Алитирование это насыщение поверхностного слоя металла

Описание и назначение металлизации

Метод металлизации выполняет большое количество функций, среди которых:

  • защита от образования ржавчины;
  • удаление царапин, трещин и сколов, появившихся в процессе обработки;
  • восстановление первоначальных габаритов изделия;
  • создание декоративного покрытия;
  • изменение физических и химических свойств верхнего слоя.

Способ нанесения покрытия избирается в соответствии с поставленными задачами и характеристиками, которые необходимо получить по окончании процесса. Толщина слоя определяет сферу применения будущего изделия.

Металлизация может проводиться химическим, физическим или электростатическим воздействием на поверхность. Она осуществляется в холодном, нагретом или диффузном состоянии.

Нанесение защитного слоя на металлическое изделие можно получить:

  • в жидкой среде;
  • в газовой среде;
  • с применением твердых компонентов.

Целующий клоп

Целующий клоп прозван так за отвратительную повадку жалить в губы спящего человека. Обычно кровопийца подкрадывается ночью: его привлекает углекислый газ, выделяемый с дыханием. Насосавшийся крови клоп оставляет в ранке фекалии вместе с паразитами Trypanosoma cruzi – переносчиками болезни Шагаса или американского трипаносомоза. Сонная жертва расчесывает зудящее место, и опасная инфекция проникает в организм.

Большинство инфицированных поначалу не знают, что заразились: признаки незаметны или слабо выражены: лихорадит, побаливает голова, чуть увеличиваются лимфоузлы. Через 2-3 месяца болезнь становится хронической, но симптомы, как ни странно, исчезают. Иногда затаившаяся инфекция напоминает о себе через 10-30 лет: развивается сердечная недостаточность, реже наблюдается расширение пищевода и гипертрофия толстой кишки. Необратимые поражения внутренних органов приводят к внезапной смерти.

А вы знаете, что… По оценкам ВОЗ, болезнью Шагаса заражены от 6 до 7 млн человек в мире, преимущественно в Латинской Америке. Однако в последние годы все чаще регистрируются случаи заболеваний в США, Канаде, Европе и ряде стран Азиатско-Тихоокеанского региона, что связывают с передвижением латиноамериканцев по всему миру. Вовремя начатое лечение обеспечивает 100% выздоровление, но вакцины против болезни Шагаса нет. Уберечься от поцелуя триатомового клопа помогает только периодическая дезинсекция жилья и личная гигиена.

Проверено временем

Простой и доступный метод защитить пиломатериал — химический. Способ химической обработки может иметь виды:

  • антисептирование;
  • консервирование.

Поговорим подробнее о каждом из видов химической обработки.

Обработка от биопоражений

Антисептирование — это пропитывание пиломатериалов и изделий различными химическими составами, которые способны предотвращать развитие микроорганизмов. Дерево обрабатывается антисептиком прямо на производстве или при домашних работах. Существует несколько вариантов обработки дерева антисептиком, но самые популярные — это покрытие и вымачивание. Способ подбирается в зависимости от свойств древесин: влажность, смолистость, плотность. Учитываются химические свойства антисептика: активность и текучесть.

Покрытие деревянной поверхности антисептирующими пропитками подходит для домашнего использования. Продукт наносится на поверхность изделия при помощи кисточки или пульверизатора. Частично впитываясь внутрь, продукт образует на поверхности тончайшую пленку. Среди известных антисептиков для домашнего использования выделяются: Финеста, Сенеж (Евротранс и Транс), Неомид 460. Цена от 100 р./л. При покупке больших объемов можно сэкономить 10–20%.

Второй способ антисептирование — вымачивание. Этот метод подходит для производств, в домашних условиях вымочить удастся небольшое деревянное изделие. Вымачивается древесина в специальных ваннах, состав может подогреваться или используется холодным. Вымачивание в течение нескольких суток дает больший защитный эффект, чем покрытие, так как антисептик проникает в самые глубокие слои дерева. Популярна продукция химической обработки древесины для вымачивания: Сенеж Концентрат, ХМФ-БФ. Цена от 90 р./л. Средства консервированные, разводятся водой.

Глубокая пропитка

Консервирование древесины доступно производителям, так как метод требует соблюдения специальных условий и наличия профессионального оборудования. Консервирование — это введение антисептирующих жидкостей вглубь пиломатериала при помощи различных способов.

По специфике и методу воздействия на древесину, консервирование разделяется на 3 вида:

  • Автоклавное. Защитные составы под воздействием вакуума или низким атмосферным давлением проникают в самые глубокие слои древесины. Для метода необходима древесина определенной влажности. Материал прямо из сушильной камеры отправляется в автоклав, где проходит три ступени обработки: разряжение материала под несильным давлением, обработка пропитывающими составами под давлением, вакуумное воздействие для подсушивания и лучшего проникновения состава вглубь.
  • Горяче — холодное консервирование. Обработка происходит за счет резкой перемены температурных режимов в ванной. Пиломатериал сначала помещается в горячую емкость, где отдает излишки влаги и воздуха. Затем резко перемещается в холодный состав, где под давлением вакуума в поверхностных слоях происходит пропитка.
  • Диффузионный метод консервирования. По способу схож с автоклавным, но позволяет работать с древесиной естественной влажности. Обработка происходит этапами: под воздействием паровакуумной камеры подсушиваются верхние слои материала, обработка под воздействием вакуума и выдерживание.

Консервирование применяется для покрытия дерева и защиты его от самых агрессивных воздействий: очень низких или высоких температур, воды. Для защиты домов и элементов отделки достаточно использовать метод — антисептирования.

Преимущества алитирования с «Диметом»

С помощью использования универсального оборудования «Димет» провести алитирование металлических поверхностей можно в самые короткие сроки, без особых затрат и на самом высоком уровне. Благодаря небольшому весу и компактным размерам установок с ними легко и удобно работать. В результате обработанные детали станут более прочными, надежными и не будут поддаваться коррозии.

Алитирование можно проводить на деталях, изготовленных из разных металлических сплавов, таких как чугун, медь, сталь, никель. Для начала изделия, которые будут подвергаться нанесению алюминиевого слоя, нужно подготовить. Их надо очистить от пыли и грязи и желательно придать их поверхности некоторую шероховатость — для лучшего сцепления металлов друг с другом. После этого в выбранном режиме надо напылить алюминий по всей поверхности детали. Лишний металл очищаем, и деталь шлифуется. После такой недолгой обработки деталь или изделие станет более выносливым и износостойким.

Помимо этого с «Диметом» можно выполнять и ряд других задач. С помощью этого оборудования можно восстановить объем и массу любого металлического изделия путем наращивания металла: можно произвести герметизацию швов, антикоррозийную обработку металлических поверхностей и тому подобное. Современное оборудование «Димет» нашло широкое применение. Его можно автоматизировать и использовать на различных промышленных предприятиях, а также можно эксплуатировать в автомастерских или в быту.

Имея под рукой это универсальное и уникальное оборудование, можно экономить свои сбережения. Ведь с помощью «Димета» восстанавливаются любые металлические изделия и запчасти. Поэтому можно не приобретать новые детали, а просто отремонтировать старые. После обработки оборудованием «Димет» металлические изделия еще долго будут радовать своей работоспособностью.

Близкие по сути процессы термообработки

В перечень термообработки сталей, помимо нормализации, можно внести операции:

  • отжиг;
  • отпуск;
  • закаливание;
  • криогенная обработка и несколько других.

Операция отжига обеспечивает качественную, более тонкую структуру перлита, это происходит потому, что охлаждения деталей применяют печи. Назначение этой операции — понижение неоднородности структуры, удаления напряжений, повышение обрабатываемости.

Основы, заложенные в операцию закаливания, идентичны принципам нормализации, но существуют некоторые различия. Например, при закаливании применяют температуры куда как выше и высокие скорости охлаждения. Закаливание проводит к улучшению прочностных характеристик, твердости и пр. Но, нередко заготовки прошедшие через закаливание отличает сниженная вязкость и высокая хрупкость.

Отпуск деталей применяют после операции закаливания. Отпуск снижает хрупкость и внутренние напряжения. При этом диапазон температур ниже, чем тот, который используют в нормализации. Охлаждение деталей проводят на воздухе. При повышении температуры снижается предел прочности, твердость и в то же время растет ударная вязкость.

Криогенная обработка стали приводит к получению равномерной структуры металла и повышенной твердость. Эту технологию обработки применяют в отношении прошедшей закаливание углеродистой стали.

Свойства и преимущества алитированных сталей

Алитированная сталь обладает рядом ценных качеств:

  1. После хроматирования получается поверхность с высокой адгезией к лакокрасочным изделиям.
  2. Низкая себестоимость покрытия позволяет использовать алитирование в качестве достойной альтернативы дорогостоящим жаростойким покрытиям.
  3. Алюминизированная сталь обладает устойчивостью к механическим повреждениям.
  4. При температуре свыше 470 °C образуется промежуточный сплав, который имеет высокую устойчивость к температурным воздействиям.

Алитирование – это высокотехнологичный процесс, который придает поверхности обрабатываемого металла новые защитные свойства. А что вы думаете о технологии? Возможно, считаете, что есть более качественные методы металлизации? Поделитесь вашими мыслями в блоке комментариев.

Диффузионная металлизация

Диффузионная металлизация

химико-термическая обработка, при которой поверхность стальных изделий насыщается различными элементами: алюминием, хромом, кремнием, бором и др.

При насыщении хромом процесс называют хромированием

, алюминием – алитированием, кремнием – силицированием, бором – борированием. Диффузионную металлизацию можно проводить в твердых, жидких и газообразных средах.

При твердой диффузионной метализации

металлизатором является ферросплав с добавлением хлористого аммония (NH4Cl ). В результате реакции металлизатора сHCl илиCL2 образуется соединение хлора с металлом (AlCl3, CrCl2, SiCl4 ), которые при контакте с поверхностью диссоциируют с образованием свободных атомов.

Жидкая диффузионная металлизация

проводится погружением детали в расплавленный металл (например, алюминий).

Газовая диффузионная металлизация

проводится в газовых средах, являющихся хлоридами различных металлов.

Диффузия металлов протекает очень медленно, так как образуются растворы замещения, поэтому при одинаковых температурах диффузионные слои в десятки и сотни раз тоньше, чем при цементации.

Диффузионная металлизация – процесс дорогостоящий, осуществляется при высоких температурах (1000…1200oС

) в течение длительного времени.

Одним из основных свойств металлизированных поверхностей является жаростойкость, поэтому жаростойкие детали для рабочих температур 1000…1200oС

изготавливают из простых углеродистых сталей с последующим алитированием, хромированием или силицированием.

Исключительно высокой твердостью (2000

HV) и высоким сопротивлением износу из-за образования боридов железа (FeB, FeB2 ) характеризуются борированные слои, но эти слои очень хрупкие.

Контрольные вопросы.

1.Почему при высокотемпературном цианировании сталь в большей степени насыщается углеродом, а при низкотемпературном — азотом?

2.Преимущества цианирования по сравнению с цементацией и азотированием.

3. Какие стали можно цементировать?

4. Почему при азотировании поверхность стали получает очень высокую твёрдость и износоустойчивость?

5.Преимущества азотирования по сравнению с цементацией. Недостатки его.

6.Что произойдёт, если при цементации детали будут касаться друг друга?

7.Выше какой критической точки ведётся нагрев стали при цементации?

8. Чем объясняется высокая твёрдость цементированного слоя?

9. В результате каких способов диффузной металлизации снижается трение?

10. В результате какой обработки можно повысить долговечность измерительных инструментов?

1.Используя диаграмму Fe-Fe3C и зная, что цементация проводилась при температуре 930 0С, нарисуйте схему изменения структуры от поверхности к середине после охлаждения детали, если исходное содержание углерода в стали было 0,2 %, содержание углерода в поверхностном слое 1,0 %.

2. Ответственное изделие было изготовлено из крупнозернистой углеродистой стали с 0,15 % С. Подумайте, какой режим термообработки обеспечит оптимальные свойства изделия, если цементация проводилась при 950 0С и содержание углерода в поверхностном слое 0,9 %.

Лекция 11

Алюмокремниевые и алюмоцинковые трубы

Трубы для производства глушителей.

Холодные дни остались позади, и весна набирает все большие обороты и многие автолюбители поставившие свои авто в первые зи мние дни в гараж, начинают подготавливать их к активной езде по нашим дорогам. Многие занимаются осмотром машины самостоя тельно, а некоторые отдают их для осмотра в автосервис. В результате такого осмотра может выясниться, что какая- то деталь, запчасть пришла в негодность и ее следует заменить. Среди таких запчастей может оказаться и автомобильный глушитель. Автомобильный глушитель один из важных компонентов, служащих для снижения шума отработанных газов, снижения температур ы и преобразования энергии отработанных газов

Очень важно из какого материала произведен глушитель, что в первую очередь влияет на его скорость прогорания. Чаще всего элементы глушителя изготавливаются из углеродистой или алюминизированной стали, а так же из нержавеющей стали

Глушители, изготовленные из нержавеющей стали, не пользуются большой популярностью, так как изготавливаются дольше обычных и стоимость их в разы выше глушителей, произведенных из углеродистой и алюминизированной стали. Приблизительный срок с лужбы составляет от 10 до 15 лет.

При производстве глушителей используется углеродистая сталь высокого качества, маркой стали 08пс и 08ю, толщина металла мо жет варьироваться от 1,2 до 1,5мм. Период службы таких глушителей составляет 6мес. до 2 лет. Для повешения большей прочности и износостойкости в последнее время в автопроме все чаще стали использовать алюминизиров анную сталь. Срок службы таких глушителей может составлять от 3 до 6 лет. Алюминизированная сталь бывает двух видов алюмоцинковая и алюмокремниевая.

Так же при производтсве используется множество ламп накаливания.

Алюмоцинк являет собой тонколистовую оцинкованную холоднокатаную сталь. Благодаря слою цинка обеспечивается надежность оцинкованной стали. Оцинкованная сталь имеет ровную глянцевую серебристую поверхность. Одним из важнейших факторов испо льзования данного металла это высокая степень сопротивления коррозии. Защитное покрытие алюмоцинка состоит из псевдосплавов – это алюминий (55%), цинк (43,4%) и кремний (1,6%). Благодаря взаи модействию этих элементами обеспечиваетс ясоотношение коррозостойкости качества алюминия и защитным гальваническим свой ством цинка. Алюминий образует наиболее устойчивый оксид на поверхности металлического листа и интерметаллическое соединение с кремни ем, обладающее высокой степенью коррозостойкости, способствующее более прочному сцеплению покрытия с основой. Все выше перечисленное обеспечивает надежную барьерную защиту, для проникновения окисляющей среды в глубь металла. Цинк берет на с ебя функцию защиты стальной основы от возникновения коррозии в процессе резки металла или возникновения глубоких царапин на поверхности защитного слоя. Это происходит, так как электрохимический потенциал цинка намного выше железа, под воздейств ием электрохимических процессов цинк постепенно начинает «растворяться», освобождая от зародившихся окисленных пленок ста льной лист. Такой принцип защиты получил название «жертвенной защиты». Благодаря «растворению» цинка остается тонкая оки сная пленка, благодаря которой еще довольно продолжительное время коррозия не проникает на металл.

Алюмокремний представляет из себя электросварные трубы с двусторонним алюмокремниевым покрытием, предназначенные для и зготовления деталей автомобильного глушителя. Трубы изготавливаются из низкоуглеродистой стали с двусторонним алюминизиро ванным покрытием нанесенным горячим способом. Основу покрытия составляет сплав на основе алюминия с содержанием кремния 5- 11%. Толщина алюмокремниевого покрытия с каждой стороны составляет от 25 до 30 мкм. Чтобы проверить алюмокремниевое пок рытие трубы проходят испытания на коррозийную стойкость в нейтральном соляном тумане в течение 500 часов, испытания в конд енсате выхлопных газов, испытане на теплостойкость при температуре 615⁰С без образования вздутия и шелушения. Трубы с алюмокремниевым покрытием имеют очень высокую степень коррозостойкости в агрессивных средах повышенную сопротивляемость к в оздействию температур. Трубы с алюмоцинковым и алюмокремниевым покрытием изготавливаются из холоднокатаной стали марки 08пс при толщине метал ла 1,5мм.

Диаметры изготавливаемые из этого металла: Дн38, Дн40, Дн43, Дн45, Дн51.

Данный вид продукции Вы можете приобрести в компании «Профиль-Сталь» обратившись по телефону (8442) 99-81-99.

Технология сварки алюминия электродами

Технологию сварки алюминия электродами используют очень редко. Этот метод подойдет там, где нет возможности воспользоваться специальным оборудованием. То есть чаще его используют в полевых условиях или в маленьких мастерских, где финансово не могут себе позволить приобрести необходимое оборудование. В таком случае применение электродов может сократить и расходы, и время.

Существует несколько марок покупных электродов:

  • ОК – электроды по алюминию с примесью марганца или магния. Следует беречь от влаги, поэтому не стоит вынимать все стержни из упаковки.
  • ОЗАНА – здесь имеются две разновидности, которые немного отличаются в применении в зависимости от типа и сплава металла. Такие стержни применяются для горизонтальной и вертикальной сварки.
  • ОЗА – полностью состоят из алюминия и по производству похожи на самодельные стержни. Используются для соединения сплава алюминия с кремнием.
  • УАНА – по своему происхождению и свойствам предназначены для сварки алюминиевых сплавов, поддаются деформации.
  • ЭВЧ – применяются для сварки в среде, где в качестве защиты применяется аргон. Эти электроды полностью состоят из вольфрама.

Электроды для соединения алюминиевых деталей разнятся по своей стоимости, поэтому выбирая подходящий вариант, обратите внимание на характеристики, которые для вас имеют первостепенное значение. 1

1.

Ручная дуговая сварка алюминия покрытыми электродами (технология ММА).

Технология ручного соединения при помощи покрытых электродов используется для неответственных конструкций из чистого алюминия и его сплавов: AlSi, AlMg и AlMn. Этот метод подходит только для изделий толщиной менее 4 мм.

Недостатками данного способа соединения материала являются:

  • пористость и низкая прочность шва, что подразумевает невысокое качество соединения;
  • большое количество брызг расплавленного металла;
  • плохая отделяемость шлаковой корки, которая может вызвать коррозию.

Для выполнения работ необходим ток обратной полярности без поперечных колебаний

Важно грамотно произвести расчет силы тока по следующей формуле: 25–30 А на 1 мм электрода

Если вы хотите добиться высокого качества соединения, то желательно детали до начала сварочных работ разогреть до определенной температуры. Для тонких и средних по толщине деталей достаточно температуры +250…+300 °С. Крупным изделиям необходима температура до +400 °С.

Не забывайте, что оптимальная температура может быть указана производителем электродов. Если вы нашли такие данные, то лучше руководствоваться ими.

2.

Ручная дуговая сварка угольными электродами.

Технология сварки алюминия при помощи угольных электродов используется чаще всего для неответственных конструкций. Для данного вида работ понадобится постоянный ток прямой полярности.

Для габаритных изделий, толщина которых составляет более 2,5 мм, необходимо выполнять разделку кромок. Диаметр присадки должен быть в диапазоне 2–8 мм. Пастообразный флюс допускается наносить как на стержень, так и на рабочую поверхность.

3.

Ручная дуговая сварка вольфрамовым электродом в инертном газе (технология AC TIG).

Это очень популярный способ соединения материалов, используемый тогда, когда необходимо получить очень прочное соединение с прекрасным внешним видом. Технология дуговой сварки алюминия вольфрамовым электродом основана на применении стержня диаметром 1,6–5 мм и присадки 1,6–4 мм.

Для выполнения работ по данной технологии необходима защитная среда из гелия или аргона. Электрическая дуга поддерживается источником переменного тока, что дает хорошие результаты при разрушении оксидной пленки.

  • Угол между электродом и рабочей поверхностью должен составлять 70–80°; между присадочной проволокой и электродом – 90°. Длина дуги – от 1,5 до 2,5 мм.
  • Присадка подается короткими возвратно-поступательными движениями. Поперечные движения электрода и присадочного прутка недопустимы.
  • Горелка движется вслед за прутком.
  • Под алюминиевое изделие следует класть прокладку из меди и стали, которая будет выполнять теплоотводящую роль. Это исключит образование дыр, особенно при работе с тонким металлом.
  • Размеры сварочной ванны должны быть минимальными.
  • Подача аргона начинается за 5–7 секунд до возбуждения дуги, а выключается через 5–7 секунд после ее обрыва.

Сварка алюминия аргоном: технология, инструкция, нюансы процесса

По технологии сварочных работ в аргоновой среде высокие требования предъявляются как к сварочному аппарату, так и к дополнительному оборудованию, которое обеспечивает правильное хранение и подачу расходных материалов. Все эти параметры имеют определяющее значение при формировании сварного шва.

Аргоновая сварка алюминия и его сплавов может выполняться при наличии следующего оборудования:

  • источник электрического тока, к которому будет подключаться сварочный аппарат и все остальное оборудование;
  • баллон, в котором хранится защитный газ аргон;
  • механизм, отвечающий за подачу присадочной проволоки в зону выполнения сварки.

Технология выполнения сварочных работ при помощи аргона на крупных промышленных предприятиях хорошо отработана. В таком случае защитный газ подается по централизованной сети. Из сварочной проволоки формируются целые бобины, устанавливаемые на полуавтоматический сварочный аппарат. Все работы выполняются на специальных верстаках, поверхность которых сделана из нержавеющей стали.

Сварной шов высокого качества получается только при тщательной очистке соединяемых деталей от различного вида загрязнений (жира, грязи, масла). Очистка выполняется с помощью растворителя. Для листовых заготовок, толщина которых более 4 мм, обязательно выполняется разделка кромок. В таком случае сварочные работы проводятся встык. Для удаления тугоплавкой окисной пленки с поверхности изделия необходимо обработать место соединения напильником или металлической щеткой. При сложной конфигурации соединения возможна обработка шлифовальной машинкой.

Технология сварки алюминия полуавтоматом в аргоновой среде имеет ряд характерных особенностей. При выполнении работ полуавтоматом или с ручной подачей присадки понадобятся электроды из вольфрама диаметром 1,5–5,5 мм. При формировании сварочной дуги электрод необходимо располагать под углом 80° к поверхности деталей.

Технология ручной подачи присадочной проволоки допускает угол 90° относительно электрода. При этом присадочная проволока двигается впереди электрода. Это очень хорошо видно на демонстрационных видео, где показывают сам процесс сварочных работ с применением аргона.

Режимы аргонодуговой сварки алюминия вольфрамовым электродом
Толщина металла, мм Диаметр, мм Сила тока, А
Вольфрамового электрода Присадочной проволоки В аргоне В гелии
1-2 2 1-2 50–70 30–40
3-4 3 2-3 100–130 60–90
4–6 4 3 160–180 110–130
6–10 5 3-4 220–300 160–240
11–15 6 4 280–360 220–300

Технология соединения аргоном требует соблюдение длины дуги в пределах 3 мм. При этом не допускаются поперечные движения присадочной проволокой.

Тонкие алюминиевые листы желательно соединять на подкладке, в качестве которой может выступать стальной лист. Такая технология способствует более быстрому выводу тепла из зоны работ, в результате редко возникают прожоги или протечки расплавленного металла. Кроме этого, подкладка позволяет экономить энергию, значительно увеличивая скорость выполнения сварочных работ.

Технология сварки алюминия и его сплавов с помощью аргона имеет ряд неоспоримых преимуществ перед другими способами соединения заготовок. В первую очередь, это касается малого нагрева соединяемых деталей. Это очень ценное качество при варке заготовок сложной формы.

При использовании аргонового соединения получается очень прочный сварной шов с высокой однородностью материала в данной зоне, минимальным количеством пор, примесей и инородных вкраплений. Однородная глубина проплавления по всей длине сварного шва является очень важным показателем, выгодно отличающим технологию аргоновой сварки.

Безусловно, каждая технология имеет свои недостатки, и работа с аргоном – не исключение. Минусом этого способа является использование сложного оборудования. Только при грамотной настройке сварочного аппарата и дополнительного оборудования возможно достижение максимальной эффективности всех операций, в результате чего получается высококачественный сварной шов.

Определяющим параметром при настройке всего оборудования для выполнения работ в аргоновой или другой защитной среде является скорость и равномерность подачи присадочной проволоки. При нарушениях данного параметра присадка подается с перерывами, прерывается сварочная дуга, а расход защитного газа и электроэнергии существенно возрастает.

Плюсы и минусы диффузионного насыщения металлов

Применяя диффузионную металлизацию, в поверхностный слой металлического изделия можно внедрить практически любой диффундирующий элемент – это следует отнести к положительным аспектам метода.

Отрицательные же аспекты, которые не позволяют широко использовать такую обработку на предприятиях, следующие:

  • скорость диффузии очень мала и требует многих часов обработки;
  • поддержание высоких температур ведет к серьезным затратам энергии;
  • из-за повышенного нагрева деталь подвергается деформации;
  • полученный слой уступает по показаниям защиты слоям, получаемым менее затратными методами, например нитроцементацией.

Методы алитирования

Всего существует несколько методов алитирования. Это может быть:

  • нанесение порошковых смесей на поверхность;
  • окраска поверхностей и деталей специальной алюминиевой краской;
  • погружение стальных деталей в расплавленный алюминий.

Как правило, после алитирования толщина наращенного алюминия на стальную или любую другую металлическую поверхность составляет 0,2–1,2 сантиметра.

Чтобы сделать алитирование стали, надо иметь некий опыт и современное оборудование. Провести алитирование можно с установками «Димет». При алитировании металла с «Диметом» стоит использовать специальный порошок — А-20-01.

Технология процесса

Подготовка, насыщение азотом и финишная обработка верхнего слоя стали и сплавов подразумевает несколько ступеней:

  1. Подготовительная термообработка металла, которая состоит из закалки и высокого отпуска. Внутренность изделия при этом становиться более вязкая и прочная. Закалка проходит при очень высокой температуре около 940 °С и заканчивается охлаждением в жидкости – масле или воде. Температурные условия отпуска составляют 600-700 °С , что наделяет металл твердостью годной для резки;
  2. Механическая обработка заготовок, которая заканчивается шлифовкой. После этой процедуры деталь достигает нужных размеров;
  3. Предохранительные меры для тех частей изделий, которые должны попасть под действие насыщения азотом. Для этого применяют простые составы вроде олова или жидкого стекла, наносимые слоем не более 0,015 мм путем электролиза. Происходит образованием тонкой пленки, непроницаемой для азота;
  4. Азотирование стали по вышеописанной технологии;
  5. Финишное доведение деталей до требуемого состояния.

При этом сложноформенные заготовки с тонкими стенками упрочняют при 520 °С.

По поводу изменения геометрических параметров изделий после процесса азотирования отмечено, что она зависит от толщины полученного азотонасыщенного слоя и примененных температур. Однако, данное изменение в любом случае незначительно.

Нужно отметить, что современные методы обработки металла способом азотирования проводят в печах шахтного строения. Максимальная температура которых может достигать 700 его проведения ˚С, циркуляция аммиака в таких печах принудительная. Муфель может быть встроенным в печь либо сменным.

Процесс будет проходить намного быстрее, если внедрить дополнительный муфель. Тогда запасной муфель с деталями загружается сразу же по готовности первого с обработанными заготовками. Однако, применение такого способа не всегда экономически оправдано, особенно при насыщении азотом крупных изделий.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: