Что такое трансформатор. принцип работы

Принцип работы трансформатора

Работа трансформатора основана на принципах электромагнетизма, и это позволяет уменьшать или увеличивать напряжения переменного тока. Опыты Майкла Фарадея в 19 веке показали, что изменения тока в проводнике (например, первичная обмотка трансформатора) влияет на изменение магнитного поля вокруг этого проводника. Если другой проводник (вторичная обмотка) находится непосредственно в области меняющегося магнитного поля, то в нем будет происходить наводка напряжения.

Коэффициент трансформации

Фарадей также подсчитали, что напряжение, индуцированное во вторичной обмотке будет иметь величину, которая зависит от коэффициента трансформации самого трансформатора. То есть, если вторичная обмотка имеет половину витков от числа витков первичной обмотки, то напряжение на вторичной обмотки будет в два раза ниже, чем напряжение на первичной обмотке. И на оборот, если вторичная обмотка имеет в два раза больше витков, чем у первичной обмотки, вторичное напряжение будет в два раза больше чем первичное напряжение.

Соотношение мощности обмоток

Поскольку трансформатор является пассивным компонентом схемы (не имеет никакого внешнего источника питания), он не может отдавать больше энергии, чем получает. Поэтому, если вторичное напряжение больше первичного напряжения на определенную величину, то ток вторичной будет меньше, чем ток первичной на ту же величину. То есть, если напряжение вторичной обмотки в два раза превышает напряжение в первичной, то ток во вторичной будет в два раза ниже, чем в первичной.

Работа трансформатора может быть описана двумя формулами, связывающие коэффициент трансформации с соотношением витков обмоток трансформатора.

  • U1 = первичное напряжение.
  • I1 = первичный ток.
  • U2 = вторичное напряжение.
  • I2 = вторичный ток.
  • N1 = количество витков в первичной обмотке.
  • N2 = число витков вторичной обмотки.

Потеря мощности в трансформаторе

Формулы, приведенные выше, относятся к идеальному трансформатору. У идеального трансформатора нет каких-либо потерь мощности, то есть мощность первичной обмотки (U1*I1) равна мощности вторичной обмотки (U2*I2).

В то время, как реальные трансформаторы могут быть чрезвычайно эффективным, некоторые потери все же будут происходить, поскольку не весь магнитный поток исходящий от первичной обмотки достигает вторичной обмотки. Потери мощности, которые происходят в трансформаторе бывают трех типов:

Потери мощности в обмотках

Данные потери могут произойти в обмотках, изготовленных из других металлов, чем медь. Потери проявляются в виде тепла, которое возникает в проводах обмоток. Потери мощности в обмотках трансформатора могут быть рассчитаны на основании тока в обмотке и его сопротивления по следующей формуле: P = I2*R2. Чтобы свести к минимуму потери, сопротивления обмоток должно быть низким, используя для этого обмоточные провода подходящего сечения.

Потери на гистерезис

Каждый раз, когда переменный ток вызывает намагничивание и размагничивание сердечника трансформатора (один раз в каждом цикле), вектор напряженности магнитного поля меняет свое направление и на это затрачивается определенное количество энергии.

При этом количество используемой энергии зависит от магнитного сопротивления материала сердечника. В больших сердечниках силовых трансформаторах, где потери на гистерезис представляют собой большую проблему, это решается путем применения специальной кристаллизованной стали, которая создает минимальное магнитное сопротивление.

Стенд для пайки со светодиодной подсветкой
Материал: АБС + металл + акриловые линзы. Светодиодная подсветка…

Подробнее

Потери от вихревых токов

Поскольку железо или стальной сердечник является электрическим проводником в магнитной цепи, изменение тока в первичной обмотке будет иметь тенденцию генерировать ЭДС в сердечнике, а также и во вторичной обмотке. Ток ​​будет оказывать сопротивление изменению магнитного поля, возникающего в сердечнике. По этой причине эти вихревые токи должны быть снижены.

Поэтому железный сердечник изготавливают не из цельного куска железа, а собирают из тонких листов или пластин, причем каждая пластина имеет изолирующий слой в виде лака или оксидной пленки. Многослойные сердечники значительно уменьшают образование вихревых токов, не ухудшая при этом магнитных свойств сердечника.

Область применения

Бытовые приборы имеют контакт с заземлением посредством нейтрального провода. Одновременное касание потребителем тока фазы и нулевой цепи ведет к замыканию контура и травме. Подключение через разделительный трансформатор позволяет обезопасить человека, т. к. вторичная обмотка не контактирует с землей.

Импульсные агрегаты используются при передаче прямоугольного толчка и трансформации коротких сигналов при нагрузке. На выходе изменяется полярность и амплитуда тока, но остается неизменным напряжение.

Измерительное оборудование постоянного тока является магнитным усилителем. Изменять переменное напряжение помогает направленное движение электронов небольшой мощности. Выпрямитель поставляет постоянную энергию и зависит от значений входного электричества.

Силовые агрегаты широко используются в генераторах тока малой величины, мощности, показатели в дизелях имеют средние значения. Трансформаторы монтируют последовательно с нагрузкой, прибор подключается к источнику первичной обмоткой, вторичный контур выдает преобразованную энергию. Значение выходного тока прямо пропорционально нагрузке. Используется оборудование с 3 магнитными стержнями, если генератор трехфазного тока.

Инвертирующие агрегаты имеют транзисторы одинаковой проводимости и на выходе усиливают только часть сигнала. Для полного преобразования напряжения импульс подается на оба транзистора.

Согласующее оборудование используют для подсоединения к электронным приборам с высоким сопротивлением на входе и выходе нагрузки с низким показателем прохождения электричества. Агрегаты полезны в высокочастотных линиях, где разница величин ведет к потерям энергии.

Смотрите это видео на YouTube

Номинальная мощность, напряжение и ток

Номинальная – мощность, с которой трансформатор работает в определенном классе точности и в соответствии с ГОСТом. Выражается в вольтах, амперах. Незначительные отклонения мощности допускаются, но не выше нормированных величин.

Порог номинального напряжения у трансформатора – 10кВ.

Разница в зависимости от мощности электроприборов составляет для:

  • питания электроприемников – 3-6,3кВ;
  • крупногабаритных электродвигателей – до 1000В.

Мощность трехфазного трансформатора вычитается по формуле: – S=квадратный корень цифры 3 UIU—номинальное междуфазное напряжение, В; / — ток в фазе, А. Коэффициенты рабочих токов в обмотках при рабочем состоянии трансформатора не должны быть выше номинальных Хотя кратковременные перегрузки в масляных и сухих агрегатах до определенных пределов (2,5 -3%) приемлемы.

Зачем кремний в стали?

Легирование производится не чистым элементом кремнием, а ферросилицием. Это вещество представляет собой сплав FeSi с железом. Легирование стали Si позволяет вывести из металла кислород, элемент – оказывающий наибольшее негативное воздействие на магнитные свойства Fe. Происходит реакция восстановления железа из его окислов, с результирующим образованием оксида кремния, частичного переходящего в шлак.

Так выглядит ферросилициий – марка ФС45

Второй положительный эффект от внедрения кремния в сталь связан с выделением цеменита (Fе3С) из металла, который замещается образующимся графитом. Оба соединения, оксид железа и цеменит увеличивают коэрцитивной силы в металле, что приводит к росту потерь на гистерезис. Более того, легирование кремнием железа с концентрацией Si выше 4% способствует также снижению потерь на вихревые токи, что обусловлено повышением удельного электрического сопротивления электротехнической стали относительно ее марок, нелегированных кремнием.

Основные составляющие

В их качестве вступают:

  • магнитная система (сердечник, магнитопровод);
  • обмотки;
  • охладительная система.

Магнитная система

Состоит из элементов в комплекте, чаще всего применяются пластины из ферромагнитного материала или электротехнических сталей, которые компонуются в определенной геометрической форме. Ее выбор определяется локализацией в ней основного трансформаторного магнитного поля. Система магнитного воздействия одновременно со всеми узлами, элементами и деталями для соединения частей в общую конструкцию, носит название остова трансформатора.

Часть магнитной системы, включающая основные обмотки, называется стержнем. Другая часть магнитного комплекта, на которой нет рабочих обмоток, и она служит для соединения магнитной цепи, имеет наименование ярмо. В зависимости от того, как расположены стержни, подразделяют:

  • плоская система, где продольные стержни и ярма расположены в одной плоскости;
  • пространственная система включает разно плоскостное расположение сердечников и ярм;
  • симметричная система отличается одинаковой формой и длиной стержней, а их расположение по отношению к ярмам является стандартным для всех элементов;
  • несимметричная система, в ней все стержни различаются по форме и размеру, а их расположение не отличается симметрией и отлично от других элементов.

Обмотки

Основным конструктивным элементом обмотки служит виток, являющийся рядом параллельных соединенных проводников (в многопроволочном варианте жилы), один раз охватывающий часть магнитного сердечника. Ток витка совместно с током других витков, проводников и частей трансформатора продуцирует магнитное трансформаторно поле, в котором наводится под действием магнитного поля сила, движущая ток.

Обмоткой называется общее число витков, образующих электрический контур для суммирования ЭДС в витках. Трехфазный трансформатор имеет в конструкции комплект обмоток из трех рабочих фаз. Проводник обычно квадратного сечения, чтобы увеличить площадь его делят на два или несколько проводящих стержня. Этот прием помогает снизить вихревые токи и облегчить работу обмотки. Квадратный проводник называется жилой. В качестве обмотки используется транспонированный кабель.

Изоляцию делают бумажной обмоткой или лаком на эмалевой основе. Две параллельные жилы могут выполняться в единой изоляции, такой комплект называется кабелем. Чтобы понять, как работает трансформатор, нужно знать разделение обмоток по типам. В зависимости от назначения обмотки бывают:

  • основные, те, что принимают преобразованную энергию или отводят переменный ток;
  • регулирующие предусмотрены для нормализации коэффициента напряжения при небольших показаниях тока в обмотках;
  • вспомогательные предназначены для электрического снабжения собственных нужд меньшей мощности, чем номинальная трансформаторная мощность, подмагничивания магнитной системы током постоянного значения.

В зависимости от варианта исполнения обмотки делят:

  • рядовые — витки делаются по всей длине в направлении оси, последующие витки наматывают плотно, без пробелов;
  • винтовые — имеют многослойное наложение, предусмотрены расстояния между витками или заходами обмотки;
  • дисковые обмотки содержат последовательно соединенные диски, при этом в центр каждого наматывается обмотка в форме спирали;
  • фольговый вид обмотки выполнен из листа алюминия или меди, разной толщины.

Бак для охлаждения

Представляет собой масляный резервуар, обеспечивает защиту активного ингредиента, служит опорой для приборов управления и вспомогательных приборов. Перед добавлением масла в баке выкачивают воздух для безопасной диэлектрической прочности изоляции. При изготовлении звуковые частоты от сердечника трансформатора и от элементов бака должны совпадать.

Конструкция предусматривает дополнительные параметры для расширения масла в условиях нагревания, иногда это дополнительный расширительный бак. Если увеличивается номинальная мощность трансформатора, то токи внутри и снаружи ведут к перегреву конструкции. Аналогично действует магнитный рассеянный поток внутри бака. Чтобы снизить отрицательное воздействие делают вставки из немагнитных материалов, окружая ими проходные сильноточные изоляторы.

ВИДЫ И ТИПЫ ТРАНСФОРМАТОРОВ

Трансформаторы — это достаточно широко распространенные устройства, поэтому существует множество их разновидностей. По конструктивному исполнению и назначению они делятся на:

Автотрансформаторы.

Они имеют одну обмотку с несколькими отводами. За счет переключения между этими отводами можно получить разные показатели напряжения. К недостаткам следует отнести отсутствие гальванической развязки между входом и выходом.

Импульсные трансформаторы.

Предназначены для преобразования импульсного сигнала незначительной продолжительности (около десятка микросекунд). При этом форма импульса искажается минимально. Обычно используется в цепях обработки видеосигнала.

Разделительный трансформатор.

Конструкция этого устройства предусматривает полное отсутствие электрической связи между первичной и вторичными обмотками, то есть обеспечивает гальваническую развязку между входными и выходными цепями. Используется для повышения электробезопасности и, как правило, имеет коэффициент трансформации равный единице.

Пик—трансформатор.

Используется для управления полупроводниковыми электрическими устройствами типа тиристоров. Преобразует синусоидальное напряжение переменного тока в пикообразные импульсы.

Стоит выделить способ классификации трансформаторов по способу их охлаждения.

Различают сухие устройства с естественным воздушным охлаждением в открытом, защищенном и герметичном исполнении корпуса и с принудительным воздушным охлаждением.

Устройства с жидкостным охлаждением могут использовать различные типы теплообменной жидкости. Чаще всего это масло, однако встречаются модели где в качестве теплообменного вещества используется вода или жидкий диэлектрик.

Кроме того производят трансформаторы с комбинированным охлаждением жидкостно-воздушным. При этом каждый из способов охлаждения может быть как естественным, так и с принудительной циркуляцией.

Основные части конструкции трансформатора

Основными частями конструкции трансформатора являются:

  • магнитопровод
  • обмотки
  • каркас для обмоток
  • изоляция
  • система охлаждения
  • прочие элементы (для монтажа, доступа к выводам обмоток, защиты трансформатора и т.п.)

В практичной конструкции трансформатора производитель выбирает между тремя различными базовыми концепциями:

  • Стержневой
  • Броневой
  • Тороидальный

Любая из этих концепций не влияет на эксплуатационные характеристики или эксплуатационную надежность трансформатора, но имеются существенные различия в процессе их изготовления. Каждый производитель выбирает концепцию, которую он считает наиболее удобной с точки зрения изготовления, и стремится к применению этой концепции на всём объёме производства.

В то время как обмотки стержневого типа заключают в себе сердечник, сердечник броневого типа заключает в себе обмотки. Если смотреть на активный компонент (т.e. сердечник с обмотками) стержневого типа, обмотки хорошо видны, но они скрывают за собой стержни магнитной системы сердечника. Видно только верхнее и нижнее ярмо сердечника. В конструкции броневого типа сердечник скрывает в себе основную часть обмоток.

Ещё одно отличие состоит в том, что ось обмоток стержневого типа, как правило, имеет вертикальное положение, в то время как в броневой конструкции она может быть горизонтальной или вертикальной.

Схема трансформатора

  1. Изоляция трансформатора на основе безматричной вакуумной пропитки и работает в среде с высокой влажностью воздуха и в химически агрессивной атмосфере.
  2. Минимальное выделение энергии горения (например, 43 кг для трансформатора 1600 кВА соответствуют 1,1% веса). Другие изоляционные материалы являются практически негорючими, самозатухающими и не содержат каких-либо токсичных добавок.
  3. Устойчивость трансформатора к загрязнениям благодаря конвекционным самоочищающимся дискам обмотки.
  4. Большая длина утечки по поверхности дисков обмотки, которые создают эффект изоляционных барьеров.
  5. Устойчивость трансформатора к температурной ударной нагрузке даже при крайне низких температурах (-50°С).
  6. Керамические блоки прокладки (без возможности возгорания) между дисками обмотки.
  7. Изоляция проводников стекло-шелк.
  8. Безопасность эксплуатации трансформатора благодаря специальной структуре обмотки Воздействие напряжения на изоляцию никогда не превышает напряжение изоляции (не более 10 В). Частичные разряды в изоляции физически невозможны.
  9. Охлаждение трансформатора обеспечивается вертикальными и горизонтальным каналам охлаждения, а минимальная толщина изоляции обеспечивают возможность работы трансформатора при больших кратковременных перегрузках в защитном корпусе IP 45 без принудительного охлаждения.
  10. Изоляционный цилиндр сделан и практически негорючего и самозатухающего материала, армированного стекловолокном.
  11. Обмотка низкого напряжения из стандартного провода или фольги; в качестве материала обмотки используется медь.
  12. Динамическая устойчивость трансформатора к коротким замыканиям обеспечивается керамическими изоляторами.

Режимы работы трансформаторов

Выделяют 3 основных режима работы трансформаторов:

  1. Режим холостого хода, при котором выводы вторичной обмотки разомкнуты, а сопротивление нагрузки приравнивается к бесконечности. Измерение тока, который протекает в первичной обмотке, позволяет рассчитать коэффициент полезного действия трансформатора. При работе трансформатора в таком режиме можно вычислить коэффициент трансформации и потери в сердечнике.
  2. Рабочий режим или режим под нагрузкой — это режим, при котором вторичная цепь получает от первичной напряжение, ток и сопротивление. 
  3. Режим короткого замыкания — это режим, при котором концы вторичной обмотки закорочены, мощность сконцентрирована в цепях обмоток, сопротивление нагрузки равно нулю. В этом состоянии можно определяют потери, которые расходуются на нагревание обмоток.

Свойства электротехнической стали

Ценность легированного кремнием железа обусловлена его улучшенными электромагнитными характеристиками: высокий уровень индукции насыщения, минимизация потерь на гистерезис, а также пониженная коэрцитивной сила. Поскольку анизотропная структура позволяет еще больше улучшить эти свойства, то спрос не текстурованные стали изначально выше.

Вопрос, для каких целей применяют электротехнические стали, находит ответ в наименовании металла. Одно из предназначений сплава –  это сердечники в таких устройствах:

трансформаторов тока;

статоры и роторы электрооборудования;

силовых трансформаторов.

Силовой трансформатор

Кроме того, электротехническая сталь – отличный материал для магнитопроводов в составе электрических аппаратов. Понять, почему сердечник трансформатора выполняют из электротехнической стали несложно. Это следует из свойств металла, в частности повышению удельного электрического сопротивления. Это, в свою очередь, приводит к уменьшению потерь мощности от вихревых токов, характерных для сердечника трансформатора. Как результат, повышается общая эффективность устройства, а сам сердечник меньше нагревается.

Еще больше нивелировать потери от вихревых токов, можно уменьшив толщину пластин. Поэтому электротехническая сталь для электродвигателей, в частности сердечников трансформаторов, должна иметь толщину 0.5 мм при частоте 50 Гц. Если источник тока работает на больших частотах, под сердечник используют более толстые листы электротехнической стали: 0.1 или 0.2 мм.

Дополнительные потери энергии в сердечнике трансформатора происходят вследствие гистерезиса – процесса циклического перемагничивания. Сузить петлю гистерезиса, соответственно уменьшить ее площадь приведут к понижению потерь на перемагничивание. Это вторая причина использования электротехнической стали в сердечнике трансформатора.

Поскольку снижение потерь на вихревые токи и гистерезис достигается повышением содержания кремния в металле, сплав с высокой концентрацией Si получил название трансформаторная сталь, характеристики которой лучше подстроены именно под трансформаторы. Выражаясь языком цифр, в производстве мощных трансформаторов использование текстурованной стали позволяет уменьшить уровень потерь на треть. Кроме того, это способствует снижению массы трансформатора на 10% и расхода самого металла на 20%.

Сбор сердечника трансформатора

Кроме трансформаторов, электротехническая сталь, в зависимости от марки применяется для:

магнитных цепей при изготовлении электрического оборудования – марки 2212, сернистая изотропная, 20895/20880 АРМКО;

электродвигателей и подобных изделий – марка 10895/Э12/АРМКО;

прочая электротехническая продукция – марка10880/Э10/АРМКО.

Назначение некоторых марок стали электротехнической:

Марка стали

Назначение
1211, 1212, 1213, 22110 Для якорей и полюсов электрических машин постоянного тока, для роторов и статоров асинхронных двигателей промышленной частоты мощностью до 100 кВт, для магнитопроводов приборов. Пластичность высокая.
1311, 1312 Для роторов и статоров асинхронных двигателей мощностью от 100 до 400 кВт. Пластичность хорошая.
1411, 1412, 2411 Для роторов и статоров асинхронных двигателей мощностью 400 -1000 кВт, маломощных силовых трансформаторов, для двигателей повышенной частоты. Пластичность удовлетворительная.

Основные характеристики

Холостой режим применяется при разомкнутом вторичном контуре трансформатора, в нем отсутствует напряжение. Ток проходит по первичной обвивке, возникает реактивное намагничивание. При помощи холостой работы определяют КПД, показатель трансформации и потери в сердечнике.

Смотрите это видео на YouTube

Функционирование под нагрузкой подразумевает подключение источника питания к первичной цепи, где протекает суммарный ток функционирования и холостого хода. Нагрузка подсоединяется к вторичному контуру трансформатора. Этот режим является распространенным.

Фаза короткого замыкания возникает, если сопротивление вторичной спирали составляет единственную нагрузку. В этом режиме определяются потери на нагревание катушки в цепи. Параметры трансформаторов учитываются в системе замещения прибора с помощью установки сопротивления.

Смотрите это видео на YouTube

Отношением потребляемой и отдаваемой мощности определяется коэффициент полезного действия трансформатора.

Основные элементы трансформатора

Активным элементом является каждая конструктивная деталь. Трансформатор представляет собой довольно сложное оборудование, состоящее из нескольких десятков узлов. Но к главным относятся только магнитная система, в общем смысле представленная магнитопроводом, а также изоляция, обмотки в определенном количестве и расширитель. Дополнительными, способствующими работе элементами, являются баки и выводы, прибор для постоянного охлаждения, переключатели и регулировщики подачи напряжения, измерительные вариации и защитные кожухи, тележки для перевозки и тому подобное.

Магнитная система

Магнитопровод — основной конструктивный элемент системы трансформатора. Он работает в магнитной системе — собирательное название для узла. Поток тока подается через узел, что приводит в результате функционирования определенных приборов к преобразованию и достижению необходимых показателей.

Магнитный провод изготавливается в силовом тс из нескольких листов качественной стали. Используется специальный вид — электротехническая, обладающая повышенными характеристиками проводимости и прочности. В обязательном порядке эти листы, которые рассчитаны на работу с нужным показателем магнитной индуктивности, изолируются — используются специальные разделители. Это позволяет избежать скачка напряжения, а также потерь при прохождении тока.

Ранее использовались пласты из горячекатаной стали, которые показывали индуктивность до 1,45 Тл при уровне потерь до 3,5 Вт на кг. Толщина пластов составляла от 0,35 до 0,5 миллиметров. Теперь используется сталь, изготовленная холодно тканным методом с лучшими показателями. При удельных потерях, не превышающих 1,1 Вт на кг индукция составляет 1,7 Тл. Использование стали, сделанной по новейшим технологиям, дало массу преимуществ. В первую очередь, проводники стали выпускаться меньшего сечения. Это определяет не только то, что в результате получилось меньшее в два-три раза число обмоток трансформатора, но и то, что масса и размеры самого устройства значительно уменьшились.

Эксплуатация изделий

При эксплуатации однофазных преобразующих устройств особое внимание обращается на безопасное обращение с ними, что объясняется высоким напряжением, присутствующим на первичных обмотках

Также важно учитывать следующие моменты, касающиеся правил установки и включения трансформаторов в электрические схемы:

чтобы избежать выхода обмоток из строя (выгорания), следует защищать вторичные цепи от КЗ;
важно следить за тепловым режимом сердечника и обмоток и, если потребуется, предусмотреть их охлаждение.

Уход за однофазным трансформатором сводится к стандартным процедурам, которые предусмотрены положениями действующих нормативов.

Что такое трансформатор

Трансформатор – это электромагнитный аппарат, предназначенный для преобразования переменного тока одного напряжения в переменный ток другого напряжения при той же частоте. Действие трансформатора основано на использовании явления электромагнитной индукции.

Переменный электрический ток (ток, который изменяется по величине и по направлению) наводит в первичной катушке переменное магнитное поле. Это переменное магнитное поле, наводит переменное напряжение во вторичной обмотке. Величина напряжения ЭДС зависит от числа витков  в катушке и от скорости изменения магнитного поля.

Отношение числа витков первичной и вторичной обмоток определяет коэффициент трансформации: k = w1 / w2;   где:

  • w1 — число витков в первичной обмотке;
  • w2 — число витков во вторичной обмотке.

Если число витков в первичной обмотке больше чем во вторичной — это понижающий трансформатор.

Если число витков в первичной обмотке меньше, чем во вторичной — это повышающий трансформатор.

Один и тот же трансформатор может быть как понижающим, так и повышающим, в зависимости от того на какую обмотку подается переменное напряжение.

Трансформаторы без сердечника или с сердечником из высокочастотного феррита или альсифера — это высокочастотные трансформаторы ( частота выше 100 килогерц). Трансформаторы с ферромагнитным сердечником (сталь, пермаллой, феррит) – это низкочастотные трансформаторы (частота ниже 100 килогерц)

Высокочастотные трансформаторы используются в устройствах техники электросвязи, радиосвязи и др. Низкочастотные трансформаторы используются в усилительной технике звуковых частот, в телефонной связи. Особое место трансформаторы со стальным (набор из стальных листов) сердечником занимают в электротехнике. Развитие электроэнергетики напрямую зависит от мощных, силовых трансформаторов. Мощности силовых трансформаторов имеют величины от нескольких ватт до сотен тысяч киловатт и выше. Классификация типов трансформаторов представлена в таблице ниже.

Таблица характеристик трансформаторов по их основным типам.

Классификация

Семейство трансформаторов тока классифицируют по нескольким признакам.

  1. По назначению:
    • защитные;
  2. линейки измерительных трансформаторов тока;
  3. промежуточные (используются для выравнивания токов в системах дифференциальных защит);
  4. лабораторные.
  5. По способу монтажа:
    • наружные (см. рис. 8), применяются в ОРУ;
  6. внутренние (размещаются в ЗРУ);
  7. встраиваемые;
  8. накладные (часто совмещаются с проходными изоляторами);
  9. переносные.


Рис. 8. Пример наружного использования ТТ

Классификация по типу первичной обмотки: многовитковые, к которым принадлежат катушечные конструкции, и трансформаторы, с обмотками в виде петель;

одновитковые;

шинные.

По величине номинальных напряжений:

  • До 1 кВ;

Свыше 1 кВ.

Трансформаторы тока можно классифицировать и по другим признакам, например, по типу изоляции или по количеству ступеней трансформации.

Общее устройство

Конструкция изделия в общем виде выглядит достаточно просто.

Основу устройства составляют такие важнейшие его элементы:

  1. Первичная обмотка катушка, на которую намотано N количество витков проводника. Два электрических контакта позволяют подключать к ней источники постоянного тока или напряжения.
  2. Вторичная обмотка по типу конструкции полностью повторяет первичную, но имеет отличное от нее количество витков проводника M. Также здесь расположены контакты для вывода электрического сигнала на следующего или конечного потребителя тока или напряжения.
  3. Магнитный стержень, обычно прямоугольной формы, на который по его сторонам надеты в плотном контакте к основе упомянутые выше катушки. Предназначен для того, чтобы передавать возникшее в результате действия электромагнитной индукции магнитное поле с первой на вторую катушку и возбуждать в нем пропорциональный электрический сигнал.

Все указанные элементы могут находиться в корпусе, который иногда бывает заполнен специальным трансформаторным маслом. Устроен прибор просто, и даже самая примитивная схема замещения легко объясняет его принципы работы.

Принцип работы трансформатора

Принцип работы трансформатора основан на явлении электромагнитной индукции. Если на первичную обмотку подать переменное напряжение , то по виткам обмотки потечет переменный ток , который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток , который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – и . И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения , которое будет приблизительно равно наведенной ЭДС (рис. 3).

 
Рис. 3 — Работа трансформатора без нагрузки

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток , образующий в магнитопроводе переменный магнитный поток изменяющийся с той же частотой, что и ток . Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток , создающий в свою очередь противодействующий согласно закону Ленца магнитный поток , стремящийся размагнитить порождающий его магнитный поток (рис. 4).

 
Рис. 4 — Работа трансформатора с нагрузкой

В результате размагничивающего действия потока в магнитопроводе устанавливается магнитный поток равный разности потоков и и являющийся частью потока , т.е.

Результирующий магнитный поток обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу , под воздействием которой во вторичной цепи течет ток . Именно благодаря наличию магнитного потока и существует ток , который будет тем больше, чем больше . Но и в то же время чем больше ток , тем больше противодействующий поток и, следовательно, меньше .

Из сказанного следует, что при определенных значениях магнитного потока и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС , тока и потока , обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.

Таким образом, разность потоков и не может быть равна нулю, так как в этом случае отсутствовал бы основной поток , а без него не мог бы существовать поток и ток . Следовательно, магнитный поток , создаваемый первичным током , всегда больше магнитного потока , создаваемого вторичным током .

Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.

Напряжение, которое выдает нам трансформатор на вторичной обмотке, зависит от количества витков, которые намотаны на первичной и вторичной обмотке!

где  — напряжение на вторичной обмотке — напряжение на первичной обмотке — количество витков первичной обмотки — количество витков  вторичной обмотки — сила тока первичной обмотки —  сила тока вторичной обмотки

Из этой формулы можно сделать вывод: увеличиваем напряжение – уменьшается ток, уменьшаем
напряжение – увеличивается ток.

Отношение напряжений между первичной и вторичной обмотками называют коэффициент трансформации.

В трансформаторе соблюдается закон сохранения энергии, то есть  какая мощность в трансформатор заходит, такая и выходит.

Для переменного тока мощность определяется также, но только вместо постоянного напряжения берется среднеквадратичное напряжение.

Мощность трансформатора зависит от размеров сердечника, рабочей частоты преобразования.

Трансформаторы, которые выдают одинаковые напряжения на выходе и на входе, называют разделительными (развязывающими) (рис. 5).

 
Рис. 5 — Схематичное изображение разделительного трансформатора

Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим (рис. 6). У повышающего трансформатора вторичная обмотка наматывается
более тонким проводом, чем первичная, так как максимальный ток вторичной обмотки будет меньше тока первичной обмотки.

 
Рис. 6 — Схематичное изображение повышающего трансформатора

Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим (рис. 7). Первичная обмотка понижающего трансформатора всегда будет намотана более тонким проводом, чем вторичная. Связано это с тем, что при понижении напряжения возможно увеличение тока во вторичной обмотке, следовательно, нужен провод большего сечения.

 
Рис. 7 — Схематичное изображение понижающего трансформатора

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector