Стабилизация выходного напряжения — за счет обратной связи (петля «вторичная обмотка трансформатора Т1 – диод VD6 – конденсатор С8 – резистор R6 – диод VD5»).

Напряжение петли задается резистивным делителем R2 – R3. Цепочка «R4 – C5» — таймер для внутреннего генератора импульсов UC3842. ШИМ-контроллер и прочие микросхемы устанавливаются на пластинчатые радиаторы с площадью не менее 5 кв. см.

Строение полевого транзистора

Давайте еще раз рассмотрим структуру полевого транзистора.

Имеем “кирпич” полупроводникового материала P-проводимости. Как вы помните, основными носителями в полупроводнике P-типа являются дырки, поэтому, их концентрация намного больше, чем электронов. Но электроны также есть и в P-полупроводнике. Как вы помните, электроны в P-полупроводнике – это неосновные носители и их концентрация очень мала, по сравнению с дырками. “Кирпич” P-полупроводника носит название Подложки. От подложки выходит вывод с таким же названием: подложка.

Другие слои – это материал N+ типа, диэлектрик, металл. Почему N+, а не просто N? Дело в том, что этот материал сильно легирован, то есть концентрация электронов в этом полупроводнике очень большая. От полупроводников N+ типа, которые располагаются по краям, отходят два вывода: Исток и Сток.

Между Истоком и Стоком через диэлектрик располагается металлическая пластинка, от который идет вывод. Называется этот вывод Затвором. Между Затвором и другими выводами нет никакой электрической связи. Затвор вообще изолирован от всех выводов транзистора, поэтому МОП-транзистор также называют транзистором с изолированным затвором.

Мы видим, что полевой транзистор на схеме имеет 4 вывода (Исток, Сток, Затвор и Подложка), а реальный транзистор имеет только 3 вывода.

В чем прикол? Дело все в том, что Подложку обычно соединяют с Истоком. Иногда это уже делается в самом транзисторе еще на этапе разработки. В результате того, что Исток соединен с Подложкой, у нас образуется диод между Стоком и Истоком, который иногда даже не указывается в схемах, но всегда присутствует:

Поэтому, следует соблюдать цоколевку при подключении МОП-транзистора в схему.

Стабилизированный регулируемый блок питания с защитой от перегрузок

Множество радиолюбительских блоков питания (БП) выполнено на микросхемах КР142ЕН12, КР142ЕН22А, КР142ЕН24 и т.п. Нижний предел регулировки этих микросхем составляет 1,2…1,3 В, но иногда необходимо напряжение 0,5…1 В. Автор предлагает несколько технических решений БП на базе данных микросхем.

Интегральная микросхема (ИМС) КР142ЕН12А (рис.1) представляет собой регулируемый стабилизатор напряжения компенсационного типа в корпусе КТ-28-2, который позволяет питать устройства током до 1,5 А в диапазоне напряжений 1,2…37 В. Этот интегральный стабилизатор имеет термостабильную защиту по току и защиту выхода от короткого замыкания.

Рис.1. ИМС КР142ЕН12А

На основе ИМС КР142ЕН12А можно построить регулируемый блок питания, схема которого (без трансформатора и диодного моста) показана на рис.2. Выпрямленное входное напряжение подается с диодного моста на конденсатор С1. Транзистор VT2 и микросхема DA1 должны располагаться на радиаторе. Теплоотводящий фланец DA1 электрически соединен с выводом 2, поэтому если DA1 и транзистор VD2 расположены на одном радиаторе, то их нужно изолировать друг от друга. В авторском варианте DA1 установлена на отдельном небольшом радиаторе, который гальванически не связан с радиатором и транзистором VT2.

Технические характеристики

Рассмотрим основные технические параметры транзистора 13002. Они приведены в datasheet в разделах максимальных значений и электрических характеристик. Превышение предельно допустимых величин приводит к выходу устройства из строя.

Максимальные значения параметров для транзистора 13002:

  • напряжение К-Э: (VCEO (SUS)) до 300 В;
  • напряжение Э-Б: (VEBO) до 9 В;
  • ток коллектора: (IC) до 1.5 А; (ICM) до 3 А (пиковый);
  • ток базы: (IВ) = 0.75 А; (IВМ) до 1.5 А (пиковый);
  • рассеиваемая мощность (РD): до 1.4 Вт (без радиатора); до 40 Вт (с теплоотводом);
  • диапазон рабочих температур (TJ,Tstg) от -65 до +150ОС.

Электрические параметры

Электрические характеристики представляют собой перечень номинальных значений параметров, при которых гарантируется стабильная работа полупроводникового устройства. Для транзистора 13002 представлены в таблице ниже. Обычно производитель указывает их с учётом температуры кристалла не более +25ОС. В столбце «режимы измерений» приведены условия тестирования.

Аналоги

Наиболее подходящей заменой для рассматриваемого полупроводникового триода можно назвать более мощный транзистор 13003. Он встречается с символами в начале маркировке: MJE, ST, PHE, KSE, указывающими на производителя. По расположению выводов полностью идентичен. Имеет лучшие технические параметры, но перед его использованием внимательно ознакомьтесь с datasheet.

Наиболее близкими российскими аналогами является: КТ8170Б1, КТ872.

Полевые транзисторы

С подбором полевых транзисторов для импульсных  блоков питания несколько сложнее

Здесь помимо основных параметров: максимальное постоянное и импульсное напряжение, ток – постоянный и переменный, надо обращать внимание есть ли дополнительный диод между стоком – истоком D-S,

а также какой структуры транзистор с N – каналом или P – каналом (смотрите рисунки).

Это важно от того, что каким напряжением будет открываться транзистор положительным или отрицательным

Также необходимо обращать внимание на тип затвора транзистора: изолированный он (не путать с изолированным корпусом) или управляющий (смотрите фото). На рисунках вверху полевые транзисторы с изолированным затвором

Полевой транзистор с управляющим затвором.

Встретить такие транзисторы в импульсных  блоках питания телевизоров, это большая редкость.

В основном в блоках питания современных телевизоров устанавливаются полевые транзисторы с  изолированным затвором N – типа. Вот основные из них MNP6N60E, SSP7N60A, STP4NK60ZFP (P4NK60ZFP, 6N60E — первые две буквы не всегда указываются), BUZ90 (слабоват), BUZ91 и т. д. И не забываем проверять при установке температурный режим.

Неправильная замена транзистора в импульсном  блоке питания телевизора может обернуться потерей стабилизации, но еще раз повторюсь, такого не случалось.

Купить сейчас транзисторы для блока питания не проблема  BU508, 6N60E весьма распространены, для тех у кого нет рядом таких магазинов можно воспользоваться интернет — магазином, например «Гуливер».

БЛОК ПИТАНИЯ ЛАМПОВОГО УСИЛИТЕЛЯ

Ничто так не выдаёт консерватизм, чем изготовление ламповых усилителей звука. А может это просто признак особого изысканного вкуса настоящих аудиофилов? В любом случае собрать такой УНЧ представляется прикольным и теоретически выгодным занятием. Как знать, сколько подобный шедевр будет стоить спустя 20 лет. Тут один только внешний вид лампового усилителя уже делает достойной установку его на самом видном месте кабинета. А звук.. Ну это каждый решит после прослушки для себя сам. В общем приступая к сборке самого усилителя, вначале продумайте сам блок питания. Это вам не 12В взятые из БП ATX. Здесь должны присутствовать минимум два напряжения разной величины и мощности. Напряжение накала берётся в пределах 5,5 — 6,5В и чаще всего подаётся на схемы переменным, сразу с обмоток трансформатора, а питание анодов достигает 300 и даже 500В. При уже постоянной форме тока.

Несмотря на то, что в последнее время наметилась стойкая тенденция к импульсным источникам питания всего и вся, рекомендую всё-же забыть на время про электронные трансформаторы и задействовать старый добрый ТС180 (ТС160) от любого чёрно-белого лампового телевизора. Тому есть две причины. Во-первых обычный трансформатор прощает невнимательность монтажа и не взорвётся, как электронный, при случайных боках и замыканиях, а во-вторых цена ЭТ может быть весьма и ввесьма, в отличии от обычных ТС, коих у многих хватает в закромах. Представляется правильным собрать один универсальный блок питания с анодным и накальным напряжением, и питать от него или один конкретный ламповый усилитель (спрятав сам БП подальше), или собирая другие ламповые схемы переключать его при необходимости на них. На каждый ламповый УНЧ блоков питания не напасёшся:)

Смотрим схему простого блока питания лампового усилителя:

По питанию 220В ставим модный пластмассовый тумблер 250В 5А с зелёной подсветкой. Не забываем про предохранители — один на пару ампер по сети, второй трёхамперник по накалу, и третий по высоковольтному напряжению анода. В отличии от электронных трансформаторов, где предохранители сгорают последними, здесь они выполнят свою миссию, так как даже и без них блок питания выдержит кратковременные замыкания выходов. За что я и уважаю трансы в железе. Диоды для двухполупериодных мостов или собираем из советских КД202 с нужной буквой, или берём готовый диодный мост на подходящее напряжение и ток. Если у вас усилитель на пару ламп типа 6П14П с небольшой мощностью выхода, диодный мост выпрямителя пойдёт и советский коричневый КЦ405 или КЦ402. Накал выпрямлять следует только для входных ламп первого одного — двух каскадов. Дальше влияние постоянного накала сводится к нулю и это будет только расход тепла на диодах.

Можно питать накал от моста с конденсатором 4700 — 10000мкФ, а можно и КРЕН5 поставить. и не стремитесь на входные лампы подавать строго 6,3В — лучше питать их немного заниженным напряжением вплоть до 5В. Так что обычная пятивольтовая КРЕНка и всё будет ОК. Обязательно советую поставить пару светодиодов — индикаторов напряжения анода и накала. Во-первых красиво, а во-вторых информативно, сразу видны возможные проблемы с питанием.

Корпус лучше делать делезный, точнее из листового алюминия — он обрабатывается очень удобно. Или просто взять готовый подходящих размеров, где просверлить гнёзда под кнопку сети, светодиоды и разъёмы. Сеть тоже вводите в корпус не просто через дырку, а подключив штеккером к специальному сетевому гнезду. Лично я делаю только так на всех конструкциях — это удобно.

Конденсаторы фильтров анода берём чем больше — тем лучше. Минимум два по 300 микрофарад. Напряжение на них должно быть на 100В выше, чем напряжение на выходе БП. Если у вас схема рассчитана на 250В, то берём конденсатор на 350. Конечно я это правило выполняю далеко не всегда, а бывает вообще ставлю один к одному, но вы так не делайте и в этом с меня пример не берите. Резистор на 47 Ом 5 ватт уточняем по конкретной схеме лампового усилителя. Для простого однотактного его хватит, а для мощного двухтактника надо вообще ставить дроссель. Выдиратся он из любого лампового телевизора и называется ДР-0,38. Трансформатор питания перед установкой в БП обязательно послушайте на предмт гудения и жужжания. А то купите, рассчитете и соберёте под него корпус, а он гудит громче вечернего Пинк Флойда. Будет большой облом. И напоследок порекомендую все диоды шунтировать конденсаторами на 0,01-0,1 мкФ с соответствующими напряжениеми.

Все вопросы — на форум по БП

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: